Neutrinos

present and outlook...

IMFP-2021 @ Benasque (Spain)

7th September 2021

Anatael Cabrera

CNRS/IN2P3 IJCLab @ Orsay (Université de Paris-Saclay) LNCA @ Chooz

• FACULTÉ UNIVERSITE DES SCIE PARIS-SACLAY D'ORSAY

my talk(s) sub-division...

- ✓ •first **per-mille precision measurements** (i.e. the θI2-θI3 sector)
- ✓ first Mass Ordering measurement Vacuum vs Matter
- first **CP-Violation measurement** and the θ **23-\thetaI3** sector
- •explorations of **Unitarity** Conservation vs Violation
- **×** •explorations of **absolute mass** & ββ decay [apologies]

ingredients & notation...

Weak Flavour Neutrinos: V(e), $V(\mu)$, $V(\tau) \rightarrow$ what we detect/production

Mass Neutrinos: v(1), v(2), $v(3) \rightarrow$ what propagates

PMNS matrix: **U→unitarity**? [else below parametrisation is wrong]

PMNS mixing parameters: θ 3, θ 2, θ 23

CP-Violation parameters: δ ? (within U) and J [Jarkslog invariant]

Mass Differences: δm^2 (i.e. Δm^2_{12}) and Δm^2 (i.e. Δm^2_{13} or Δm^2_{23})

Mass ordering:

+δm² (solar data)

 $\pm \Delta M^2$ (so far) $\rightarrow the lightest neutrino? [V(1) versus V(3)]$

Absolute mass scale: **m(v)**?

the CP-Violation measurement...

Ln / =

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

accelerator experiments: 2 channels.

Disappearance Channel: $v_{\mu} \rightarrow v_{\mu}$ "survival probability" [mimic's directly the atmospheric anomaly mechanism,] \implies measure $[\theta_{23}, \Delta m_{32}^2]$ — this is **MO blinded**

Oscillation Probability order up to 100% [since θ 23 may be maximal]

Appearance Channel: $v_{\mu} \rightarrow v_{e}$ [done for both v and anti-v — beam-mode] \implies measure [$\theta_{23} \oplus \theta_{13}, \delta_{CP}, MO$] — 4 unknowns & dependence on MO (matter effects)

Oscillation Probability order ≤3% [modulated by Jarkslog invariant]

$$\begin{split} P(\nu_{\mu} \to \nu_{e}) &\simeq \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}} \Delta_{31}^{2} & a = G_{F} N_{e} / \sqrt{2} \\ &+ \sin 2\theta_{23} \sin 2\theta_{13} \sin 2\theta_{12} \frac{\sin(\Delta_{31} - aL)}{(\Delta_{31} - aL)} \Delta_{31} \frac{\sin(aL)}{(aL)} \Delta_{21} \cos(\Delta_{31} + \delta_{CP}) \\ &+ \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2}(aL)}{(aL)^{2}} \Delta_{21}^{2}, & \Delta_{ij} = \frac{\Delta m_{ij}^{2} L}{4E} \end{split}$$

^{α} measurement of $\theta 23$ — dependence on $\theta 13...$

θ23 being **almost maximal** (not exclude) suffers from the so called "**octant ambiguity**" → larger uncertainty

phenomenologically, a maximal θ 23 could embed the manifestation of a possible symmetry [θ 13 being very small]

in-flight π-decay beam...

traditional beam divergent beam

on (DUNE) and off (T2K / NOvA / HyperK) axis
neutrino and anti-neutrino modes (use "horn" current)

high beam power → towards ~MW

near detector(s)...
monitoring for flux cancellation
cross-section measurement: signal and backgrounds

challenges (CPV): high statistics (~1000 events appearance), low systematics (few %), etc

off-axis versus on-axis beams...

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

8

disappearance measurement $(\theta 23)$...

22

today's knowledge on $\theta 23...$

NuFit5.0

 $\theta 23$ precision dominated by octant ambiguity

[beams @atmospherics]

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

PMNS' CP-violation...

key elements...

Jarkslog invariante: intrinsic maximal CPV embedded in the PMNS (CKM) matrix

$$J_{CP}^{max} = c_{12} s_{12} c_{23} s_{23} c_{13}^2 s_{13}^2$$

PMNS CPV phase: modulation of J — as sin(δ) \Longrightarrow <u>CP conversation</u> @ 0 & π

$$J_{CP} = J_{CP}^{max} \sin \delta_{CP}$$

Fake CPV effects (i.e. non-PMNS CPV): mainly Mass Ordering (matter) & systematics (mid-PID, etc)

J(PMNS)≈3.3x10⁻²⇒ largest ever CPV possible

CP-Violation information...

measuring δ: bi-rate plots...

