Supersymmetric Lattice Models

Kareljan Schoutens University of Amsterdam

Benasque – 17-19 February 2020

Lecture 3/3

Twelve Easy Pieces

- 1. Teaser
- 2. N=2 susy Witten index
- 3. M₁ model in 1D: Witten index, spectra, CFT connection
- 4. M₁ model: scaling form of 1-pt functions from CFT
- 5. M_k models: Witten index, CFT
- 6. M_k models off criticality \rightarrow massive (integrable) QFT
- 7. M₁ model on square ladder: CFT, 1-pt functions, $\langle \sigma \sigma \sigma \sigma \rangle$
- 8. PH symmetric model and coupled fermion chains
- 9. Superfrustration on ladder: zig-zag, Nicolai, Z₂ Nicolai
- 10. Superfrustration on 2D grids
- **11.** Back to 1D M_1 model: kink dynamics
- 12. Towards realization with Rydberg-dressed cold atoms

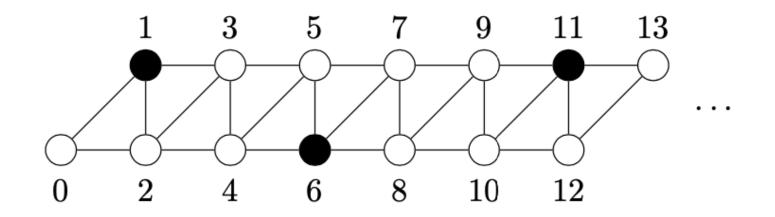
9. Superfrustration on ladder: zig-zag, Nicolai, Z₂ Nicolai

10.Superfrustration on 2D grids

11. Back to 1D M₁ model: kink dynamics

12.Towards realization with Rydbergdressed cold atoms

Zig zag ladder – proliferation of susy groundstates

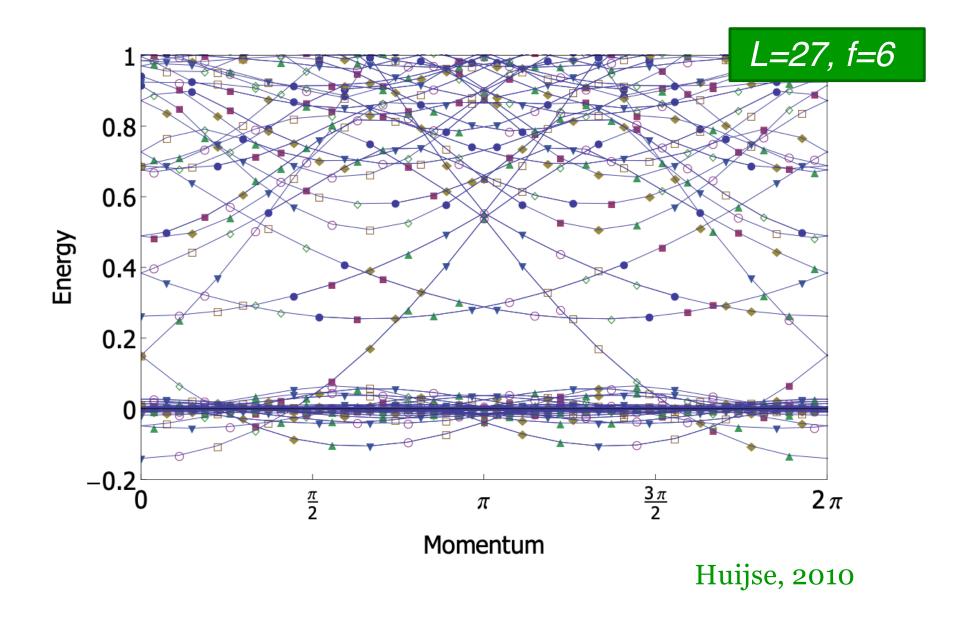


 $P_N(z) = zP_{N-4}(z) + zP_{N-5}(z)$

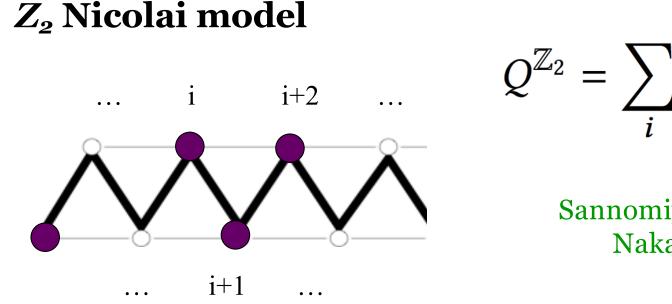
$$P_N(z) = \sum_{f \in \mathbb{Z}} \left(\binom{f}{N-4f+2} + \binom{f}{N-4f+1} + \binom{f}{N-4f} \right) z^f.$$

