SM Precision Physics

University of Sussex

XLVIII International Meeting on Fundamental Physics Benasque 9th September 2021

Jonas M. Lindert

UK Research and Innovation

In memory of Steven Weinberg

¹¹ In obtaining the expression (11) the mass difference between the charged and neutral has been ignored. ¹²M. Ademollo and R. Gatto, Nuovo Cimento 44A, 282 (1966); see also J. Pasupathy and R. E. Marshak, Phys. Rev. Letters <u>17</u>, 888 (1966).

$$\mathcal{L} = -\frac{1}{4} (\partial_{\mu} \vec{A})$$

VOLUME 19, NUMBER 21

PHYSICAL REVIEW LETTERS

¹³The predicted ratio [eq. (12)] from the current alge-

bra is slightly larger than that (0.23%) obtained from the ρ -dominance model of Ref. 2. This seems to be true also in the other case of the ratio $\Gamma(\eta \rightarrow \pi^+ \pi^- \gamma)/$ $\Gamma(\gamma \gamma)$ calculated in Refs. 12 and 14.

¹⁴L. M. Brown and P. Singer, Phys. Rev. Letters <u>8</u>, 460 (1962).

A MODEL OF LEPTONS*

Steven Weinberg[†]

Laboratory for Nuclear Science and Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts (Received 17 October 1967)

Leptons interact only with photons, and with the intermediate bosons that presumably mediate weak interactions. What could be more natural than to unite¹ these spin-one bosons into a multiplet of gauge fields? Standing in the way of this synthesis are the obvious differences in the masses of the photon and intermediate meson, and in their couplings. We

and on a right-handed singlet

$$R \equiv \left[\frac{1}{2}(1-\gamma_5)\right]e. \tag{2}$$

The largest group that leaves invariant the kinematic terms $-\overline{L\gamma}^{\mu}\partial_{\mu}L - \overline{R\gamma}^{\mu}\partial_{\mu}R$ of the Lagrang-ian consists of the electronic isospin \overline{T} acting on L. plus the numbers N_T . N_T of left- and

$$\left[\left(-\partial_{\nu} \vec{A}_{\mu} + g \vec{A}_{\mu} \times \vec{A}_{\nu} \right)^2 - \frac{1}{4} \left(\partial_{\mu} B_{\nu} - \partial_{\nu} B_{\mu} \right)^2 - \overline{R} \gamma^{\mu} \left(\partial_{\mu} - ig' B_{\mu} \right) R - L \gamma^{\mu} \left(\partial_{\mu} ig \vec{t} \cdot \vec{A}_{\mu} - i\frac{1}{2}g' B_{\mu} \right) L \right]$$

$$-\frac{1}{2}|\partial_{\mu}\varphi - ig\vec{A}_{\mu}\cdot\vec{t}\varphi + i\frac{1}{2}g'B_{\mu}\varphi|^{2} - G_{e}(\overline{L}\varphi R + \overline{R}\varphi^{\dagger}L) - M_{1}^{2}\varphi^{\dagger}\varphi + h(\varphi^{\dagger}\varphi)^{2} - G_{e}(\overline{L}\varphi R + \overline{R}\varphi^{\dagger}L) - M_{1}^{2}\varphi^{\dagger}\varphi + h(\varphi^{\dagger}\varphi)^{2} - G_{e}(\overline{L}\varphi R + \overline{R}\varphi^{\dagger}L) - M_{1}^{2}\varphi^{\dagger}\varphi + h(\varphi^{\dagger}\varphi)^{2} - G_{e}(\overline{L}\varphi R + \overline{R}\varphi^{\dagger}L) - M_{1}^{2}\varphi^{\dagger}\varphi + h(\varphi^{\dagger}\varphi)^{2} - G_{e}(\overline{L}\varphi R + \overline{R}\varphi^{\dagger}L) - M_{1}^{2}\varphi^{\dagger}\varphi + h(\varphi^{\dagger}\varphi)^{2} - G_{e}(\overline{L}\varphi R + \overline{R}\varphi^{\dagger}L) - M_{1}^{2}\varphi^{\dagger}\varphi + h(\varphi^{\dagger}\varphi)^{2} - G_{e}(\overline{L}\varphi R + \overline{R}\varphi^{\dagger}L) - M_{1}^{2}\varphi^{\dagger}\varphi + h(\varphi^{\dagger}\varphi)^{2} - G_{e}(\overline{L}\varphi R + \overline{R}\varphi^{\dagger}L) - M_{1}^{2}\varphi^{\dagger}\varphi + h(\varphi^{\dagger}\varphi)^{2} - G_{e}(\overline{L}\varphi R + \overline{R}\varphi^{\dagger}L) - M_{1}^{2}\varphi^{\dagger}\varphi + h(\varphi^{\dagger}\varphi)^{2} - G_{e}(\overline{L}\varphi R + \overline{R}\varphi^{\dagger}L) - M_{1}^{2}\varphi^{\dagger}\varphi + h(\varphi^{\dagger}\varphi)^{2} - G_{e}(\overline{L}\varphi R + \overline{R}\varphi^{\dagger}L) - M_{1}^{2}\varphi^{\dagger}\varphi + h(\varphi^{\dagger}\varphi)^{2} - G_{e}(\overline{L}\varphi R + \overline{R}\varphi^{\dagger}L) - M_{1}^{2}\varphi^{\dagger}\varphi + h(\varphi^{\dagger}\varphi)^{2} - G_{e}(\overline{L}\varphi R + \overline{R}\varphi^{\dagger}L) - M_{1}^{2}\varphi^{\dagger}\varphi + h(\varphi^{\dagger}\varphi)^{2} - G_{e}(\overline{L}\varphi R + \overline{R}\varphi)^{2} - G_{e}(\overline{L}\varphi R + \overline{R}$$

