An overview of Flavor Physics (II)

J. Martin Camalich

XLVIII International Meeting on Fundamental Physics In Benasque

September 7 2021

Outline of the talks

1st talk: September 7th

- Introduction to flavor and "Why to investigate on Flavor Physics in the XXI c.?"
- Quick status CKM metrology and Cabibbo-angle Anomaly
- ► The *R_K* lepton-flavor universality anomalies

2nd talk: September 8th

- ► The *R_D* lepton-flavor universality anomalies
- The LHC flavor-physics program
- A view on dark-flavor sectors

The $b \rightarrow c \tau \nu$ lepton-universality anomalies

Another lepton-flavor universality anomaly: The $b \rightarrow c \tau \nu$ decays

$$R_{D^{(*)}} = rac{\mathcal{B}(\bar{B} o D^{(*)} au^{-} ar{
u})}{\mathcal{B}(\bar{B} o D^{(*)} \ell^{-} ar{
u})}$$
 where $\ell = e, \mu$

• Babar, Belle and LHCb are independently in tension with SM!

Obs.	Current World Av./Data	Current SM Prediction	Significance
$\mathcal{R}(D)$	0.337 ± 0.030	0.299 ± 0.003	1.30 Ja 60
$\mathcal{R}(D^*)$	0.298 ± 0.014	0.258 ± 0.005	$2.5\sigma \int^{3.00}$
$P_{\tau}(D^*)$	$-0.38\pm0.51^{+0.21}_{-0.16}$	-0.501 ± 0.011	0.2σ
$F_{L,\tau}(D^*)$	$0.60 \pm 0.08 \pm 0.04$	0.455 ± 0.006	1.6σ
$\mathcal{R}(J/\psi)$	$0.71 \pm 0.17 \pm 0.18$	0.2582 ± 0.0038	1.8σ
$\mathcal{R}(\pi)$	1.05 ± 0.51	0.641 ± 0.016	0.8σ

Bernlochner et al., arXiv:2101.08326 Bernlochner talk @ EPS-HEP 2021

Independent LFUV in B decays (to 2nd-generation quarks)

2 Large effect in CCs (10%): Λ_{NP} ~ 3 TeV

3 Hint towards NP addressing flavor puzzle? (τ vs. μ)

J. Martin Camalich (IAC)

An overview of Flavor Physics (II)

Hadronic matrix elements in $B \rightarrow D^{(*)}$ transitions

• Fit Form Factors to experimental $B \rightarrow D^{(*)}(\mu, e)\nu$ data

Boyd, Grinstein & Lebed '96, Caprini, Lellouch & Neubert'98

- Important kinematic effects! $(m_{\tau} \gg m_{\ell})$
- There are LQCD calculations of the FFs (Na et al. PRD92(2015)no.5,054510, Bailey et al. PRD92,034506)....
- Prediction relies on HQET

- ► Includes "constrained" $\mathcal{O}(\Lambda_{\text{OCD}}/m_{c,b})^2$ and $\mathcal{O}(\alpha_s)$ corrections
- Nonperturbative (subleading) inputs from LQCD and QCD sum rules

Hadronic uncertainties cannot explain the $R_{D^{(*)}}$ anomalies

J. Martin Camalich (IAC)

An overview of Flavor Physics (II)

Analysis in terms of EFT of NP

Low-Energy EFT Lagrangian

 $\mathcal{L}_{\mathrm{eff}} \supset -\frac{G_{\mathrm{F}} V_{\mathrm{C}b}}{\sqrt{2}} [(1+\epsilon_{L}^{\ell})(\bar{\ell}\nu_{\ell})_{\mathrm{V}-\mathrm{A}} \cdot (\bar{c}b)_{\mathrm{V}-\mathrm{A}} + \epsilon_{S_{L}}^{\ell}(\bar{\ell}\nu_{\ell})_{\mathrm{S}-\mathrm{P}} \cdot (\bar{c}b)_{\mathrm{S}-\mathrm{P}} + \epsilon_{S_{R}}^{\ell}(\bar{\ell}\nu_{\ell})_{\mathrm{S}-\mathrm{P}}(\cdot \bar{c}b)_{\mathrm{S}+\mathrm{P}} + \epsilon_{T}^{\ell}(\bar{\ell}\nu_{\ell})_{\mathrm{T}} \cdot (\bar{c}b)_{\mathrm{T}}] + \mathrm{h.c.}$

