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Gravity

Gravity is the least understood fundamental interaction with many open questions. Should we not now investigate
general relativity experimentally, in ways it was never tested before?

Gravity
- Main organizing principle in the Universe
» Structure formation
- Most important open problems in contemporary science
» Acceleration of the Universe is attributed to Dark Energy
» Standard Model of Cosmology features Dark Matter

» Or does this signal a breakdown of general relativity?

Large world-wide intellectual activity
— Theoretical: combining GR + QFT, cosmology, ...

- Experimental: astronomy (CMB, Euclid, VRO), particle
(LHC), Dark Matter searches (Xenon1T), ...

Gravitational waves
- Dynamical part of gravitation, all space is filled with GW
- lIdeal information carrier, almost no scattering or attenuation
— The entire universe has been transparent for GWSs, all the way back to the Big Bang

Gravitational wave science can impact
- Fundamental physics: black holes, spacetime, horizons, matter under extreme conditions

- Cosmology: Hubble parameter, Dark Matter, Dark Energy



Event GW150914

On September 14, 2015 we detected with the LIGO detectors for the first time gravitational waves
(vibrations in the fabric of space and time) from the collision of two black holes
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Binary black hole merger GW150914

The system will lose energy due to emission of gravitational waves. The black holes get closer and
their velocity speeds up. Masses and spins can be determined from inspiral and ringdown phase
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LVK: LIGO Scientific, Virgo and KAGRA Collaborations

Observe together as a network of GW detectors. LVK have integrated their data analysis
LIGO and Virgo have coordinated data taking and analysis, and release joint publications

LIGO and Virgo work under an MOU already for more than a decade
KAGRA in Japan joined in February 2020
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Virgo Collaboration

Virgo is a European collaboration with 691 members, 447 authors from 127 institutions in 15 different
countries. Virgo has more that doubled its size in the last few years

Virgo is a 2"d generation GW detector in Europe
« EGO Council composed of France, Italy and the Netherlands

» Participation by scientists from Belgium, China, Czechia, France, Germany, Greece, Hungary,
Ireland, Italy, Japan, Monaco, Poland, Portugal, Spain, The Netherlands

Gravitational wave science: steep learning curve

« Join gravitational wave science

« Learn about instrumentation and data analysis

« Path to third generation: Einstein Telescope

« Many members traditionally from CERN community

Virgo develops advanced and innovative technology

« Quantum technologies: frequency dependent squeezing
« Large test masses and advanced coatings

« Scattered light mitigation

* Low frequency risk reduction

13 European countries
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LIGO - Virgo observation runs

LIGO and Virgo coordinate science data taking. In between the observation runs, the instruments are
upgraded and commissioned to achieve better sensitivity

Observing run 1
01=3,02=8,03a =39

» September 2015 to January 2016 80
 LIGO interferometers
 Most notable: first BBH GW150914 70

* Every few months
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Observing run 2

* November 2016 to August 2017

* LIGO + Virgo (August 2017 only) ITFs
* Most notable: first BNS GW170817
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Observing run 3

* April 2019 to March 2020

* LIGO + Virgo interferometers

Ol - O3a: 50 significant detections

Cumulative #Events/Candidates
N
o

-y
o

4

Abbott et al. Phys. Rev. X 11, 021053 (2021) 0
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Some scientific highlights from O1 and O2



Scientific achievements: properties of binary systems

“‘GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO
and Virgo during the First and Second Observing Runs”, LIGO Virgo Collaboration, arXiv:1811.12907
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https://arxiv.org/abs/1811.12907

Luminosity distance to the source

Estimated luminosity distance and binary inclination angle. An inclination of 8,y = 90° means we are
looking at the binary (approximately) edge-on. Again 90% credible level contours
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Polarization can be used to break the
degeneracy between distance and
inclination

h, = ZVTM [TMf(£)]%/3(1 + cos?t)cos[2¢p ()]

4vM
hy = — [mMf (t)]?/3cost sin[2¢(t)]
To measure the polarization components,

we need a third detector, i.e. Virgo, oriented
at about 45 degrees with respect to LIGO

See “Properties of the Binary Black Hole Merger GW150914” http://arxiv.org/abs/1602.03840



http://arxiv.org/abs/1602.03840

Fundamental physics: polarization of gravitational waves

Polarization is a fundamental property of spacetime. It determined how spacetime can be deformed.
General metric theories allow six polarizations. General Relativity allows two (tensor) polarizations

GR only allows (T) polarizations

General metric theories also know
vector (V) and scalar (S) polarizations
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GW170814: first test of polarizations of GW