$|\mathcal{M}|^2 - \sigma$

$$\begin{split} & \mathcal{L}_{SM} = -\frac{1}{2} \partial_{\nu} g_{\mu}^{a} \partial_{\nu} g_{\mu}^{a} - \frac{1}{2} g_{\mu}^{a} d^{a} d^{a} g_{\mu}^{b} g_{\nu}^{c} - \frac{1}{4} g_{\mu}^{2} d^{a} d^{b} d^{a} d^{b} d^{b}$$

$$|\mathcal{M}|^2 - \sigma$$

$$\begin{split} & \mathcal{L}_{SM} = -\frac{1}{2} \partial_{\nu} g_{\mu}^{a} \partial_{\nu} g_{\mu}^{a} - g_{\mu}^{a} d^{a} \partial_{\nu} g_{\mu}^{a} g_{\mu}^{a} g_{\mu}^{a} d^{a} d^{a} \partial_{\mu} d^{a} - ig_{\omega} (\partial_{\nu} Z_{\mu}^{a} (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\nu}^{-}) - Z_{\nu}^{b} (W_{\mu}^{+} \partial_{\nu} W_{\nu}^{-} - W_{\nu}^{-} \partial_{\nu} W_{\nu}^{+}) + Z_{\nu}^{0} (W_{\nu}^{+} \partial_{\nu} W_{\nu}^{-} - W_{\nu}^{-} \partial_{\nu} W_{\nu}^{+}) - Z_{\nu}^{b} (W_{\mu}^{+} \partial_{\nu} W_{\nu}^{-} - W_{\nu}^{-} \partial_{\nu} W_{\nu}^{+}) + Z_{\mu}^{0} (W_{\nu}^{+} \partial_{\nu} W_{\nu}^{-} - W_{\nu}^{-} \partial_{\nu} W_{\nu}^{+}) + J_{\mu}^{a} Z_{\nu}^{0} (W_{\nu}^{+} \partial_{\nu} W_{\nu}^{-} - W_{\nu}^{-} \partial_{\nu} W_{\nu}^{+}) - \frac{1}{2} J_{\nu}^{a} W_{\nu}^{b} W_{\nu}^{-} W_{\nu}^{-} + J_{\nu}^{a} \partial_{\nu} W_{\nu}^{+} + J_{\nu}^{a} W_{\nu}^{+} W_{\nu}^{-} + \frac{1}{2} 2^{2} W_{\nu}^{+} W_{\nu}^{-} + \frac{1}{2} J_{\nu}^{a} d^{b} \partial_{\mu} \partial_{\mu} \partial_{\nu} - Z_{\mu}^{a} Z_{\nu}^{b} W_{\nu}^{+} W_{\nu}^{-} - \frac{1}{2} J_{\mu} d^{b} \partial_{\mu} \partial_{\mu} - Z_{\mu}^{a} Z_{\nu}^{b} W_{\nu}^{+} W_{\nu}^{-} - \frac{1}{2} J_{\mu} d^{b} \partial_{\mu} \partial_{\mu} \partial_{\nu} - \mathcal{M}_{\mu}^{a} W_{\mu}^{+} W_{\nu}^{-} + \frac{1}{2} J_{\nu}^{a} d^{b} \partial_{\mu} \partial_{\mu} - Z_{\mu}^{a} Z_{\mu}^{b} \partial_{\mu} \partial_$$