Add RH ν 's N_R (See e.g. Robinson, Shakya & Zupan, JHEP 1902 (2019) 11) $\mathcal{L}_{eff} \supset -\frac{G_F V_{CD}}{\sqrt{C}} \epsilon_R^{\ell} \bar{\ell} \gamma_{\mu} N_R \bar{c} \gamma^{\mu} (1+\gamma_5) b$

The SM + 5 New-Physics operators

	Post-Moriond 2019		
	Best fit	Pull _{SM}	
ϵ_L^{τ}	0.07(2)	3.43	
$\tilde{\epsilon}_R^{\tau}$	0.39(5)	3.43	
ϵ_T^{τ}	-0.03(1)	3.30	

"Current-current" scenarios best

 $\Lambda_{NP}\simeq 4.6~\text{TeV}$

Shi et al. JHEP 1912 (2019) 065, Murgui et al. JHEP 09 (2019) 103, ...

Beyond the $R_{D^{(*)}}$ ratios

- New R_X and/or q^2 spectrum
- ► Baryonic modes $(\Lambda_b \to \Lambda_c^{(*)} \tau \nu)$, B_c decays $(B_c \to J/\psi \tau \nu)$, B_s decays $(B_s \to D_s^{(*)} \tau \nu)$
- Limited <u>additional</u> info?

$$\frac{\mathcal{R}(\Lambda_c)}{\mathcal{R}_{\rm SM}(\Lambda_c)} \,=\, 0.262 \frac{\mathcal{R}(D)}{\mathcal{R}_{\rm SM}(D)} + 0.738 \frac{\mathcal{R}(D^*)}{\mathcal{R}_{\rm SM}(D^*)} - x$$

Blanke et al. PRD99(2019)7,075006

Consistency tests of NP!

Measure new (angular) observables

τ decays "promptly"

Spectrum: Not very informative

Access to polarization properties of the \(\tau\)!

* Z stands for zweifach.

Asadi et al. PRD102(2020)9,095028, Peñalva et al. JHEP06(2021)118, Bhattacharya et al. JHEP07(2020)07,194 ...

Beyond the $R_{D^{(*)}}$ ratios

- New R_X and/or q^2 spectrum
- ► Baryonic modes $(\Lambda_b \to \Lambda_c^{(*)} \tau \nu)$, B_c decays $(B_c \to J/\psi \tau \nu)$, B_s decays $(B_s \to D_s^{(*)} \tau \nu)$
- Limited <u>additional</u> info?

$$\frac{\mathcal{R}(\Lambda_c)}{\mathcal{R}_{\rm SM}(\Lambda_c)} \,=\, 0.262 \frac{\mathcal{R}(D)}{\mathcal{R}_{\rm SM}(D)} + 0.738 \frac{\mathcal{R}(D^*)}{\mathcal{R}_{\rm SM}(D^*)} - x$$

Blanke et al. PRD99(2019)7,075006

Consistency tests of NP!

Measure new (angular) observables

τ decays "promptly"

Spectrum: Not very informative

Discrimination between NPs at Belle II

Asadi et al. PRD102(2020)9,095028, Peñalva et al. JHEP06(2021)118, Bhattacharya et al. JHEP07(2020)07,194 ...

The special case of $B_c \rightarrow \tau \nu$

- $B_c \rightarrow \tau \nu$ very sensitive to "scalar currents" (e.g. charged Higgses)
- Axial (SM) "Chiral suppression": m_{τ}/m_{B_c}

B_c's lifetime disfavors charged scalars!