Appearance Channel $(v_{\mu} \rightarrow v_{e})$: 2 measurements [v and anti-v] for 4 a priori unknowns

[θ₂₃⊕θ₁₃,δ_{CP},MO]

CPV manifestation

difference probability for v and anti-v

δ_{CP}: <u>elipses</u> **MO:** off-diagonal [conflic w δ] $θ_{23} ⊕ θ_{13} →$ along diagonal [reactors constrain $θ_{13}$]

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

NOvA & T2K: direct comparison of oscillation with neutrino & anti-neutrino

NEUTRINO

v_e and \overline{v}_e Data at the Far Detector

Total Observed	82	Range
Total Prediction	85.8	52-110
Wrong-sign	1.0	0.6-1.7
Beam Bkgd.	22.7	
Cosmic Bkgd.	3.1	
Total Bkgd.	26.8	26-28

Total Observed	33	Range	
Total Prediction	33.2	25-45	
Wrong-sign	2.3	1.0-3.2	
Beam Bkgd.	10.2		
Cosmic Bkgd.	1.6		
Total Bkgd.	14.0	13-15	
>4 σ evidence of $\bar{\nu}_e$ appearance			

Appearance Channel ($v_{\mu} \rightarrow v_{e}$): 2 measurements [v and anti-v] for 4 a priori unknowns [$\theta_{23} \oplus \theta_{13}, \delta_{CP}, MO$]

but θ_{13} marginalised by **reactor-\theta_{13}** and θ_{23} measured via the **Disappearance channel**

T2K versus NOvA..

 $\delta_{CP} \rightarrow elipses (\delta phase)$

 $MO \rightarrow \text{off diagonal} [\text{conflic } w \delta]$

 $\theta_{23} \oplus \theta_{13} \rightarrow \text{along diagonal}$

[reactors constrain θ_{13}]

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

T2K⊕reactor best knowledge CP-Violation...

17

CPV phase vs θI3

[constrained by reactor]

CPV phase vs θ23

[octant ambiguity]

CPV phase vs (Atmospheric) Mass Ordering [T2K blinded]

DUNE sensitivity.

CPV 's δ sensitivity...

7 years (staged) 10 years (staged) Median of Throws

7 years (staged)

10 years (staged)

Median of Throws

statistics, systematics,

and oscillation parameters

1σ: Variations of

1σ: Variations of

statistics, systematics

and oscillation parameters

Mass Ordering (matter) sensitivity...

sensitivity time evolution...

Mass Ordering (matter) sensitivity...

(%) 80 ant metrefrection fractions Ю 70 60 Fraction of **50** 40 **30**Ē 20 5σ 10 0 2 10 6 0 4 Running time (year)

HyperK: complementary to DUNE

detector: robust Water-Cherenkov **[DUNE:** fancy **LAr** \rightarrow R&D CERN et al]

Sorry: for briefness, I described less. HK sensitivity is similar to DUNE

the bigger picture...

important to improving of both θ I 3 (yesterday) and θ 23 [octant resolution]

accelerator's the main observables are δ and MO (matter) — yesterday on MO (vacuum)

•both are will likely be measured ($\geq 5\sigma$) soon — δ is harder if CP conserved

• **beware:** SM mathematically (phenomenological) ready for both δ and MO

•whether MO is normal or inverted → SM is ready
 [unless MO(vacuum) ≠ MO(matter): BSM manifestation]

•whether δ is violating or conserving \rightarrow SM is ready [link to Leptogenisis CPV via BSM — not established model independently]

•the same is a priori rather true to the per-mille precision (JUNO et al)

⇒ no evident rupture (or modification) in today's SM by future experiments (unless surprises) [still absolutely critical measurements — huge effort]

the exploration of Unitarity...

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

consider full matrix structure (not just composition)

why shape?

•large mixing but one (small)!

- largest CP-Violation (SM) → Leptogenisis?
- •any symmetry behind? [Nature's caprice/symmetry?]
- •how is this related to the CKM (minimal mixing & little CPV)?

[poorly constraint→assumed]

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

CKM vs PMNS...

d s b

elegance (symmetry)

A. De Gouvea, H. Murayama, hep-ph/0301050; PLB, 2015.L. Hall, H. Murayama, N. Weiner, hep-ph/9911341.

elegant CKM vs PMNS extravaganza...