 $|\mathcal{M}|^2 - \sigma$

$$\begin{split} & \mathcal{L}_{SM} = -\frac{1}{2} \partial_{\nu} g_{\mu}^{a} \partial_{\nu} g_{\mu}^{a} - g_{\mu}^{a} d^{a} \partial_{\nu} g_{\mu}^{a} g_{\mu}^{a} g_{\mu}^{a} d^{a} d^{a} \partial_{\mu} d^{a} - ig_{\omega} (\partial_{\nu} Z_{\mu}^{a} (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\nu}^{-}) - Z_{\nu}^{b} (W_{\mu}^{+} \partial_{\nu} W_{\nu}^{-} - W_{\nu}^{-} \partial_{\nu} W_{\nu}^{+}) + Z_{\nu}^{0} (W_{\nu}^{+} \partial_{\nu} W_{\nu}^{-} - W_{\nu}^{-} \partial_{\nu} W_{\nu}^{+}) - Z_{\nu}^{b} (W_{\mu}^{+} \partial_{\nu} W_{\nu}^{-} - W_{\nu}^{-} \partial_{\nu} W_{\nu}^{+}) + Z_{\mu}^{0} (W_{\nu}^{+} \partial_{\nu} W_{\nu}^{-} - W_{\nu}^{-} \partial_{\nu} W_{\nu}^{+}) + J_{\mu}^{a} Z_{\nu}^{0} (W_{\nu}^{+} \partial_{\nu} W_{\nu}^{-} - W_{\nu}^{-} \partial_{\nu} W_{\nu}^{+}) - \frac{1}{2} J_{\nu}^{a} W_{\nu}^{b} W_{\nu}^{-} W_{\nu}^{-} + J_{\nu}^{a} \partial_{\nu} W_{\nu}^{+} + J_{\nu}^{a} W_{\nu}^{+} W_{\nu}^{-} + \frac{1}{2} 2^{2} W_{\nu}^{+} W_{\nu}^{-} + \frac{1}{2} J_{\nu}^{a} d^{b} \partial_{\mu} \partial_{\mu} \partial_{\nu} - Z_{\mu}^{a} Z_{\nu}^{b} W_{\nu}^{+} W_{\nu}^{-} - \frac{1}{2} J_{\mu} d^{b} \partial_{\mu} \partial_{\mu} - Z_{\mu}^{a} Z_{\nu}^{b} W_{\nu}^{+} W_{\nu}^{-} - \frac{1}{2} J_{\mu} d^{b} \partial_{\mu} \partial_{\mu} \partial_{\nu} - \mathcal{M}_{\mu}^{a} W_{\mu}^{+} W_{\nu}^{-} + \frac{1}{2} J_{\nu}^{a} d^{b} \partial_{\mu} \partial_{\mu} - Z_{\mu}^{a} Z_{\mu}^{b} \partial_{\mu} \partial_$$

 $|\mathcal{M}|^2 - \sigma$

Hard (perturbative) scattering process
N(N)LO QCD + EW

000000

00000

/ BA AL

Hard (perturbative) scattering process N(N)LO QCD + EW

QCD Bremsstrahlung

- ▶ parton shower
- matched to NLO matrix elements

QED Bremsstrahlung

- ▶ parton shower
- matched to NLO matrix elements

Success of Run-I & Run-II of the LHC

Overall remarkable data vs. theory agreement

Precision tests of the SM at the quantum level in a multitude of processes

With the discovery of the Higgs the SM is 'complete'

Standard Model of Elementary Particles

With the discovery of the Higgs the SM is 'complete'

Is the 'nightmare scenario' becoming reality?

Standard Model of Elementary Particles

SM parameters and particle properties

BSM searches

Anomalous couplings Tails of distributions

Why do we need SM theory?

SM dynamics

(Differential) cross sections

Higgs couplings

PDFs & α s

EW couplings

EFT coefficients

This is not the 'nightmare scenario'. However, precision key!

13

Drell-Yan: M_W measurements

• Motivation: M_W is a derived quantity \rightarrow precise measurement is a stringent test of SM! • Method: template fits of sensitive CC DY distributions $(p_{T,l}, M_T, E_{\text{miss}})$

- Need to control shape effects at the sub-1% level!
- Dominant effects: QCD ISR and QED FSR

\rightarrow Theory precision essential for improvements in mW determination!

14

Higgs couplings: ttbb backgrounds to ttH(bb)

Indirect searches: disentangling very small effects

 \rightarrow Theory precision opens the door to new analysis strategies!

- Look for BSM effects in small deviations from SM predictions: \rightarrow Higgs processes natural place to look at
- \rightarrow very good control on theory necessary!

17

Direct searches for new physics: overwhelming SM backgrounds

Timescale of the LHC

Experimental uncertainties will dramatically decrease in the future. Often reaching O(1%).

Hard (perturbative) scattering process: $d\sigma = d\sigma_{LO} + \frac{\alpha_S}{\sigma_{NLO}} d\sigma_{NLO} + \frac{\alpha_S^2}{\sigma_{NNLO}} d\sigma_{N3LO} + \dots$