See though Aebischer talk @ PANIC2021

Flavor-physics case for FCC-ee <u>C. Halsen's talk @ EPS-HEP 2021</u>

Combined explanations of R_{D^*} and R_{K^*} anomalies

Same structure and generations as in $b \to s\mu\mu$ SMEFT operators: $a_{\ell q(jkl)}^{(1)} = \frac{1}{\Lambda^2} (\bar{Q}_L^{i} \gamma^{\mu} Q_L^{j}) (\bar{L}_L^{k} \gamma_{\mu} L_L^{j}), \qquad G_{\ell q(jkl)}^{(3)} = \frac{1}{\Lambda^2} (\bar{Q}_L^{i} \gamma^{\mu} \vec{\tau} Q_L^{j}) \cdot (\bar{L}_L^{k} \gamma_{\mu} \vec{\tau} L_L^{j})$

- Suggestive of a combined explanation* Bhattacharya et al. '14, Alonso et al. '15, Greljo et al. '15, ...
 - Can be probed at LHC: Reduces scale of NP to ~TeV
 - Addressing flavor puzzle? Effect larger for heavier leptons and quarks

Vector leptoquarks are the (almost) unique choice

• A lot of activity in model building A. Teixeira's talk @ EPS-HEP 2021, G. Isidori's talk @ PANIC2021

J. Martin Camalich (IAC)

The LHC Flavor Physics Program

The LHC flavor program: Collider probes of the R_{D^*} anomalies

• Cross-section at $s \gg m_W^2$

$$\frac{\sigma_{\rm NP}}{\sigma_{\rm SM}} \sim \frac{\sum_{i} \mathcal{L}_{ib} \otimes |V_{ib}|^2 \frac{s}{v^4} \left(\alpha_{\Gamma} |\epsilon_{\Gamma}^{\tau}|^2\right)}{\mathcal{L}_{ud} \otimes |V_{ud}|^2 \frac{s}{v^4} \left(\frac{M_W^2}{s}\right)^2}$$

- NP suppressed by CKM and PDF's
- NP enhanced by s^2/M_W^4
- NP sensitivity is quadratic

Search excess in tails of $pp \rightarrow \tau + MET!$

The proton is flavored...

The LHC flavor program: Collider probes of the R_{D^*} anomalies

The proton is flavored...

• Cross-section at $s \gg m_W^2$

LHC bounds and HL-LHC prospects

• We could (should?) discover the mediators at the HL-LHC

- The LHC is sensitive to the relevant NP!
 - * Current LHC data: Exclude RHCs
 - * HL-LHC: Sensitivity to all scenarios
- b-tagging: Improve bounds (~ 30%)

Marzocca et al., JHEP 12 (2020) 035

No-loose theorem for colliders!

- Tauonic Drell-Yan $pp \rightarrow \tau \tau$ more relevant for many models
 - ► U1-leptoquark mostly coupled to 3rd generation Cornella et al., 2103.16558, G. Isidori's talk @ PANIC2021

The LHC as a quark-flavor collider

• Partonic luminosities at LHC Angelescu et al., EPJC80(2020)7,641, Fuentes-Martin et al., JHEP11(2020)080

- Some searches of NP more sensitive than low energies!
- LHC much more sensitive to LFV than quarkonium!

Angelescu et al. EPJC80(2020)7,641

Quarkonium mainly decays electromagnetically

Charming NP at the LHC

• Charged current decays: $c \rightarrow d\ell \nu$ and $c \rightarrow s\ell \nu$

Channel	Statistics $[fb^{-1}]$	Experiment
τν	36	CMS
	36	ATLAS
$e\nu, \mu\nu$	139	ATLAS
	36	ATLAS
	36	CMS

LHC much stronger than low-E

• FCNC decay: $c \rightarrow u \ell \nu$

Channel	Statistics [fb ⁻¹]	Experiment
$\tau \tau$	36	ATLAS
$\tau \tau, e \mu, e \tau, \mu \tau$	2.2	CMS
$ee, \mu\mu$	139	ATLAS
	140	CMS
	36	CMS
	36	ATLAS

LHC stronger than D-neutral decays!