СКМ

$J_{\rm max} \approx 3 \times 10^{-5}$

- •small CPV allowed
- •small CPV measured

almost diagonal

- pattern exist (i.e. minimal mixing)
- •off-diagonal is small

unitarity precision "top-row" [0.5%]

•deviation tiny? (follow pattern)

PMNS

$J_{\rm max} \approx 3 \times 10^{-2}$

- larger CPV allowed [10³× the CKM]
- •maximal? CPV [T2K⊕reactors-θΙ3]

highly non-diagonal

- •symmetry vs anarchy?
- only U_{e3} (θ_{13}) is small: why? (meaningful vs caprice)

unitarity precision "top-row" [~%]

•larger deviations?

much CPV to explain the observed Universe \rightarrow neutrino-based solution?

[link to heavy Majorana neutrinos CPV?]

unitarity is behind all our definitions...

UNITARITY implies...

•**IF 3 neutrino standard states — non-standard cases?** [in agreement with quark's **3 families**]

 \implies 2 mass difference: $\Delta m^2 \& \delta m^2$

 \Rightarrow 3 independent mixing angles: $\theta_{12}, \theta_{23}, \theta_{13}$

 \implies (Dirac) CP-Violating phase: δ_{CP}

[i.e. a 3x3 unitarity matrix may be complex]

if 4 families, expect more Δm^{2} 's, θ 's or δ_{CP} 's $\rightarrow 3x3$ <u>effective approximation</u>

testing **UNITARITY** → **testing for new families + more!!**

(regardless of kinematics)

Anatael Cabrera (CNRS-IN2P3 & APC)

significant unitarity violation means...

significant unitarity deviation ("triangles" or "rows/columns") imply the manifestation of...

```
    I • new states (BSM >3 families, sterile, etc)
or
    2 • new interactions (BSM)
or
    3 • something totally new? [BSM→ask your favourite theorist]
or
    4 • a combination of [I]⊕[2]⊕[3] — hard (or impossible) to disentangle a priori
```

regardless, this means **discovery BSM!!** — a crack in the **effective validity of the SM**...

testing unitarity with neutrinos has some advantages (even more?)...

26

• independent validation of CKM unitarity issues (~4 σ on "Cabibbo angle anomaly")

•unlike CKM, explorations with **NO QCD/QED correction(s)** (>experimental uncertainty)

•**neutrino uniqueness** (mass, neutral, etc) \rightarrow enhanced sensitivity to **BSM** (\rightarrow lot of phenomenology) [this is why neutrino is different...?]

note: <u>exact theoretical prediction for unitarity conservation</u> (must be 1)

since no CPV (yet) \Rightarrow test Unitarity via the "rows"

$$|U_{l1}|^2 + |U_{l2}|^2 + |U_{l3}|^2 = 1$$

PMNS equivalent to the CKM's "Cabibbo angle anomaly"

 $|U_{e1}|^2 + |U_{e2}|^2 + |U_{e3}|^2 = 1 \Rightarrow$ explore "electron top-row"

only θ_{12} and θ_{13} (unitary) — see Valencia parametrisation (α_{11}): flux normalisation

today's (e-row) unitarity knowledge...

H. Nunokawa e*t al* (arXiv:1609.08623v2)

unitary explorations limited by absolute flux uncertainty

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

28

(reactor flux)

reactor flux discrepancy...

till 2011, excellent agreement to ILL-based (i.e. data) prediction (blue)

still excellent agreement among (all) experiments

now <7.0% mismatch between ILL-prediction and data

reactor flux uncertainty...

³² shape distorsion common across experiments...

only one experiment in tension: **Bugey3** (flat-ish) — spectral reference before **reactor-\thetaI3**

news! reactor ultimate flux...

Reevaluating reactor antineutrino spectra with new measurements of the ratio between 235 U and 239 Pu β spectra **confirmed**?

V. Kopeikin,¹ M. Skorokhvatov,^{1,2} and O. Titov^{1,} \ast

¹National Research Centre Kurchatov Institute, 123182, Moscow, Russia ²National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russia (Dated: May 31, 2021)

We report a reanalysis of the reactor antineutrino energy spectra based on the new relative measurements of the ratio $R = {}^{e}S_{5}/{}^{e}S_{9}$ between cumulative β spectra from 235 U and 239 Pu, performed at a research reactor in National Research Centre Kurchatov Institute (KI). <u>A discrepancy with the</u> β spectra measured at Institut Laue-Langevin (ILL) was observed, indicating a steady excess of the <u>ILL ratio by the factor of 1.054 ± 0.002 </u>. We find a value of the ratio between inverse beta decay cross section per fission for 235 U and 239 Pu: $({}^{5}\sigma_{f}/{}^{9}\sigma_{f})_{KI} = 1.45 \pm 0.03$, and then we reevaluate the converted antineutrino spectra for 235 U and 238 U. We conclude that the new predictions are consistent with the results of Daya Bay and STEREO experiments.

