Neutrinos

present and outlook...

IMFP-2021 @ Benasque (Spain)

7th September 2021

Anatael Cabrera

CNRS/IN2P3 IJCLab @ Orsay (Université de Paris-Saclay) LNCA @ Chooz

universite

PARIS-SACLAY

FACULTÉ

D'ORSAY

DES SCIENCES

Université

de Paris

disclaimer...

This description aims to provide a basic status of neutrino fundamental research. I will aim for "neutrino in nutshell description"; i.e. all minimal information one needs to appreciate our field. Due to time limitations, I am forced to make some choices (i.e. some sacrifices too). Here is the criteria...

• focus on the **experimental viewpoint**, with <u>phenomenological considerations</u>, but **minimal description of each experiment** (please ask later)

•description biassed towards impact (i.e. precision or discovery potential, etc), as opposed to follow historical (minimal) account(s) — much already in the literature

content tuned to overall programme (avoid redundancies) relative to other talks (i.e. *my guess*), namely...
 Flavour Physics (J. Martin Camalich),
 Multi-messenger & Astro-Particle Physics (G. Sigl),
 Cosmology (E. Sanchez),
 Future Large Facilities Underground (C. Peña Garay), etc.

Apologies in advance, if I missed, or covered too superficially, your work; i.e. your experiment(s) and/or publication(s). You are nonetheless strongly invited to make comments at the end...

who I am?

work(ed/ing) on...

- **Double Chooz** experiment (dismantling now)
- LiquidO technology (R&D) & science prospect
- JUNO experiment mainly **Dual Calorimetry** system
- SuperChooz explorations (new!)

and

•LNCA Underground Laboratory (Chooz)

(fast) v oscillations reminder...

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

the Tay De

neutrino oscillations: in a nutshell

disappearance experiment appearance experiment

Vµ"propagation" in vacuum/matter
$$|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{*} |\nu_{i}\rangle$$
 $(\alpha = e, \mu, \tau)$ $|\nu_{\alpha}(t > 0)\rangle = \sum_{i} e^{-iE_{i}t}U_{\alpha i}^{*} |\nu_{i}\rangle$ $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = |\langle\nu_{\beta}|\nu_{\alpha}(t)\rangle|^{2} = \left|\sum_{i} U_{\beta i}e^{-iE_{i}t}U_{\alpha i}^{*}\right|^{2}$ production of V_α
[mixing: from
weak-space to
mass-space]propagation V/s
[Dirac/Schrödinger Eq.]P(\nu_{\alpha} \rightarrow \nu_{\beta}) = |\langle\nu_{\beta}|\nu_{\alpha}(t)\rangle|^{2} = \left|\sum_{i} U_{\beta i}e^{-iE_{i}t}U_{\alpha i}^{*}\right|^{2}

ingredients for neutrino oscillations...

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

our history in a nut-shell...

UNITARITY (assumed)

important to remember...

neutrino oscillation implies massive neutrino physics

 \implies important modification to the SM

8

ingredients & notation...

Weak Flavour Neutrinos: **v(e)**, **v(µ)**, **v(T)** \rightarrow what we detect/production

Mass Neutrinos: v(1), v(2), $v(3) \rightarrow$ what propagates

PMNS matrix: **U→unitarity**? [else below parametrisation is wrong]

PMNS mixing parameters: θ 3, θ 2, θ 23

CP-Violation parameters: $\boldsymbol{\delta}$? (within \boldsymbol{U}) and \boldsymbol{J} [Jarkslog invariant]

Mass Differences: δm^2 (i.e. Δm^2_{12}) and Δm^2 (i.e. Δm^2_{13} or Δm^2_{23})

Mass ordering: $+\delta m^2$ (solar data) $\pm 2^{2}\Delta m^2$ (so far) \rightarrow the lightest neutrino? [V(1) versus V(3)]

Absolute mass scale: **m(v)**?

consider full matrix structure (not just composition)

why shape?

•large mixing but one (small)!