La-Shadrin-KjS 2019

Zig zag ladder – critical groundstates at 2/9 filling



Models with *Q* cubic in *c_i*



 $Q^{\mathbb{Z}_2} = \sum_i c_i c_{i+1} c_{i+2}$

Sannomiya-Katsura-Nakayama 2017

N=2 susy SYK model

$$Q^{\text{SYK}} = \sum_{ijk} J_{ijk} c_i c_j c_k$$

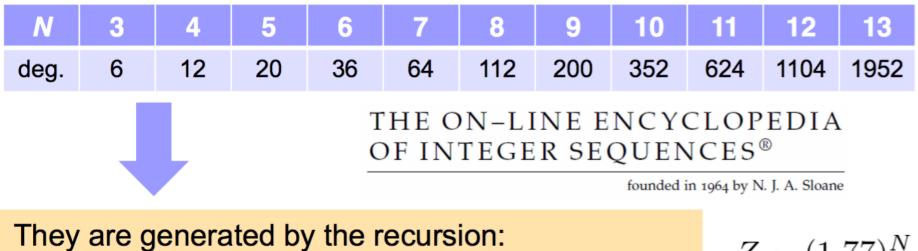
random couplings on full graph

Fu-Gaiotto-Maldacena-Sachdev 2017

Ground state counting

Z_2 Nicolai model

The number of E=0 states (OBC)

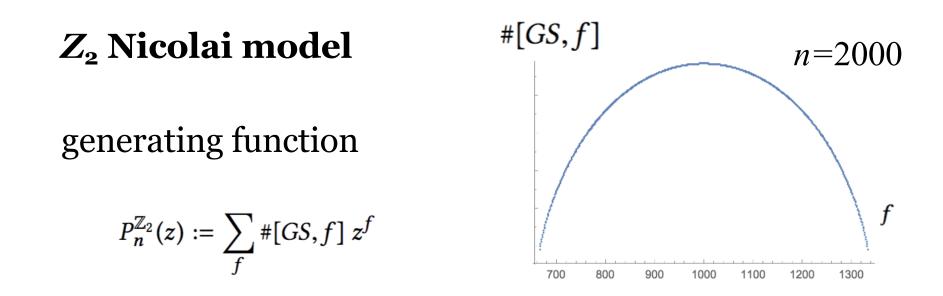


 $a_n = 2a_{n-2} + 2a_{n-3}, \qquad a_0 = 1, a_1 = 2, a_2 = 4$

 $Z \sim (1.77)^N$

slide H. Katsura in talk at UvA, Nov 2017

Ground state counting – recent results



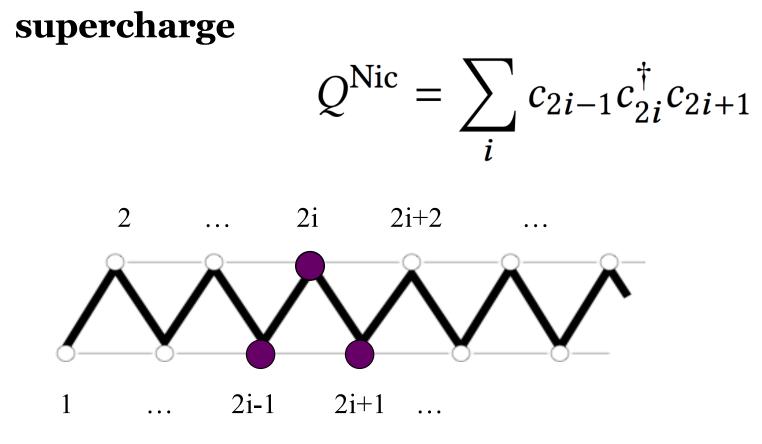
Theorem 2.2.1. The polynomials $P_n^{\mathbb{Z}_2}(z)$, $n \ge 3$, can be determined by the recursion $P_n^{\mathbb{Z}_2}(z) = 2zP_{n-2}(z) + (z+z^2)P_{n-3}^{\mathbb{Z}_2}(z)$