According to Einstein’s General Relativity there exist only two polarizations. General metric theories
of gravity allow six polarizations. GW170814 confirms Einstein’s prediction

Angular dependence (antenna-pattern) differs for T, V, S Mot _Livingston ‘ Viigo

SNR
=

LIGO and Virgo have different antenna-patterns %o /,
This allows for fundamental test of the polarizations of spacetime %A .

vector 1 —S scalar—

I

plus cross vector x vector y scalar

Our analysis favors tensor polarizations in support of General
Relativity

Our data favor tensor structure over vector by about a (Bayes) factor 200

And tensor over scalar by about a factor 1000

This is a first test, and for BBH we do not know the source




Inspiral-merger-ringdown consistency test for BBH

The 90% credible regions of the posterior distributions of (Mf/1\71f, Aaf/df) are in
agreement with the expected value for GR (marked with a cross)

Side panels show the marginalized -15 -10 =05 00 05 10 15
: v — 6 T T T I . = GW150914
posteriors for AM; /My and Aay/as s | 1 == GW170104
é: Al i GW170729
. — —=  GWI170809
Thin black dashed curve represents 5 3r 1 — GwW170814
the prior distribution = 20 1 -— cwirosis
I . GW170823
1.0 T 1.0
Grey shaded areas correspond to
the combined posteriors from the five
most significant events 0.5 F 703
‘;3 0.0 F 100
<
Tests of General Relativity with the Binary 4 -05
Black Hole Signals from the LIGO-Virgo
Catalog GWTC-1, arXiv: 1903.04467v2
-1.0 ' -1.0

215 -1.0



Precision tests of GR with BBH mergers

Bayesian analysis increases accuracy on parameters by combining information from multiple events

Inspiral and PN expansion
Inspiral PN and logarithmic terms:
Sensitive to GW back-reaction, spin-orbit, spin-spin couplings, ...

LIGO Virgo Collaboration
arxiv:1903.04467v2
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Merger terms: numerical GR

Ringdown terms: quasi-normal modes; do we see Kerr black holes?

Towards high precision tests of gravity

| ringdown

Combining information from multiple events and having high-SNR events will allow unprecedented

tests of GR and other theories of gravity



Fundamental physics: did we observe black holes?

Our theories “predict” the existence of other objects, such as quantum modifications of GR black
holes, boson stars, gravastars, firewalls, etc. Why do we believe we have seen black holes?

Radiated particles break
their correlations with
their infalling partners.

The energy that is ®

released creates a N-H >
firewall around the |1t f|rewaKmode|

black hole.

a\ 7 i ’ -
v - .\ >/ VA
y '/ 2 WM ; AN\
« \ A |
I‘ . ‘ - )
J y ‘ .

“&_black hole.information paradox : spacetime quantum foam
«_~glaCKJ P P q

- —




Is a black hole created in the final state?

From the inspiral we can predict that the ringdown frequency of about 250 Hz and 4 ms decay time.
This is what we measure (http://arxiv.org/abs/1602.03841). We will pursue this further and perform
test of no-hair theorem. This demands good sensitivity at high frequency
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http://arxiv.org/abs/1602.03841

Exotic compact objects

Gravitational waves from coalescence of two compact objects is the Rosetta Stone of the strong-field
regime. It may hold the key and provide an in-depth probe of the nature of spacetime

Quantum modifications of GR black holes
* Motivated by Hawking’s information paradox
* Firewalls, fuzzballs, EP = EPR, ...

Fermionic dark matter
* Dark matter stars

Boson stars warmhale

» Macroscopic objects made up of scalar fields

h(t) [10-*]

Gravastars

* Objects with de Sitter core where spacetime is
self-repulsive

» Held together by a shell of matter
» Relatively low entropy object

gravastar

kMo ME BROOMNE RO MBS

GW observables
* Inspiral signal: modifications due to tidal deformation effects
* Ringdown process: use QNM to check no-hair theorem

. l
» Echoes: even for Planck-scale corrections At ~ —nM logﬁ

+ Studies require good sensitivity at high frequency



Limit on the mass of the graviton

Bounds on the Compton wavelength 4, = h/mgc of the graviton compared to Solar System or double
pulsar tests. Some cosmological tests are stronger (but make assumptions about dark matter)
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See “Tests of general relativity with GW150914”
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Massive-graviton theory dispersion
relation E* = p?c? + mgc*

We have A, = h/(myc)

Thus frequency dependent speed
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Bounds on violation of Lorentz invariance

First bounds derived from gravitational-wave observations, and the first tests of superluminal
propagation in the gravitational sector
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Several modified theories of gravity predict specific values of «:
- massive-graviton theories (a = 0, A > 0), multifractal spacetime (a = 2.5),
- doubly special relativity (e = 3), and Horava-Lifshitz and extradimensional theories (a = 4)