arXiv:2103.01684v2 [nucl-ex] 28 May 2021

R=0.925±0.010(exp)±0.023(model) → **R≈1.0**?±0.010(exp)±0.0?(model)

experiment flux uncertainty will drive? (eventually dominated by thermal power)

Uncertainty (%)	ND	
Proton Number	0.66	
Thermal Power	0.47 \rightarrow irreducible	<u>) </u>
TnC Selection	0.24	
Background	0.18	
Energy per Fission	0.16	
θ_{13} Correction	0.16	
Statistics	0.22	
Total	0.97	

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

34

solve the reactor "issue" (anomaly)? (discrepancy data and ILL-prediction)

ultimate flux uncertainty: Sun...

ultimate flux uncertainty by reactor order 0.5% (thermal power)

accelerators flux uncertainties (order ≥5%)

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

35

all done?

by 2030, mixing @ ~1% level.. (no unknowns)

still neutrino surprises...?

37

Super Cool

LiquidO event-wise imaging...

opaque scintillator→stochastic light confinement (self-segmentation)

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

39

LiquidO ≈ "light TPC" ⊕ "4π ToF" (4D info)

[highest duty-cycle & high acceptance→ minimal pile-up]

what's LiquidO?

LiquidO in a nut-shell...

Imaging→powerful Particle-IDentification (PID)

LiquidO ≈ PID ⊕ (high) Doping

physics beyond detector "native composition" (H,C)

Iess shielding & no detector "buffer"

(30m overburden)

42

EDF CNPE Chooz-B

Chooz-B 2x N4 Reactors

2x N4 Reactors: 8.4GW(thermal)→ ~10²¹v/s]

LNCA-ND-Hall (CNRS/CEA)

43

EDF DP2P Chooz-A

les montagnes des Ardennes (overburden: ≤100m rock)

Europe's best reactor V site...

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

an underground secret...

Chooz-A former nuclear reactor

Super-Kamiokande (50kton)

~50m

Super-KamiokaNDE @ Japan (Nobel prize 2015)

~14,000 PMTs (20'' diameter)

SSUE!!! overburden only 100m rock (or 300 mwe)

3/3

30 000 m³

47

20 000 m³

dismantling

two huge caverns already built of the size of **Super-Kamiokande** just next to **Chooz reactors**! (unique site in France / Europe / World?)

recycling Chooz-A for science?

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

much technological demonstrated by **NOvA**...

common technology but not methodology

- scintillator: ✓ (yield improvement)
- •fibres: ✓
- light collection system: ✓ (improvement?)
- photo-detector: \checkmark (APD \rightarrow SiPM OK?)
- different optimisation: **R&D**

GeV OK!! But ~I MeV physics @ 10kton? $(\mathbf{R} \otimes \mathbf{D})$

SINGAPORE AIRLIN

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

48

the true goal...

change paradigm: use highest neutrino oscillation precision (JUNO@DUNE@HyperK + SuperChooz)

 \implies explore key SM uttermost fundamental symmetries (sub-percent level?)

CPT violation? [under investigation]

• Unitarity violation? [under investigation]

SuperChooz highest precision on θ 13 (~10x? better than now) reinforce JUNO \oplus DUNE \oplus HyperK

thanks to LiquidO (again), **proton decay (multi-channel)** — including sign-tracking (under investigation)

other physics: supernova (core collapse & remnant), geo-neutrino, atmospheric (possible CPV?), etc.

SuperChooz ready since the 60's...

Super Chooz?

France/Europe)

largest underground in Europe?

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

Kamiokand

DUNE (USA)

flagship V's in Europe?

the remaining challenges... (my view — likely biassed somewhat)

•accelerators: stunning rich physics to explore the neutrino oscillation appearance channel→ measure CPV

•experiments reaching systematics (at few % level) — very challenging

• improve absolute knowledge (ex. flux cancels by <u>multi-detector</u>) \rightarrow discoveries?

intrinsic limitations (systematics, etc) → empower synergies with reactors, solar, etc.

• $\theta 23 \oplus \Delta m^2$ precision: still improve for $\theta 23$ — it will with DUNE \oplus HyperK

• θ 23 is <u>one of the most intriguing parameter</u> of the PMNS (largest / maximal term) \Rightarrow pointing to a feature(s) or symmetry? certainly this is BSM territory...

•understand meaning of structure of the PMNS (i.e. large mixing) — very different from CKM

•neutrino oscillation[<2030] reaching <1% precision — complete and over-constant phenomenon

•new paradigm: neutrino oscillation to probe BSM by exploring key SM symmetries, etc. [motivation behind SuperChooz exploration — under brainstorming]

• any better ideas?