with the initial values given by

$$P_0^{\mathbb{Z}_2}(z) := 1, \qquad P_1^{\mathbb{Z}_2}(z) := 1 + z \quad and \quad P_2^{\mathbb{Z}_2}(z) = 1 + 2z + z^2.$$

conjecture in Sannomiya-Katsura-Nakayama 2017 proof in La-Shadrin-KjS 2019

Nicolai model



Nicolai 1976

Ground state counting

Nicolai model

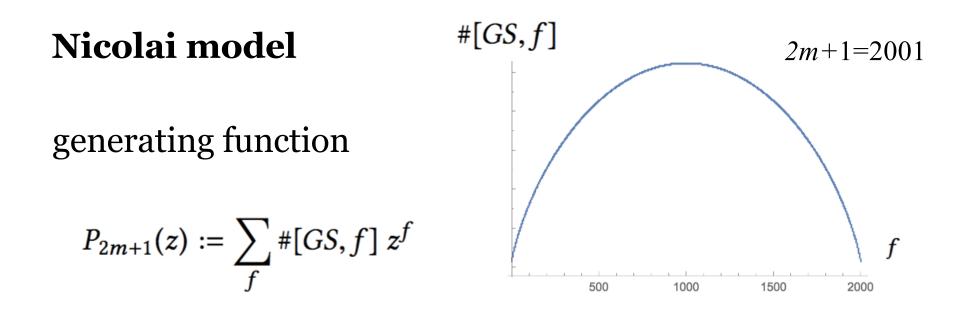
■ Number of *E*=0 ground states (*N*: odd, OBC)

Ν	3	5	7	9	11	13						
deg.	6	20	64	208	672	2176						
Grows exponentially with system size! THE ON-LINE ENCYCLOPEI OF INTEGER SEQUENCES®												
founded in 1964 by N. J. A. Sl												

Sorry, but the terms do not match anything in the table.

slide H. Katsura in talk at UvA, Nov 2017

Ground state counting



Theorem 2.1.1. The polynomials $P_{2m+1}(z)$, $m \ge 3$, can be determined by the recursion $P_{2m+1}(z) = (1 + z^2)P_{2m-1}(z) + (z + 2z^2 + z^3)P_{2m-3}(z)$

with the initial values given by

 $P_3(z) = 1 + 2z + 2z^2 + z^3$ and $P_5(z) = 1 + 3z + 6z^2 + 6z^3 + 3z^4 + z^5$.

La-Shadrin-KjS 2019

9. Superfrustration on ladder: zig-zag, Nicolai, Z₂ Nicolai

10.Superfrustration on 2D grids

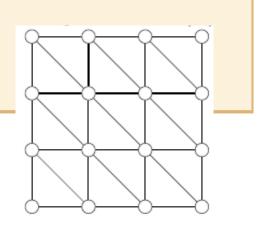
11. Back to 1D M₁ model: kink dynamics

12.Towards realization with Rydbergdressed cold atoms

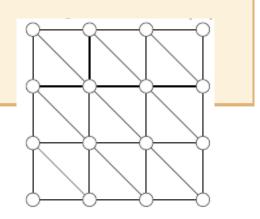
M₁ model, 2D triangular lattice

Witten index for *N*×*M* sites with periodic BC

	1	2	3	4	5
1	1	1	1	1	1
2	1	-3	-5	1	11
3	1	-5	-2	7	1
4	1	1	7	-23	11
5	1 1 1 1	11	1	11	36



M₁ model, 2D triangular lattice



Witten index for *N*×*M* sites with periodic BC

	1	2	3	4	5
1	1	1	1	1	1
2	1	-3	-5	1	11
3	1	-5	-2	7	1
4	1	1	7	-23	11
5	1	11	1	11	36
6	1	9	-14	25	-49
7	1	-13	1	-69	211
8	1	-31	31	193	-349
9	1	-5	-2	-29	881
10	1	57	-65	-279	-1064
11	1	67	1	859	1651
12	1	-47	130	-1295	-589
13	1	-181	1	-77	-1949
14	1	-87	-257	3641	12611
15	1	275	-2	-8053	-32664