Combinations of component spins for GW150914

GW150914 suggests that the individual spins were either small, or they were pointed opposite from
one another, cancelling each other's effect. Spin maybe the key to formation channels

Precession is an important clue into how the black holes formed. If there is not any precession it is
more likely that the black holes formed together. If there is a lot of precession it is more likely that the
black holes formed separately and before coming together
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Effect of orientation of binary’s orbital plane

Polarization of gravitational waves depends on the orientation of the orbital plan of the
binary system. Face-on we observe a mixture, while edge-on we observe pure h+

Spinning, but non-precessing binary
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Effect of orientation of binary’s orbital plane

Spin precession leads to amplitude and frequency modulation
Having good low frequency sensitivity will enable observing precession effects

Spin-precessing binary
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Some scientific highlights: neutron stars



Gamma rays reached Earth 1.7 seconds after GW170817

| Space Telesc0pé.

Ferm



Binary neutron star merger on August 17, 2017

Gamma rays reached Earth 1.7 s after the end of the gravitational wave inspiral signal. The data are
consistent with standard EM theory minimally coupled to general relativity
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Neutron stars are laboratories for extreme physics

Mass: from about 1.1 to about 2.2 solar mass

Density: up to several times nuclear density

Temperature: up to 1012 K

Magnetic field: up to 101 T

Held together by gravity and supported by degeneracy pressure and NN repulsion
Extrapolate behavior of QCD, superconductivity, and superfluidity

Equation Of State: many models




Source location via triangulation

GW170817 first arrived at Virgo, after 22 ms it arrived at LLO, and another 3 ms later LLH detected it
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GW170817: start of multi-messenger astronomy with GW

Many compact merger sources emit, besides gravitational waves, also light, gamma- and X-rays, and
UV, optical, IR, and radio waves, as well as neutrino’s or other subatomic particles. Our three-detector
global network allows identifying these counterparts
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Implications for fundamental physics

Gamma rays reached Earth 1.7 s after the end of the gravitational wave inspiral signal. The data are
consistent with standard EM theory minimally coupled to general relativity
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Inferring neutron star properties: masses

Early estimates now improved using known source location, improved waveform modeling, and re-
calibrated Virgo data. Chirp mass can be inferred to high precision. There is a degeneracy between

masses and spins

Observation of binary pulsars in our galaxy indicates spins are not larger than ~0.04
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Inferring neutron star properties: spins

Constrains on mass ratio g, x; dimensionless spin, y.¢r effective spin, and y,, effective spin
precession parameter. See htips://arxiv.org/abs/1805.11579

No evidence for NS spin
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https://arxiv.org/abs/1805.11579

Solving an astrophysical conundrum

Neutron stars are rich laboratories with extreme matter physics in a strong gravitational environment.

Stability is obtained due to quantum physics

Structu re Of neutron Starsf) ANI:UTHON.SWI”AH' StJE:‘ACEandINH:HIOH.

« Structure of the crust?

Proton superconductivity
Neutron superfluidity

“Pinning” of fluid vortices to crust
Origin of magnetic fields?

More exotic objects?

Widely differing theoretical predictions for
different equations of state

» Pressure as a function of density
* Mass as a function of radius
» Tidal deformability as a function of mass
» Post-merger signal depends on EOS
« “Soft”: prompt collapse to black hole
» “Hard”: hypermassive neutron star

Demorest et al., Nature 467, 1081 (2010)
Bernuzzi et al., PRL 115, 091101 (2015)
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Probing the structure of neutron stars

Tidal effects leave their imprint on the gravitational wave signal from binary neutron stars. This provides
information about their deformability. There is a strong need for more sensitive detectors
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Event GW170817: tidal deformability, EOS, radii

Tidal deformability gives support for “soft” EOS, leading to more compact NS. Various models can
now be excluded. We can place the additional constraint that the EOS must support a NS 1.97 M,

16 (my + 12mo)miA; + (ma + 12mq)m3As

Leading tidal contribution to GW phase appears at 5 PN: A = E (1 + m)?