- largest CP-Violation (SM) → Leptogenisis?
- •any symmetry behind? [Nature's caprice/symmetry?]
- •how is this related to the CKM (minimal mixing & little CPV)?

[poorly constraint→assumed]

big picture...

Jorge's talk: (Quark) Flavour Physics [i.e. CKM]

this talk: Leptonic Flavour Physics [i.e. PMNS] — most (but not only)

both about the SM's Flavour Sector, which <u>may</u> have a common origin **BSM**?

both wonder about our origin (i.e. via CP-Violation): Baryogenesis vs Leptogenesis.

could neutrinos be at our most fundamental origin?

neutrino oscillation status...

running experiments...

imminent experiments...

where are we now (~ 2020) ?

status on neutrino oscillation knowledge...

Standard Model(3 families)

[leptons & quarks]
&
PMNS_{3x3}(
$$\theta_{12}, \theta_{23}, \theta_{13}$$
)
&
 $\pm \Delta m^2 \& \pm \delta m^2$

no conclusive sign(s) of any extension so far!!

(inconsistencies vs uncertainties)

must measure all parameters→characterise & test (i.e. over-constrain) Standard Model

	today				
	best kno	NuFIT5.0			
θ12	3.0 %	sk⊕sno	2.3 %		
θ23	5.0 %	NOvA+T2K	2.0 %		
θιз	1.8 %	DYB+DC+RENO	1.5 %		
+δm²	2.5 %	KamLAND	2.3 %		
∆m²	3.0 %	T2K+NOvA & DYB	1.3 %		
Mass Ordering	unknown	SK et al	NO @ ~3σ		
СРУ	unknown	T2K	3/2π @ ≤2σ		
			(now)		

17

(reactor-beam)

JUNO \oplus DUNE \oplus HK will lead precision in the field (\rightarrow CPV) except θ_{13} !

NOTE: ORCA \oplus PINGU \oplus IceCube complementary (Mass Ordering & Δm_{n}^2 measurements). IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

high precision knowledge prospects...

18

Normal/Inverted Mass Ordering

 $beam \approx DUNE \oplus HK[T2K \oplus NOvA \oplus MINOS]$ atmos $\approx ORCA \oplus PINGU \oplus HK \oplus IceCube \oplus SK$

CPV term: beam* (directly)

"solar" terms:

- •θ₁₂: <u>JUNO</u> [now solar]
- •δm²: <u>JUNO</u> [now KamLAND]

"atmospheric" terms:

- •θ₂₃: <u>beam</u>⊕atmos
- •**∆m²:** <u>jUNO</u>⊕<u>beam</u>⊕atmos <u>k</u>
- Mass Ordering: <u>JUNO</u>⊕<u>beam</u>⊕atmos
- θI3 terms (key for CPV & Mass Ordering):
 •θ₁3: reactor-θ₁3 (DC⊕DYB⊕RENO)
 •improvement?

