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v" Qq: Does the scattering change if the topological charge q changes sign?

v" Q,: Given a topological charge q, does the sense of circular polarization
matter?

v" Qg Does the focusing regime change the answers to Q, and Q,?
Symmetries of the problem don’t change
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Experimental details

v Particles made of amorphous TiO,, R=(2.0 £ 0.1) um, n, = 1.8

v" A scans. Great alignment care for
polarization and phase

v Blue/red: two helicities

v Backscattering dimensionless figure of merit I =

v" Mirror and cylindrically symmetric
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v" Experiment has some symmetries. (A, m,, p) = (A, -m,, -p)
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1) Why do these resonances move around?
2) Why do | = =1 behave equally, while | =7 don’t?
3) Why do | = 0 and | = 7 have different linewidths?

4) Why do we see different intensity patterns?
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Intuitive picture: Interesting phenomena happen when the size of the scatterer
and the beam width are similar

2 extreme cases:
1) Beam width is much smaller than the scatterer
i) Beam width is much larger than the scatterer
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v~ Multipoles with opposite helicity behave similarly in opposite semispaces
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Conclusions

Helicity and Angular momentum play a crucial role in light scattering

Increasing the Angular Momentum of the illumination can spectrally tune and
sharpen the scattered power

Interesting effects arise when we tailor the illumination so that we excite the
multipolar modes j* = 2TR/A = 16

Q,: Does the scattering change if the topological charge q changes sign?
A;: It depends

Q,: Given a topological charge q, does the sense of circular polarization
matter?

A,: It depends

Qs Does the focusing regime change the answers to Q, and Q,?
Symmetries of the problem don’t change

As. Yes
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