Fuentes-Martin et al., JHEP11(2020)080

J. Martin Camalich (IAC)

High p_T provides inputs to flavor physics

High- p_T already competitive (or better) than low-E

J. Martin Camalich (IAC)

An overview of Flavor Physics (II)

Dark flavored sectors

Flavored dark sectors: (1) The axion

The familon or axiflavon

Wilczek PRL49(1982)1549, Calibbi et al. PRD95(2017)095009

Axions and Family Symmetry Breaking

Frank Wilczek Institute for Theoretical Physics, University of California al Santa Barbara, Santa Barbara, California 93106 (Received 20 September 1982)

Possible advantages of replacing the Peccei-Quinn U(1) quasisymmetry by a group of genuine flavor symmetries are pointed out. Characteristic neutral Namba-Goldstone bosons will arise, which might be observed in rare K or μ decays. The formulation of Lagrangians embodying these ideas is discussed schematically.

Horizontal (flavor) symmetries can solve flavor puzzle and provide QCD axion!

QCD axion (DFSZ models) with non universal PQ charges

$$\mathcal{L}_{a} = -\frac{\partial_{\mu}a}{2f_{a}}\frac{1}{N} \left[\bar{f}_{L} \left(U_{L}^{f\dagger} \boldsymbol{X}_{f_{L}} U_{L}^{f} \right) f_{L} + \bar{f}_{R} \left(U_{R}^{f\dagger} \boldsymbol{X}_{f_{R}} U_{R}^{f} \right) f_{R} \right]$$

Di Luzio et al. Phys.Rept. 870 (2020) 1-117

Badiative SM corrections generate flavor violation

$$\begin{split} 16\pi^2 \frac{d\mathbf{c}_q}{d\ln\mu} &= \frac{1}{2} \left(\mathbf{y}_u \mathbf{y}_u^\dagger + \mathbf{y}_d \mathbf{y}_d^\dagger \right) \mathbf{c}_q - \mathbf{y}_u \mathbf{c}_u \mathbf{y}_u^\dagger \\ &+ \frac{1}{2} \, \mathbf{c}_q \left(\mathbf{y}_u \mathbf{y}_u^\dagger + \mathbf{y}_d \mathbf{y}_d^\dagger \right) - \mathbf{y}_d \mathbf{c}_d \mathbf{y}_d^\dagger \\ &- c_H \left(\mathbf{y}_u \mathbf{y}_u^\dagger - \mathbf{y}_d \mathbf{y}_d^\dagger \right) \;, \end{split}$$

JMC, Pospelov, Vuong, Ziegler, Zupan PRD 102 (2020) 1, 015023

Flavored dark sectors: (2) Dark Baryons

- Dark particles with baryon number \Rightarrow Baryon-number violating signatures
 - *m_χ* > *m_ρ* to avoid proton decay!
- The "neutron lifetime anomaly"

• Another $\sim 4\sigma$ discrepancy!

 $au_n^{ ext{bottle}} = 878.49(49) \ s$ $au_n^{ ext{beam}} = 888(2) \ s$

Exotic Solution: Loosing neutrons in the bottle decaying onto dark baryons!

Fornal&Grinstein, PRL120,191801(2018)

Expt signature with one SM particle

Expt signature purely invisible

Flavored dark sectors: (2) Dark Baryons

- Dark particles with baryon number \Rightarrow Baryon-number violating signatures
 - *m_χ* > *m_ρ* to avoid proton decay!
- 2 The "mesogenesis" mechanism for baryogenesis

Elor, Escudero, Nelson, PRD99(2019)3,035031, Alonso-Alvarez, Elor, Escudero, arXiv: 2101.02706

► Produces successful baryogenesis and "antibaryonic" DM with SM CP-violation!