Unitarity conservation (assumed) to few %

					NuFIT 5.0 (2020)		
		Normal Ore	dering (best fit)	Inverted Ordering ($\Delta \chi^2 = 2.7$)			
without SK atmospheric data		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range		
	$\sin^2 \theta_{12}$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$		
	$ heta_{12}/^{\circ}$	$33.44_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.86$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$		
	$\sin^2 \theta_{23}$	$0.570\substack{+0.018\\-0.024}$	$0.407 \rightarrow 0.618$	$0.575\substack{+0.017\\-0.021}$	$0.411 \rightarrow 0.621$		
	$\theta_{23}/^{\circ}$	$49.0^{+1.1}_{-1.4}$	$39.6 \rightarrow 51.8$	$49.3^{+1.0}_{-1.2}$	$39.9 \rightarrow 52.0$		
	$\sin^2 \theta_{13}$	$0.02221^{+0.00068}_{-0.00062}$	$0.02034 \rightarrow 0.02430$	$0.02240\substack{+0.00062\\-0.00062}$	$0.02053 \rightarrow 0.02436$		
	$\theta_{13}/^{\circ}$	$8.57_{-0.12}^{+0.13}$	$8.20 \rightarrow 8.97$	$8.61_{-0.12}^{+0.12}$	$8.24 \rightarrow 8.98$		
	$\delta_{ m CP}/^{\circ}$	195^{+51}_{-25}	$107 \rightarrow 403$	286^{+27}_{-32}	$192 \rightarrow 360$		
	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$		
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.514^{+0.028}_{-0.027}$	$+2.431 \rightarrow +2.598$	$-2.497^{+0.028}_{-0.028}$	$-2.583 \rightarrow -2.412$		
		Normal Ore	dering (best fit)	Inverted Ordering $(\Delta \chi^2 = 7.1)$			
		bfp $\pm 1\sigma$ 3σ range		bfp $\pm 1\sigma$	3σ range		
	$\sin^2 \theta_{12}$	$0.304^{+0.012}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$		
lata	$\theta_{12}/^{\circ}$	$33.44_{-0.74}^{+0.77}$	$31.27 \rightarrow 35.86$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$		
ric e	$\sin^2 \theta_{23}$	$0.573\substack{+0.016\\-0.020}$	$0.415 \rightarrow 0.616$	$0.575\substack{+0.016\\-0.019}$	$0.419 \rightarrow 0.617$		
with SK atmosphe	$ heta_{23}/^{\circ}$	$49.2^{+0.9}_{-1.2}$	$40.1 \rightarrow 51.7$	$49.3^{+0.9}_{-1.1}$	$40.3 \rightarrow 51.8$		
	$\sin^2 heta_{13}$	$0.02219\substack{+0.00062\\-0.00063}$	$0.02032 \rightarrow 0.02410$	$0.02238^{+0.00063}_{-0.00062}$	$0.02052 \rightarrow 0.02428$		
	$ heta_{13}/^{\circ}$	$8.57_{-0.12}^{+0.12}$	$8.20 \rightarrow 8.93$	$8.60^{+0.12}_{-0.12}$	$8.24 \rightarrow 8.96$		
	$\delta_{ m CP}/^{\circ}$	197^{+27}_{-24}	$120 \rightarrow 369$	282^{+26}_{-30}	$193 \rightarrow 352$		
	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$		
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.517^{+0.026}_{-0.028}$	$+2.435 \rightarrow +2.598$	$-2.498^{+0.028}_{-0.028}$	$-2.581 \rightarrow -2.414$		

(vast) field complementarity...

accelerators: ($\theta I 3$, $\theta 23$, Δm^2 , δl^2 and $\pm l^2 \Delta m^2$ (matter effects mass ordering)

reactors θ 13, θ 12, δ m², Δ m² and $\pm \Delta$ m² (unique vacuum mass ordering)

atmospheric: $\theta 23$, Δm^2 and $\pm \Delta m^2$ matter effects mass ordering)

solar: $\theta \mid 2, \delta m^2$ and $+\delta m^2$ (matter effects in the sun) — <u>longest baseline</u>

a few (very) powerful synergies:

reactor⊕accelerators(θI3): δ?

•reactor \oplus accelerators(Δm^2) $\pm \Delta m^2$ Mass Ordering (a priori in vacuum)

•reactor⊕accelerators(θI3): θ23

issue! most experiment(s) bypass the absolute flux (ϕ) – tough problem! (uncertainty)

• physics of source: <u>solar</u>, <u>geo-neutrino</u>, <u>supernovae</u> (collapse vs remnant) and <u>astrophysics</u>, etc.

•much **BSM exploration hampered by poor φ knowledge**

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

20

my talk(s) sub-division...

- •first **per-mille precision measurements** (i.e. the θI2-θI3 sector)
- •first Mass Ordering measurement Vacuum vs Matter
- •first **CP-Violation measurement** and the **θ23-θI3** sector
- •explorations of **Unitarity** Conservation vs Violation

the per-mille precision era...

Collin Andread at a

impact in θ **3**- θ **12** plane...

by 2030, θ12-θ13 sector fully dominated by <u>reactor experiments</u> (today, it's rather true but some solar contribution)

23

the reactor...