9 101 1 -5 57-2 -65 -29-279811 -10641462-4911-70555237-285175084931399 313315 313315 950592 499060 2011307 -2573258-3973827-10989458-497051614765189 -232675057134858383 -702709340

van Eerten 2005

`superfrustration'

Proliferation of susy ground states

ground state counting problem

• unsolved for most *D>1* lattices (including triangular)

important clue

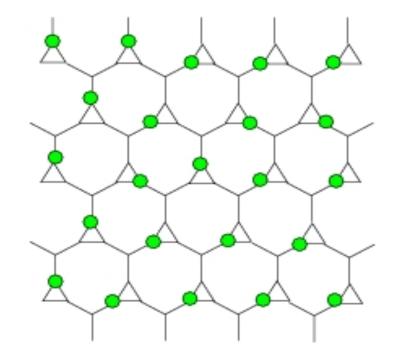
- gs counting problem equivalent to determining (dimension of) the homology of the operator Q
- can use methods from math literature (spectral sequences & tic-tac-toe lemma, homological perturbation lemma) to make progress

Fendley-KjS 2005, Huijse-KjS 2010

Proliferation of susy ground states

GS counting problem

- solved for 2D
 enneagon-triangle lattice
 (a.k.a. martini-lattice)
- all GS at filling 1/4
- GS counting ←→ dimer coverings of hexagonal lattice



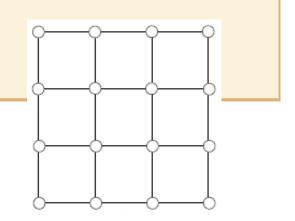
$$\frac{S_{\rm GS}}{N} = \frac{1}{\pi} \int_0^{\pi/3} d\theta \ln[2\cos(\theta)] = 0.16153\dots$$

Fendley-KjS 2005

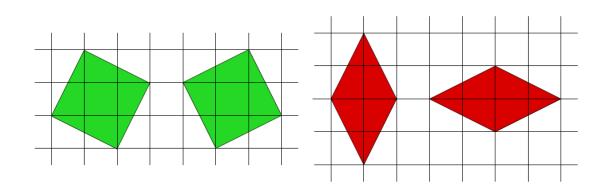
Witten index for *N*×*M* sites with periodic BC

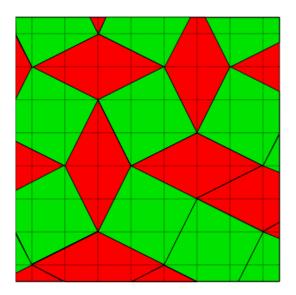
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	-1	1	3	1	-1	1	3	1	-1	1	3	1	-1	1	3	1	-1	1	3
3	1	1	4	1	1	4	1	1	4	1	1	4	1	1	4	1	1	4	1	1
4	1	3	1	7	1	3	1	7	1	3	1	7	1	3	1	7	1	3	1	7
5	1	1	1	1	-9	1	1	1	1	11	1	1	1	1	-9	1	1	1	1	11
6	1	$^{-1}$	4	3	1	14	1	3	4	$^{-1}$	1	18	1	-1	4	3	1	14	1	3
7	1	1	1	1	1	1	1	1	1	1	1	1	1	-27	1	1	1	1	1	1
8	1	3	1	7	1	3	1	7	1	43	1	7	1	3	1	7	1	3	1	47
9	1	1	4	1	1	4	1	1	40	1	1	4	1	1	4	1	1	76	1	1
10	1	$^{-1}$	1	3	11	$^{-1}$	1	43	1	9	1	3	1	69	11	43	1	$^{-1}$	1	13
11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
12	1	3	4	7	1	18	1	7	4	3	1	166	1	3	4	7	1	126	1	7
13	1	1	1	1	1	1	1	1	1	1	1	1	-51	1	1	1	1	1	1	1
14	1	$^{-1}$	1	3	1	$^{-1}$	-27	3	1	69	1	3	1	55	1	451	1	-1	1	73
15	1	1	4	1	-9	4	1	1	4	11	1	4	1	1	174	1	1	4	1	11