Testable in laboratories!

See LHCb prospects in Brea Rodríguez et al. arXiv: 2106.12870

Flavored dark sectors: (3) The dark photon

• The massless dark-photon

SM

No renormalizable coupling to SM fermions

Holdon, PLB166(1986)196, del Águila et al. NPB456(1995) 531

Couples via higher dimension operators!

$$\frac{1}{M^2}P_{\mu\nu}(\overline{q}_L\sigma^{\mu\nu}C_u\widetilde{H}u_R+\overline{q}_L\sigma^{\mu\nu}C_dHd_R+\overline{l}_L\sigma^{\mu\nu}C_eHe_R+\text{H.c.}).$$

Dobrescu, PRL94(2005)151802

Flavor naturally in simplified models

Fabbrichesi et al. PRL119((2017)031801

- Doesn't mix with the photon: Difficult to test experimentally
 - Look for flavor violating processes!

DS

Fabbrichesi et al., arXiv: 2005.01515

• Topic of increasing interest: 50⁺ th's and exp's for a Snowmass document

3rd meeting on Searches for Hidden Sectors at Kaon and Hyperon Factories

Iunes 12 jul. 2021 15:00 → 18:30 Europe/Zurich

J. Martin Camalich (IAC)

An overview of Flavor Physics (II)

An Example: The flavor phenomenology of the QCD axion

PHYSICAL REVIEW D 102, 015023 (2020)

Quark flavor phenomenology of the QCD axion

Jorge Martin Camalicho,^{1,2} Maxim Pospelov,^{3,4} Pham Ngoc Hoa Vuongo,⁵ Robert Zieglero,^{6,7} and Jure Zupan⁸

Full phenomenological survey of quark flavor phenomenology

See also Feng et al. PRD57(1998)5875-5892

Recast bounds of many searches in 2-body decays

★ E.g. $B \rightarrow \pi a$ for the coupling of the axion to *bottom-down*

Analyze and provide theoretical predictions for new decays

* $K \to \pi \pi a, \Lambda \to na, \ldots$

Calculate neutral-meson mixing rigorously using ChPT

Incorporate RGEs for derivation and comparison of bounds

J. Martin Camalich (IAC)

An Example: The flavor phenomenology of the QCD axion

$$\mathcal{L}_{a} = \frac{\partial_{\mu} a}{2 f_{a}} \, \bar{\psi}_{i} \gamma^{\mu} \left(\mathbf{C}_{ij}^{V} + \mathbf{C}_{ij}^{A} \gamma_{5} \right) \psi_{j}$$

• Define $F_{sd}^{V,A} = 2f_a/c_{sd}^{V,A}$

JMC, Pospelov, Vuong, Ziegler, Zupan PRD 102 (2020) 1, 015023

Strongest absolute limit on f_a from $K^+ \rightarrow \pi^+ a$ (NA62)!

NA62, JHEP 03 (2021) 058

J. Martin Camalich (IAC)

An overview of Flavor Physics (II)

The SN 1987A bound on flavor: Muons

• Proto-NS are very dense (supranuclear) and hot ($T \sim 30$ MeV) environments

Heavier flavors (muons and strange) can exist in equilibrium in the plasma

SN cooling Limits on couplings of dark bosons to muons (Raffelt's criterion)

- The QCD axion Bollig et al.PRL125(2020)5,051104
- Astro and EoS uncertainties

Model name	Equation of state	Progenitor mass (M_{\odot})	NS bary. mass (M_{\odot})
SFHo-18.8	SFH0 [48]	18.8 [49]	1.351
SFHo-18.6	SFH0 [48]	18.6 [50]	1.553
SFHo-20.0	SFH0 [48]	20.0 [51]	1.947
LS220-20.0	LS220 [52]	20.0 [51]	1.926