Chooz-B nuclear reactor plant: 2x N4 reactors [4.2GWthermal each]

24

the v discovery (1950's)...

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

25

ic

Reines et al **detection strategy legacy**...

PMT \Leftrightarrow transparent medium v interaction: coincidence and/or tagging overburden (µ-cosmic shielding) **external shielding** (radioactivity shielding) loaded medium $(^{13}Cd) \rightarrow$ non-native detection! (reactor source) signal modulation

~70years ago → much the same still now!

today's version of similar technology...

27

XX

5

experimental setup...

reactor: extreme source of neutrino (commercial \rightarrow |GW \approx 2×10²⁰/s) — no running cost. **detector(s):** transparent liquid scintillator (H is needed)

3 measurement regimes: depending on baseline (L):

- •zero-baseline (L \rightarrow ~0km): ϕ (reactor) and/or new physics?
- •short-baseline (L→~lkm): 8 3 ⊕ Δm² [multi-detector: φ(reactor)]
- •long baseline (L $\rightarrow \gtrsim 50$ km): $\theta \mid 2 \oplus \delta m^2$ and ($\theta \mid 3 \oplus \Delta m^2$, if enough resolution)

inverse- β decay (IBD) interaction...

IBD: anti- $v_e + p \rightarrow e^+ + n$ [CC intetaction]

cross-section known to ~0.2% [↔lifetime of neutron]

generally, **no e+ PID** \rightarrow **y** \approx **e**⁺ \approx **a** \approx **p-recoil** (fast-n)

reactor neutrino spectrum...

E(neutrino) = E(e+ visible) + ~0.8MeV [mass difference between p and n]

E(neutrino) can be controlled to order 0.1% precision

summary on today's θ 3 knowledge/experiments...

reactor-θI3 experiments: DC⊕DYB⊕RENO

statistics: ≥10⁵ (far) [<10⁶] systematics: ~0.1% (each) energy control: ~0.5%

	<2010	reactor-θΙ3 [2010-2020]			cancellation		
	total	total	rate-only	shape-only	methodology		
statistics	few %	~0.1%			~100/day @ ≤1.5km		
flux	~2.2%	~0.1%	~0.1%	<0.1%	near-to-far monitor (ideal: iso-flux)		
BG	few %	~0.1%	~0.1%	<0.1%	overburden→few/day		
detection	2.0 %	~0.1%	~0.1%		identical detectors		
energy	few %	~0.5%		~0.5%	identical detectors		

2020 world status in Θ | 3...

θ₁₃ consistent (≤2σ)

minor tension (≤2σ) & slight increase (2016→2018)

T2K⊕reactor best knowledge CP-Violation...

35

θI3 implications

CPV phase vs θI3

[constrained by reactor]

CPV phase vs θ23

[octant ambiguity]

CPV phase vs (Atmospheric) Mass Ordering [T2K blinded]

review reactor Θ | 3 sensitivity evolution...

reactor sensitive has potential to go well beyond today [DC⊕DYB⊕RENO]

37

•statistics: ≥10⁷ (far) [≥20x today]
 •detection systematics (~today: ~0.1%)
 •energy control (<1% precision)
 ⇒ flux & BG systematics → new techniques!!!

Super Cool

(stunning) KamLAND experiment rationale...

40

univocal neutrino oscillation signature...

⁴² KamLAND's spectral distortion (and reactor-off)...

A. Gando et al., Phys. Rev. D 88, 033001 (2013).

today's knowledge.

KamLAND + Solar (mainly: SK⊕SNO using ⁸B and Borexino)→ "solar" parameters

JUNO experiment...

 $\theta_{12} \oplus \delta m^2$ (slow) $\theta_{13} \oplus \Delta m^2$ (fast)

simplistic schedule: data-taking aim to start by ~late 2022

rate+shape sensitivity evolution...

consider all systematics with state of the art knowledge (KL, DC, DYB)

rate+shape→ negligible rate uncertainties

JUNO precision (IUPAP)...