 $\mathcal{L}_{SM} = -rac{1}{2}\partial_
u g^a_\mu \partial_
u g^a_\mu - g_s f^{abc} \partial_\mu g^a_
u g^b_\mu g^c_
u - rac{1}{4}g^2_s f^{abc} f^{ade} g^b_\mu g^c_
u g^d_\mu g^e_
u - \partial_
u W^+_\mu \partial_
u W^-_\mu - \partial_
u W^+_\mu \partial_
u W^+_\mu - \partial_
u W^+_\mu - \partial_
u W^+_\mu \partial_
u W^+_\mu - \partial_
u W^+_\mu - \partial_
u W^+_\mu - \partial_
u W^+_\mu \partial_
u W^+_\mu - \partial_
u W^+_\mu$ $M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2c_{w}^{2}}M^{2}Z_{\mu}^{0}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - igc_{w}(\partial_{\nu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - igc_{\mu}^{-}))$ $\begin{array}{c} W_{\nu}^{+}W_{\mu}^{-} - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})) - \\ igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\nu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})) \\ - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + g^{2}c_{w}^{2}(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})) \\ \end{array}$ $\begin{array}{c} Z^{0}_{\mu}Z^{0}_{\mu}W^{+}_{\nu}W^{-}_{\nu}) + g^{2}s^{2}_{w}(A_{\mu}W^{+}_{\mu}A_{\nu}W^{-}_{\nu} - A_{\mu}A_{\mu}W^{+}_{\nu}W^{-}_{\nu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\nu}(W^{+}_{\mu}W^{-}_{\nu} - W^{+}_{\nu}W^{-}_{\nu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\nu}(W^{+}_{\mu}W^{-}_{\nu} - W^{+}_{\nu}W^{-}_{\nu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\nu}W^{+}_{\mu}W^{-}_{\nu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\nu}W^{+}_{\mu}W^{-}_{\nu} - W^{+}_{\nu}W^{-}_{\nu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\nu}W^{+}_{\mu}W^{-}_{\nu} - W^{+}_{\nu}W^{-}_{\nu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\nu}W^{+}_{\mu}W^{-}_{\nu} - W^{+}_{\nu}W^{-}_{\nu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\nu}W^{+}_{\mu}W^{-}_{\nu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\nu}W^{+}_{\mu}W^{-}_{\mu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\nu}W^{+}_{\mu}W^{-}_{\mu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\nu}W^{+}_{\mu}W^{-}_{\mu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\mu}W^{+}_{\mu}W^{-}_{\mu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\mu}W^{+}_{\mu}W^{-}_{\mu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\mu}W^{+}_{\mu}W^{-}_{\mu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\mu}W^{+}_{\mu}W^{-}_{\mu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\mu}W^{+}_{\mu}W^{+}_{\mu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\mu}W^{+}_{\mu}W^{+}_{\mu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\mu}W^{+}_{\mu}W^{+}_{\mu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\mu}W^{+}_{\mu}W^{+}_{\mu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\mu}W^{+}_{\mu}W^{+}_{\mu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\mu}W^{+}_{\mu}W^{+}_$ $\beta_h \left(\frac{2M^2}{a^2} + \frac{2M}{a}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-) \right) + \frac{2M^4}{a^2}\alpha_h \begin{array}{c} & g\alpha_{h}M\left(H^{3}+H\phi^{0}\phi^{0}+2H\phi^{+}\phi^{-}\right)-g^{2}\otimes n \\ & g\alpha_{h}M\left(H^{3}+H\phi^{0}\phi^{0}+2H\phi^{+}\phi^{-}\right)-g^{2}\otimes n \\ & \frac{1}{8}g^{2}\alpha_{h}\left(H^{4}+(\phi^{0})^{4}+4(\phi^{+}\phi^{-})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}\right)-gMW_{\mu}^{+}W_{\mu}^{-}H-\frac{1}{2}g\frac{M}{c_{w}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H- \end{array}$ $rac{1}{2}ig\left(W^+_\mu(\phi^0\partial_\mu\phi^--\phi^-\partial_\mu\phi^0)-W^-_\mu(\phi^0\partial_\mu\phi^+-\phi^+\partial_\mu\phi^0)
ight)+$ $\frac{1}{2}g\left(W^+_{\mu}(H\partial_{\mu}\phi^- - \phi^-\partial_{\mu}H) + W^-_{\mu}(H\partial_{\mu}\phi^+ - \phi^+\partial_{\mu}H)\right) + \frac{1}{2}g\frac{1}{c_w}(Z^0_{\mu}(H\partial_{\mu}\phi^0 - \phi^0\partial_{\mu}H) +$ $M\left(\frac{1}{c_{w}}Z_{\mu}^{0}\partial_{\mu}\phi^{0}+W_{\mu}^{+}\partial_{\mu}\phi^{-}+W_{\mu}^{-}\partial_{\mu}\phi^{+}\right)-ig\frac{s_{w}^{2}}{c_{w}}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}WA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}WA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}WA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}WA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}WA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}WA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}WA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}WA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}WA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}WA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}WA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}WA_{\mu}(W$ $W^{-}_{\mu}\phi^{+}) - igrac{1-2c_{w}^{2}}{2c_{w}}Z^{0}_{\mu}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) + igs_{w}A_{\mu}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) \frac{1}{4}g^2W^+_{\mu}W^-_{\mu}\left(H^2 + (\phi^0)^2 + 2\phi^+\phi^-\right) - \frac{1}{8}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}\left(H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-\right) - \frac{1}{8}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}\left(H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-\right) - \frac{1}{8}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_$ $\frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- + W^-_{\mu}\phi^+) - \frac{1}{2}ig^2\frac{s_w^2}{c_w}Z^0_{\mu}H(W^+_{\mu}\phi^- - W^-_{\mu}\phi^+) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W^+_{\mu}\phi^- + W^-_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^- + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^- + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^- + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^- + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2$ $\tilde{W}_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(\tilde{W_{\mu}^{+}}\phi^{-}-\tilde{W_{\mu}^{-}}\phi^{+}) - g^{2}\frac{s_{w}}{c_{w}}(2c_{w}^{2}-1)\tilde{Z}_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-} - \tilde{U}_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-}) = 0$ $\begin{array}{l} g^2 s_w^2 A_\mu A_\mu \phi^+ \phi^- \frac{1}{2} ig_s \lambda_{ij}^a (\vec{q} \gamma^\mu q_j^\sigma) g_a^\mu - \bar{e}^\lambda (\gamma \partial + m_e^\lambda) e^\lambda - \bar{\nu}^\lambda (\gamma \partial + m_\nu^\lambda) \nu^\lambda - \bar{u}_j^\lambda (\gamma \partial + m_\mu^\lambda) u_j^\lambda - \bar{d}_j^\lambda (\gamma \partial + m_d^\lambda) d_j^\lambda + ig_s w_A \mu \left(-(\bar{e}^\lambda \gamma^\mu e^\lambda) + \frac{2}{3} (\bar{u}_j^\lambda \gamma^\mu u_j^\lambda) - \frac{1}{3} (\bar{d}_j^\lambda \gamma^\mu d_j^\lambda) \right) + \frac{ig_a}{4\omega_w} Z_\mu^0 \left((\bar{\nu}^\lambda \gamma^\mu (1 + \gamma^5) \nu^\lambda) + (\bar{e}^\lambda \gamma^\mu (4s_w^2 - 1 - \gamma^5) e^\lambda) + (\bar{d}_j^\lambda \gamma^\mu (\frac{4}{3} s_w^2 - 1 - \gamma^5) d_j^\lambda \right) + \end{array}$ $(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_{w}^{2}+\gamma^{5})u_{j}^{\lambda})\}+\frac{ig}{2\sqrt{2}}W_{\mu}^{+}\left((\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})U^{lep}_{\lambda\kappa}e^{\kappa})+(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})\right)+$ $\frac{ig}{2\sqrt{2}}W^{-}_{\mu}\left((\bar{e}^{\kappa}U^{lep}_{\ \kappa\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})+(\bar{d}^{\kappa}_{j}C^{\dagger}_{\kappa\lambda}\gamma^{\mu}(1+\gamma^{5})u^{\lambda}_{j})\right)+$ $\frac{ig}{2M\sqrt{2}}\phi^{+}\left(-m_{e}^{\kappa}(\bar{\nu}^{\lambda}U^{lep}{}_{\lambda\kappa}(1-\gamma^{5})e^{\kappa})+m_{\nu}^{\lambda}(\bar{\nu}^{\lambda}U^{lep}{}_{\lambda\kappa}(1+\gamma^{5})e^{\kappa})+\right.$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{e}^{\lambda}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}^{\dagger}(1+\gamma^{5})\nu^{\kappa})-m_{\nu}^{\kappa}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}^{\dagger}(1-\gamma^{5})\nu^{\kappa}\right)-\frac{g}{2}\frac{m_{\lambda}^{\lambda}}{M}H(\bar{\nu}^{\lambda}\nu^{\lambda}) \frac{g}{2}\frac{m_{e}^{\lambda}}{M}H(\bar{e}^{\lambda}e^{\lambda}) + \frac{ig}{2}\frac{m_{\nu}^{\lambda}}{M}\phi^{0}(\bar{\nu}^{\lambda}\gamma^{5}\nu^{\lambda}) - \frac{ig}{2}\frac{m_{e}^{\lambda}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{1}{4}\bar{\nu}_{\lambda}M_{\lambda\kappa}^{R}(1-\gamma_{5})\hat{\nu}_{\kappa} - \frac{ig}{2}\frac{m_{e}^{\lambda}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{ig}{2}\frac{m_{e}^{\lambda}}{M}\phi^{0}($ $\frac{1}{4} \frac{2}{\bar{\nu}_{\lambda}} \frac{M}{M_{\lambda\kappa}^R} (1-\gamma_5) \hat{\nu}_{\kappa} + \frac{ig}{2M\sqrt{2}} \phi^+ \left(-m_d^{\kappa} (\bar{u}_j^{\lambda} C_{\lambda\kappa} (1-\gamma^5) d_j^{\kappa}) + m_u^{\lambda} (\bar{u}_j^{\lambda} C_{\lambda\kappa} (1+\gamma^5) d_j^{\kappa}) + \right)$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa})-m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^{5})u_{j}^{\kappa}\right)-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda}) \frac{g}{2}\frac{m_{\hat{d}}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda}) + \frac{ig}{2}\frac{m_{\hat{u}}^{\lambda}}{M}\phi^{0}(\bar{u}_{j}^{\lambda}\gamma^{5}u_{j}^{\lambda}) - \frac{ig}{2}\frac{m_{\hat{d}}^{\lambda}}{M}\phi^{0}(\bar{d}_{j}^{\lambda}\gamma^{5}d_{j}^{\lambda}) + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g_{\mu}^{c} +$ $\bar{X}^{+}(\partial^{2} - M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{c^{2}})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-} - \frac{M^{2}}{c^{2}})X^{0} + \frac{M^{2}}{c^{2}}X^{0} + \frac{M^{2$ $\partial_{\mu}ar{X}^{+}X^{0})+igs_{w}W^{+}_{\mu}(\partial_{\mu}ar{Y}X^{-}-\partial_{\mu}ar{X}^{+}Y)+igc_{w}W^{-}_{\mu}(\partial_{\mu}ar{X}^{-}X^{0}-\partial_{\mu}ar{X}^{0}X^{+})+igs_{w}W^{-}_{\mu}(\partial_{\mu}ar{X}^{-}Y-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w$ $\partial_\mu ar{X}^- X^-) + igs_w A_\mu (\partial_\mu ar{X}^+ X^+ \partial_{\mu} ar{X}^{-} X^{-}) - rac{1}{2} g M \left(ar{X}^{+} X^{+} H + ar{X}^{-} X^{-} H + rac{1}{c_{w}^{2}} ar{X}^{0} X^{0} H
ight) + rac{1 - 2c_{w}^{2}}{2c_{w}} i g M \left(ar{X}^{+} X^{0} \phi^{+} - ar{X}^{-} X^{0} \phi^{-}
ight) +$ $\frac{1}{2c_w} igM \left(ar{X}^0 X^- \phi^+ - ar{X}^0 X^+ \phi^-
ight) + igMs_w \left(ar{X}^0 X^- \phi^+ - ar{X}^0 X^+ \phi^-
ight) +$