Best limit on
$$g_{a\mu}$$

 $g_{a\mu} < 10^{-7.4} \text{ GeV}$

The SN 1987A bound on flavor: Muons

• Proto-NS are very dense (supranuclear) and hot ($T \sim 30$ MeV) environments

Heavier flavors (muons and strange) can exist in equilibrium in the plasma

SN cooling Limits on couplings of dark bosons to muons (Raffelt's criterion)

Croon et al. JHEP 01 (2021) 107

The SN 1987A bound on flavor: Muons

• Proto-NS are very dense (supranuclear) and hot ($T \sim 30$ MeV) environments

Heavier flavors (muons and strange) can exist in equilibrium in the plasma

SN cooling Limits on couplings of dark bosons to muons (Raffelt's criterion)

► Gauge-flavored L_τ − L_µ Z'

Croon et al. JHEP 01 (2021) 107

The SN 1987A bound on flavor: Strangeness

- There are hyperons (\lambda's) in proto-neutron stars!
 - Abundancies sustained by weak processes

$$pe^- \leftrightarrow \Lambda \nu_e, \qquad \Lambda \rightarrow pe^- \bar{\nu}, \dots$$

High temperatures and supranuclear densities

Thermal effects:
$$n_{\Lambda} \simeq n_n \exp\left(-\frac{m_{\Lambda}-m_n}{T}\right) \simeq 0.01 \times n_n$$

Same SN simulations for SN 1987A + A EoS

JMC et al. PRD103(2021)12,L121301

The SN 1987A bound on flavor: Strangeness

- There are hyperons (\lambda's) in proto-neutron stars!
 - Abundancies sustained by weak processes

$$pe^- \leftrightarrow \Lambda \nu_e, \qquad \Lambda \rightarrow pe^- \bar{\nu}, \dots$$

High temperatures and supranuclear densities

Thermal effects:
$$n_{\Lambda} \simeq n_n \exp\left(-\frac{m_{\Lambda}-m_n}{T}\right) \simeq 0.01 \times n_n$$

• Very strong bound from $\Lambda \rightarrow nX^0$

Application of the SN bound to dark flavored sectors

Axions

- Best on axions with tuned axial couplings
- BESIII projections are 1 order of magnitude below the SN bound
- Massless dark photon

Strongest limit on the couplings of massless dark-photon to quarks

J. Martin Camalich (IAC)

An overview of Flavor Physics (II)

The ongoing hyperon experimental revolution

- Recent experimental "revolution" on hyperon physics after 40⁺ yrs ...
- Polarized-hyperon factories (BESIII&SCTF)

▶ LHCb: 10²⁻³ more hyps than B's

- Cleaning up the old data base
 - The α_{π} parameter in $\Lambda \rightarrow p\pi^{-}$ in BESIII

$$\frac{d\Gamma}{d\cos\theta} = \frac{\Gamma}{2}(1 + P\alpha_{\pi}\cos\theta)$$

- ***** BESIII measurement $(17 \pm 3)\%$ larger than "old" PDG! (>5 σ)
- * NEW: Vigorous program on CP violation with hyperons

The ongoing hyperon experimental revolution

- Recent experimental "revolution" on hyperon physics after 40⁺ yrs ...
- Polarized-hyperon factories (BESIII&SCTF)

Nature Physics 15, 631-634(2019)

▶ LHCb: 10²⁻³ more hyps than B's

Alves Junior et al. JHEP 05 (2019) 048

- Searching for flavored dark sectors!
 - ► NEW: BR($\Lambda \rightarrow invisible$) < 7.4 × 10⁻⁵ @ 90% CL Liu Kai's poster @ PANIC2021

Conclusions

We are witnessing a golden era in flavor physics

Titanic progress on the experimental side

- CKM metrology: High level of maturity and precision
- Rare and ultra-rare flavor phenomena: Precision

Plavor anomalies

"Extraordinary claims require Extraordinary evidence" - C. Sagan

Approaching that level at LHCb in " R_K "

Wait to Belle II ... (\sim 2027)

④ Traditional sensitive-based flavor physics can be done at high p_T

Exploration and searching for dark-flavor sectors