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 Q1: Does the scattering change if the topological charge q changes sign?

 Q2: Given a topological charge q, does the sense of circular polarization

matter?

 Q3: Does the focusing regime change the answers to Q1 and Q2?

Symmetries of the problem don’t change

q = 1
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Experimental details

 Mirror and cylindrically symmetric
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 2) Why do l = ±1 behave equally, while l =±7 don’t?

 3) Why do l = 0 and l = 7 have different linewidths?

 4) Why do we see different intensity patterns?
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 2 extreme cases:

i) Beam width is much smaller than the scatterer

ii) Beam width is much larger than the scatterer
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 Rigorous picture: Simulation | Mie Theory

Why do l = ±1 behave equally, while l =±7 don’t? (II)

 Mie Theory: Given a particle (R, nr), then

 And in between l = ±7?

Differences in

j=1,2,3 then it’s

almost equal!

The decomposition

is different in modes

where j ~ j*
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 Helicity

Why do we see different intensity patterns? (I)

 A dual scatterer preserves helicity
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Why do we see different intensity patterns? (II)

 Multipoles with opposite helicity behave similarly in opposite semispaces
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Conclusions

 Increasing the Angular Momentum of the illumination can spectrally tune and

sharpen the scattered power

 Interesting effects arise when we tailor the illumination so that we excite the

multipolar modes j* ≈ 2πR/λ ≈ 16

 Q1: Does the scattering change if the topological charge q changes sign?

 A1: It depends

 Q2: Given a topological charge q, does the sense of circular polarization

matter?

 A2: It depends

 Q3: Does the focusing regime change the answers to Q1 and Q2?

Symmetries of the problem don’t change

 A3: Yes
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