 $|\mathcal{M}|^2 - \sigma$

 $\frac{1}{2} igM\left(\bar{X}^{+}X^{+}\phi^{0}-\bar{X}^{-}X^{-}\phi^{0}
ight)$.

Hard (perturbative) scattering process: $d\sigma = d\sigma_{LO} + \alpha_S d\sigma_{NLO} + \alpha_S^2 d\sigma_{NNLO} + \alpha_S^3 d\sigma_{N3LO} + \dots$

$$\mathrm{d}\sigma_{\mathrm{NLO}} = \frac{1}{2s}$$

$$\mathcal{M}_{\mathrm{NLO,V}}$$
 virtu

 $\mathcal{L}_{SM} = -\frac{1}{2} \partial_{\nu} g^a_{\mu} \partial_{\nu} g^a_{\mu} - g_s f^{abc} \partial_{\mu} g^a_{\nu} g^b_{\mu} g^c_{\nu} - \frac{1}{4} g^2_s f^{abc} f^{ade} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \partial_{\nu} W^+_{\mu} \partial_{\nu} W^-_{\mu}$ $M^2 W^+_{\mu} W^-_{\mu} - \frac{1}{2} \partial_{\nu} Z^0_{\mu} \partial_{\nu} Z^0_{\mu} - \frac{1}{2c_w^2} M^2 Z^0_{\mu} Z^0_{\mu} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} \dot{A}_{\nu} - igc_w (\partial_{\nu} Z^0_{\mu} (W^+_{\mu} W^-_{\nu} - W^+_{\nu} W^-_{\nu} - W^+_{\nu} W^+_{\nu}) - \frac{1}{2} \partial_{\nu} Z^0_{\mu} \partial_{\nu} Z^0_{\mu} - \frac{1}{2c_w^2} M^2 Z^0_{\mu} Z^0_{\mu} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} \dot{A}_{\nu} - igc_w (\partial_{\nu} Z^0_{\mu} (W^+_{\mu} W^-_{\nu} - W^+_{\nu}) - W^+_{\nu}) - \frac{1}{2} \partial_{\mu} Z^0_{\mu} \partial_{\nu} Z^0_{\mu} - \frac{1}{2c_w^2} M^2 Z^0_{\mu} Z^0_{\mu} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} \dot{A}_{\nu} - igc_w (\partial_{\nu} Z^0_{\mu} (W^+_{\mu} W^-_{\nu} - W^+_{\nu}) - W^+_{\nu}) - \frac{1}{2} \partial_{\mu} Z^0_{\mu} \partial_{\nu} Z^0_{\mu} - \frac{1}{2c_w^2} M^2 Z^0_{\mu} Z^0_{\mu} - \frac{1}{2} \partial_{\mu} Z^0_{\mu} \partial_{\nu} Z^0_{\mu} - \frac{1}{2c_w^2} M^2 Z^0_{\mu} Z^0_{\mu} - \frac{1}{2} \partial_{\mu} Z^0_{\mu} \partial_{\nu} Z^0_{\mu} - \frac{1}{2c_w^2} M^2 Z^0_{\mu} Z^0_{\mu} - \frac{1}{2} \partial_{\mu} Z^0_{\mu} - \frac{1}{2} \partial_{\mu} Z^0_{\mu} - \frac{1}{2c_w^2} M^2 Z^0_{\mu} - \frac{1}$ $\begin{array}{c} W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})) - \\ igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-}) \\ \end{array}$ $\widetilde{W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-}})) - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + g^{2}c_{w}^{2}(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - C_{\mu}^{0}W_{\mu}^{-})) - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{1}{2}g^{2}$ $\begin{array}{c} Z^{0}_{\mu}Z^{0}_{\mu}W^{+}_{\nu}W^{-}_{\nu}) + g^{2}s^{2}_{w}(A_{\mu}W^{+}_{\mu}A_{\nu}W^{-}_{\nu} - A_{\mu}A_{\mu}W^{+}_{\nu}W^{-}_{\nu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\nu}(W^{+}_{\mu}W^{-}_{\nu} - W^{+}_{\nu}W^{-}_{\nu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\nu}(W^{+}_{\mu}W^{-}_{\nu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\nu}(W^{+}_{\mu}W^{-}_{\nu} - W^{+}_{\nu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\nu}(W^{+}_{\mu}W^{-}_{\nu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\nu}(W^{+}_{\mu}W^{-}_{\mu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\mu}W^{-}_{\mu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\mu}W^{-}_{\mu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\mu}W^{-}_{\mu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\mu}W^{-}_{\mu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\mu}W^{-}_{\mu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\mu}W^{-}_{\mu}) + g^{2}s_{w}c_{w}c_{w}(A_{\mu}Z^{0}_{\mu}W^{-}_{\mu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\mu}W^{-}_{\mu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\mu}W^{-}_{\mu}) + g^{2}s_{w}c_{w}c_{w}(A_{\mu}Z^{0}_{\mu}W^{-}_{\mu}) + g^{2}s_{w}c_{w}c_{w}(A_{\mu}Z^{0}_{\mu}W^{-}_{\mu}) + g^{2}s_{w}c_{w}c_{w}(A_{\mu}Z^{0}_{\mu}W^{-}_{\mu}) + g^{2}s_{w}c_{w}c_{w}(A_{\mu}Z$ $\beta_h \left(\frac{2M^2}{a^2} + \frac{2M}{a}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-) \right) + \frac{2M^4}{a^2}\alpha_h$ $g \alpha_h M \left(H^3 + H \phi^0 \phi^0 + 2 H \phi^+ \phi^-
ight) {\textstyle \frac{1}{8}} g^2 \alpha_h \left(H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2 \phi^+ \phi^- + 4 H^2 \phi^+ \phi^- + 2(\phi^0)^2 H^2 \right)$ $g M W^+_\mu W^-_\mu H - rac{1}{2} g rac{M}{c_{e\mu}^2} Z^0_\mu Z^0_\mu H$ $rac{1}{2} ig \left(W^+_\mu (\phi^0 \partial_\mu \phi^- - \phi^- \partial_\mu \phi^0) - W^-_\mu (\phi^0 \partial_\mu \phi^+ - \phi^+ \partial_\mu \phi^0)
ight) +$ $\frac{1}{2}g\left(W^+_\mu(H\partial_\mu\phi^- - \phi^-\partial_\mu H) + W^-_\mu(H\partial_\mu\phi^+ - \phi^+\partial_\mu H)\right) + \frac{1}{2}g\frac{1}{c_w}(Z^0_\mu(H\partial_\mu\phi^0 - \phi^0\partial_\mu H) +$ $M\left(\tfrac{1}{c_w} Z^0_\mu \partial_\mu \phi^0 + W^+_\mu \partial_\mu \phi^- + W^-_\mu \partial_\mu \phi^+ \right) - ig \tfrac{s^2_w}{c_w} M Z^0_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w (W^+_\mu \phi^- - W^-_\mu \phi^- - W^-_\mu \phi^-) + ig s_w (W^+_\mu \phi^- - W^-_\mu \phi^- - W^-_\mu \phi^-) + ig s_w (W^+_\mu \phi^- - W^-_\mu \phi^-) + ig s_w (W^+$ $W^-_\mu \phi^+) - ig rac{1-2c_w^2}{2c_w} Z^0_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^-$ $\frac{1}{4}g^2W_{\mu}^{-}W_{\mu}^{-}\left(H^2+\widetilde{(\phi^0)^2}+2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)$ $\frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- + W^-_{\mu}\phi^+) - \frac{1}{2}ig^2\frac{s_w^2}{c_w}Z^0_{\mu}H(W^+_{\mu}\phi^- - W^-_{\mu}\phi^+) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W^+_{\mu}\phi^- + W^-_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^- + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^- + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^- + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^$ $W^{-}_{\mu}\phi^{+}) + rac{1}{2}ig^{2}s_{w}A_{\mu}H(W^{+}_{\mu}\phi^{-}-W^{-}_{\mu}\phi^{+}) - g^{2}rac{s_{w}}{c_{w}}(2c_{w}^{2}-1)Z^{0}_{\mu}A_{\mu}\phi^{+}\phi^{-} - M^{-}_{\mu}\phi^{+})$ $\begin{array}{l} & \left(\overline{v}_{\mu}\phi^{-}\right) + \frac{1}{2}ig\,s_{w}A_{\mu}n\left(\overline{v}_{\mu}\phi^{-}-\overline{v}_{\mu}\phi^{-}\right) - g\,\frac{1}{c_{w}}(2\ell_{w}-1)Z_{\mu}A_{\mu}\phi^{-}\phi^{-} \\ & g^{2}s_{w}^{2}A_{\mu}A_{\mu}\phi^{+}\phi^{-} + \frac{1}{2}ig_{s}\,\lambda_{ij}^{a}(\overline{q}_{i}^{a}\gamma^{\mu}q_{j}^{\sigma})g_{\mu}^{a} - \overline{e}^{\lambda}(\gamma\partial + m_{e}^{\lambda})e^{\lambda} - \overline{\nu}^{\lambda}(\gamma\partial + m_{\nu}^{\lambda})\nu^{\lambda} - \overline{u}_{j}^{\lambda}(\gamma\partial + m_{\mu}^{\lambda})u_{j}^{\lambda} \\ & - m_{u}^{\lambda}u_{j}^{\lambda} - \overline{d}_{j}^{\lambda}(\gamma\partial + m_{d}^{\lambda})d_{j}^{\lambda} + igs_{w}A_{\mu}\left(-(\overline{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\overline{u}_{j}^{\lambda}\gamma^{\mu}u_{j}^{\lambda}) - \frac{1}{3}(\overline{d}_{j}^{\lambda}\gamma^{\mu}d_{j}^{\lambda})\right) + \\ & \frac{ig}{4c_{w}}Z_{\mu}^{0}\{(\overline{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})\nu^{\lambda}) + (\overline{e}^{\lambda}\gamma^{\mu}(4s_{w}^{2} - 