	Mass Ordering	$ \Delta m_{32}^2 $	$ \Delta m_{21}^2 $	$\sin^2 \theta_{12}$	$\sin^2 \theta_{13}$	→ reactor-013
6 years of data	$3-4\sigma$	$\sim 0.18\%$	$\sim 0.30\%$	$\sim 0.5\%$	$\sim 14\%$	(input)
20 years of data	5σ	$\sim 0.15\%$	$\sim 0.25\%$	$\sim 0.4\%$	$\sim 7\%$	

intrinsic redundancy: 2 in I detector (Dual Calorimetry)

LPMT vs SPMT comparison...

readout explore $\theta | 2 \oplus \delta m^2$ to per-mille precision ($\leq | \%$)

the Mass Ordering (matter/vacuum)...

$NuFit5.0 \approx aggregate of the world data$

PREPARED FOR SUBMISSION TO JHEP

IFT-UAM/CSIC-112, YITP-SB-2020-21

The fate of hints: updated global analysis of three-flavor neutrino oscillations

Ivan Esteban,^{*a*} M. C. Gonzalez-Garcia,^{*a,b,c*} Michele Maltoni,^{*d*} Thomas Schwetz,^{*e*} Albert Zhou^{*e*}

^aDepartament de Fisíca Quàntica i Astrofísica and Institut de Ciencies del Cosmos, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain

^bInstitució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain.

^cC.N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, NY 11794-3840, USA

^dInstituto de Física Teórica UAM/CSIC, Calle de Nicolás Cabrera 13–15, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain

^eInstitut für Kernphysik, Karlsruher Institut für Technologie (KIT), D-76021 Karlsruhe, Germany E-mail: ivan.esteban@fqa.ub.edu,

maria.gonzalez-garcia@stonybrook.edu, michele.maltoni@csic.es, schwetz@kit.edu, albert.zhou@kit.edu

ABSTRACT: Our herein described combined analysis of the latest neutrino oscillation data presented at the Neutrino2020 conference shows that previous hints for the neutrino mass ordering have significantly decreased, and normal ordering (NO) is favored only at the 1.6σ level. Combined with the χ^2 map provided by Super-Kamiokande for their atmospheric neutrino data analysis the hint for NO is at 2.7σ . The CP conserving value $\delta_{\rm CP} = 180^{\circ}$ is within 0.6σ of the global best fit point. Only if we restrict to inverted mass ordering, CP violation is favored at the $\sim 3\sigma$ level. We discuss the origin of these results – which are driven by the new data from the T2K and NOvA long-baseline experiments–, and the relevance of the LBL-reactor oscillation frequency complementarity. The previous 2.2σ tension in Δm_{21}^2 preferred by KamLAND and solar experiments is also reduced to the 1.1σ level after the inclusion of the latest Super-Kamiokande solar neutrino results. Finally we present updated allowed ranges for the oscillation parameters and for the leptonic Jarlskog determinant from the global analysis.

KEYWORDS: neutrino oscillations, solar and atmospheric neutrinos

today's world data leads to...

NMO favoured to $\sim 2.7\sigma$ (2020)

main experiments so far...

•SK

•NOvA⊕T2K

•DC⊕DYB⊕RENO

NuFit consistent with other global-fit results by Bari, Valencia, etc groups

today's MO status...

Matter Effects Oscillations (CP experiments→ fake CP-violation)

Vacuum Oscillations (no CP-violation)

only 2 ways to measure...

arXiv:2008.11280

accelerator experiments...

Disappearance Channel: $v_{\mu} \rightarrow v_{\mu}$ "survival probability"

 \implies measure $[\theta_{23}, \Delta m_{32}^2]$ — this is **MO blinded**

Appearance Channel: $v_{\mu} \rightarrow v_{e}$ [done for both v and anti-v — **beam-mode**]

 \implies measure $[\theta_{23} \oplus \theta_{13}, \delta_{CP}, MO]$ — strong dependence on MO (matter effects)

JUNO ultra-precise oscillometry: 2 oscillations & interference terms (hard physics)

the JUNO (hardest) way...