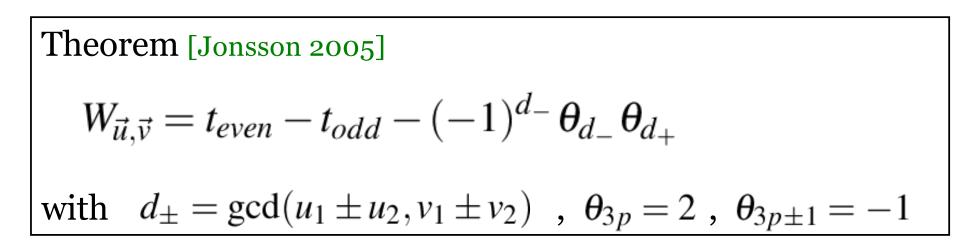
Fendley-KjS-van Eerten 2005



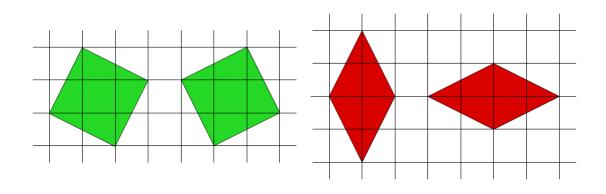
Witten index related to rhombus tilings of the lattice

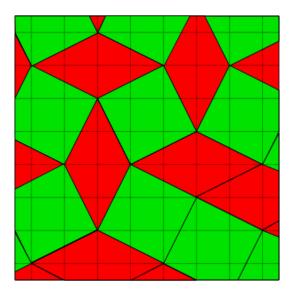






Number of gs related to rhombus tilings of the lattice, with $F = N_t$





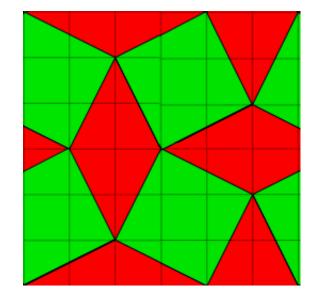
Theorem [Jonsson, Fendley, Huijse-KjS 2009]
GS =
$$t_{even} + t_{odd} - (-1)^{(\theta_m + 1)p} \theta_{d_-} \theta_{d_+}$$

with $d_{\pm} = \gcd(u_1 \pm u_2, v_1 \pm v_2)$, $\theta_{3p} = 2$, $\theta_{3p\pm 1} = -1$

Example: square lattice 6x6

- 18 tilings with $N_t=8$
- correction term equals -4

 \Rightarrow 14 groundstates with f=8, filling 2/9



9. Superfrustration on ladder: zig-zag, Nicolai, Z₂ Nicolai

10.Superfrustration on 2D grids

11. Back to 1D M₁ model: kink dynamics
12. Towards realization with Rydbergdressed cold atoms

 \rightarrow work in progress

M₁ model on general graph - challenge

Challenge:

For each of the other platonic solid graphs, find the number of E=o susy groundstates and, for each of them, the number of fermions

Reward

A chocolate bar for the first correct result @ <u>c.j.m.schoutens@uva.nl</u>

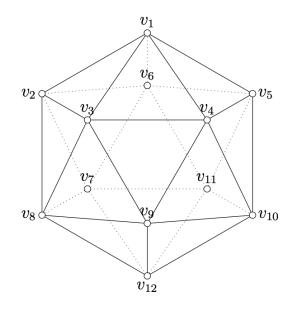
M₁ model on general graph - challenge

Super frustrated lattice models

Tristan Kuen

December 18, 2015

Bachelors project mathematics and physics Supervisors: prof. dr. Kareljan Schoutens, dr. Raf Bocklandt



Proposition 4. The icosahedron has six two-particle and one three-particle ground states.

$$\begin{aligned} |\phi_3\rangle &= |1,7,9\rangle + |1,9,11\rangle + |1,11,8\rangle + |1,8,10\rangle + |1,10,7\rangle \\ &+ |7,5,9\rangle + |9,2,11\rangle + |11,4,8\rangle + |8,6,10\rangle + |10,3,7\rangle \\ &+ |5,2,9\rangle + |2,4,11\rangle + |4,6,8\rangle + |6,3,10\rangle + |3,5,7\rangle \\ &+ |2,5,12\rangle + |4,2,12\rangle + |6,4,12\rangle + |3,6,12\rangle + |5,3,12\rangle \,. \end{aligned}$$