Employ common EOS for both NS (green shading), EOS insensitive relations (green), parametrized
EOS (blue), independent EOSs (orange). See: LVC, hitps://arxiv.org/abs/1805.11581
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https://arxiv.org/abs/1805.11581

Pressure versus rest-mass density of NS interior

Spectral EOS parametrization and imposing a lower limit on the maximum NS mass supported
by the EOS of 1.97 M_solar

The pressure posterior is shifted from the 90% credible prior region (marked by the purple dashed
lines) and towards the soft floor of the parametrized family of EOS
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https://arxiv.org/abs/1805.11581

Looking into the heart of a dim nearby sGRB

Gravitational waves identified the progenitor of the sGRB and provided both space localization and
distance of the source. This triggered the EM follow-up by astronomers for the kilonova

Closest by and weakest sGRB, highest SNR GW event

LIGO/Virgo network allowed initial source localization of 28 (degr)?
and distance measurement of 40 Mpc
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This allowed astronomers to study for the first time a kilonova, the
r-process production of elements, a rapidly fading source
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European Southern Observatory

About 70 observatories worldwide observed the event by using space telescope (e.g. Hubble and
Chandra) and ground-based telescopes (e.g. ESO) in all frequency bands (UVOIR). We witness the

creation of heavy elements by studying their spectral evolution

Since LIGO/Virgo provide the distance and BNS source type, it was recognized that we are dealing
with a weak (non-standard) GRB. This led to the optical counterpart to be found in this region

1.5 days
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Many heavy elements were produced in such collisions

GW170817 does not allow identification of spectra of these individual elements
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|dentification of strontium in event GW170817

|dentification of Strontium, an element that could only have been synthesised so quickly under an
extreme neutron flux, provides the first direct spectroscopic evidence that neutron stars comprise

neutron-rich matter

The kilonova essentially has a blackbody (blue
dotted lines) with a temperature of 3,700 K

Assume solar r-process abundance ratios

Sr accounts for at least a few percent by mass of all
r-process elements

P Cygni profiles (red transparent fill) increasingly
develop in time for the Sr lines

Lines are Doppler broadened by 0.2 ¢ due to the
high speed of the ejected material and blue-shifted
by 0.23 ¢

Extreme-density stars composed of neutrons were
proposed shortly after the discovery of the neutron,
and identified with pulsars three decades later

GW170817 provides first spectroscopic evidence of
neutron-rich matter in neutron stars

—2 Agl} + offset

-1

erg s (@180}

Fy [10-17

Residual T [10717 erg s~ em™2 A7 ']

60

.
e}
1

o
e}

St Sriii 4oL

_ Watson et aI.,Ia(Xiv:1910.10510v1
i § —— Blackbody + Sru
= Blackbody

- ke 4.5 davsid

T T T T T T
4000 5500 7500 10500 14500 20000
Observed wavelength [A]



Cosmology

Liey)



A new cosmic distance marker

Binary neutron stars allow a new way of mapping out the large-scale structure and evolution of
spacetime by comparing distance and redshift
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A new cosmic distance marker

A few tens of detections of binary neutron star mergers allow determining the Hubble parameters to
about 1-2% accuracy
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Measurement of the local expansion of the
Universe

The Hubble constant
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« Few tens of detections with LIGO/Virgo will be
needed to obtain O(1-2%) accuracy

Bernard Schutz, Nature 323, 310-311 (1986)
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April 1, 2019: LIGO and Virgo started observation run O3

Joining O3 is another important step for Virgo




Gravitational-Wave Transient Catalog, GWTC - 2

Compact binary coalescences observed by LIGO &Virgo during the first half of the third observing run
See Abbott et al. Phys. Rev. X 11, 021053 (2021)
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Status of gravitational-wave detections

Sources can be transient or of continuous nature, and can be modeled or unmodeled

w

Coalescence of Compact Sources Continuous Waves

!

| e

| /

| o B R
Colliding-binary systems Rapidly rotating neutron stars
(e.g. black holes, neutron stars) (with lumps on them)

Burst Stochastic

Asymmetrlc core’ coIIapse supernovae A stochastlc, unre$ol'vabie background
(and other poorIy modeled events) (from the Bl&Bang, or al’l of the above)




Scientific impact of gravitational wave science

Multi-messenger astronomy started: a broad community is relying of detection of gravitational waves
Scientific program is limited by the sensitivity of LVC instruments over the entire frequency range

Fundamental physics

Access to dynamic strong field regime, new tests of General Relativity

Black hole science: inspiral, merger, ringdown, quasi-normal modes, echo's
Lorentz-invariance, equivalence principle, polarization, parity violation, axions

Astrophysics
First observation for binary neutron star merger, relation to sGRB
Evidence for a kilonova, explanation for creation of elements heavier than iron

Astronomy
Start of gravitational wave astronomy, population studies, formation of progenitors, remnant studies

Cosmology
Binary neutron stars can be used as standard “sirens”
Dark Matter and Dark Energy

Nuclear physics
Tidal interactions between neutron stars get imprinted on gravitational waves

Access to equation of state
Lleg
47