Earliest Resolution to the Neutrino Mass Ordering?

 Anatael Cabrera^{*1,2,4}, Yang Han^{†1,2}, Michel Obolensky¹, Fabien Cavalier², João Coelho², Diana Navas-Nicolás², Hiroshi Nunokawa^{‡2,7}, Laurent Simard², Jianming Bian³, Nitish Nayak³, Juan Pedro Ochoa-Ricoux³, Bedřich Roskovec³, Pietro Chimenti⁵, Stefano Dusini^{6a}, Marco Grassi^{6b}, Mathieu Bongrand^{8,2}, Rebin Karaparambil⁸, Victor Lebrin⁸, Benoit Viaud⁸, Frederic Yermia⁸, Lily Asquith⁹, Thiago J. C. Bezerra⁹, Jeff Hartnell⁹, Pierre Lasorak⁹, Jiajie Ling¹⁰, Jiajun Liao¹⁰, and Hongzhao Yu¹⁰

arXiv:2008.11280v1 [hep-ph] 25 Aug 2020

when MO will be resolved (≥5σ)?

which experiments? (i.e. the minimal set)

what physics behind the resolution?

MO (binary outcome) be used to explore **BSM**?

in 2020...

Super-Kamiokande (atmospheric) — no

T2K (≤ 2024) — no little $\leq 2\sigma \rightarrow$ T2K designed for cleanest $\delta(CP)$

NOvA (≤2026) — unlikely not bad **!! ≤4σ** (by 2026) — <u>if lucky on δ(CP)</u>

JUNO (≥2022) — unlikely not bad **!! ~3σ** (by 2028) — careless of δ(CP)!!

by 2030...

DUNE(\geq2028?) — yes!! stunning >5 σ (2 years) — careless of δ (CP)!!

Hyper-K(≥2028?) — no! (like T2K) targets the <u>cleanest δ(CP)</u> [minimal matter effects]

atmospheric neutrino — unlikely (extra info)

See also arXiv:2009.08585 / arXiv:2107.12410

NO prediction by SM!!

resolution (≥5σ) anybody…?

powerful synergy JUNO vs NOvA \oplus T2K: high precision disappearance Δm^{2}_{32} ...

JUNO MO sensitivity **boosted** $3\sigma \rightarrow \geq 5\sigma$ [leading order effect] **physics:** extra discriminator due to Δm^2_{32} **solutions** slightly <u>different</u> (i.e. synergy) between reactor-accelerator but **only one true MO solution** forces equality \rightarrow **powerful boosting with precision of** Δm^2_{32} .

Mass Ordering JUNO (vacuum) boosting...

synergy JUNO⊕LBvB...

time evolution... new physics?

all done?

by 2030, mixing @ ~1% level.. (no unknowns)

the remaining challenges... (my view — likely biassed somewhat)

•reactors: likely the most precise neutrino source — tool for research — since the 50's (improving)

• improve absolute knowledge precision (ex. flux cancels by <u>multi-detector</u>) \rightarrow discoveries?

intrinsic limitations (no appearance, etc) → empower synergies with accelerators, solar, etc.

• $\theta I 2 \oplus \delta m^2$ precision: is likely hard to improve (few per mille) after JUNO — world best $\leq I$ year of data

• $\theta I 3 \oplus \Delta m^2$ precision: still improve for $\theta I 3$ — nobody knows how to!! [\rightarrow SuperChooz?]

• θ 3 is <u>one of the most intriguing parameter</u> of the PMNS (tiny term among many large terms) \Rightarrow pointing to a feature(s) or symmetry? certainly this is BSM territory...

•understand meaning of structure of the PMNS (i.e. large mixing) — very different from CKM

•JUNO
• Accelerators: smost powerful Mass Ordering measurements (2 independent):

vacuum — driven by JUNO (unique)

• matter — driven by DUNE (by far)

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

62

impact in θ **3**- θ **1**2 plane...

by 2030, θ12-θ13 sector fully dominated by <u>reactor experiments</u> (today, it's rather true but some solar contribution)

63