1 - \gamma^{5})e^{\lambda}) + (\overline{d}_{j}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2} - 1 - \gamma^{5})d_{j}^{\lambda}) + \\ & (\overline{u}_{j}^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_{w}^{2} + \gamma^{5})u_{j}^{\lambda})\} + \frac{ig}{2\sqrt{2}}W_{\mu}^{+}\left((\overline{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})U^{lep}_{\lambda\kappa}e^{\kappa}) + (\overline{u}_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})\right) + \end{array}$ $\frac{ig}{2\sqrt{2}}W^{-}_{\mu}\left((\bar{e}^{\kappa}U^{lep^{\dagger}}_{\kappa\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})+(\bar{d}^{\kappa}_{j}C^{\dagger}_{\kappa\lambda}\gamma^{\mu}(1+\gamma^{5})u^{\lambda}_{j})\right)+$ $\frac{ig}{2M\sqrt{2}}\phi^{+}\left(-m_{e}^{\kappa}(\bar{\nu}^{\lambda}U^{lep}{}_{\lambda\kappa}(1-\gamma^{5})e^{\kappa})+m_{\nu}^{\lambda}(\bar{\nu}^{\lambda}U^{lep}{}_{\lambda\kappa}(1+\gamma^{5})e^{\kappa})+\right.$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{e}^{\lambda}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}^{\dagger}(1+\gamma^{5})\nu^{\kappa})-m_{\nu}^{\kappa}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}^{\dagger}(1-\gamma^{5})\nu^{\kappa}\right)-\frac{g}{2}\frac{m_{\lambda}^{\lambda}}{M}H(\bar{\nu}^{\lambda}\nu^{\lambda}) \frac{g}{2}\frac{m_{e}^{\lambda}}{M}H(\bar{e}^{\lambda}e^{\lambda}) + \frac{ig}{2}\frac{m_{\nu}^{\lambda}}{M}\phi^{0}(\bar{\nu}^{\lambda}\gamma^{5}\nu^{\lambda}) - \frac{ig}{2}\frac{m_{e}^{\lambda}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{1}{4}\bar{\nu}_{\lambda}M_{\lambda\kappa}^{R}(1-\gamma_{5})\hat{\nu}_{\kappa} - \frac{ig}{2}\frac{m_{e}^{\lambda}}{M}\phi^{0}(\bar{\nu}^{\lambda}\gamma^{5}\nu^{\lambda}) - \frac{ig}{2}\frac{m_{e}^{\lambda}}{M}\phi^{0}(\bar{\nu}^{\lambda}\gamma^{\lambda}) - \frac{ig}{2}\frac{m_{e}^{\lambda}}{M}\phi^{0}($ $\frac{1}{4}\overline{\nu_{\lambda}}\frac{M_{\lambda\kappa}^{R}\left(1-\gamma_{5}\right)\dot{\nu_{\kappa}}}{m_{\lambda\kappa}^{R}\left(1-\gamma_{5}\right)\dot{\nu_{\kappa}}}+\frac{ig}{2M\sqrt{2}}\phi^{+}\left(-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa})-m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^{5})u_{j}^{\kappa})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{\lambda$ $\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda}) + \frac{ig}{2}\frac{m_{u}^{\lambda}}{M}\phi^{0}(\bar{u}_{j}^{\lambda}\gamma^{5}u_{j}^{\lambda}) - \frac{ig}{2}\frac{m_{d}^{\lambda}}{M}\phi^{0}(\bar{d}_{j}^{\lambda}\gamma^{5}d_{j}^{\lambda}) + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g_{\mu}^{c} + \bar{X}^{+}(\partial^{2}-M^{2})X^{+} + \bar{X}^{-}(\partial^{2}-M^{2})X^{-} + \bar{X}^{0}(\partial^{2}-\frac{M^{2}}{c_{v}^{2}})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-} - \bar{X}^{0})X^{-} + \bar{X}^{0}(\partial^{2}-M^{2})X^{-} + \bar{X}^{0}(\partial^{2}-M^{2})X^{-} + \bar{X}^{0}(\partial^{2}-M^{2})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-} - \bar{X}^{0})X^{0} + \bar{X}^{0}(\partial^{2}-M^{2})X^{0} + \bar{X}^{0}(\partial^$ $\hat{\partial}_{\mu}ar{X}^{+}X^{0})+igs_{w}W^{+}_{\mu}(\partial_{\mu}ar{Y}X^{-}-\partial_{\mu}ar{X}^{+}ar{Y})+igc_{w}W^{-}_{\mu}(\partial_{\mu}ar{X}^{-}X^{0}-\partial_{\mu}ar{X}^{0}X^{+})+igs_{w}W^{-}_{\mu}(\partial_{\mu}ar{X}^{-}Y-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{$ $\partial_\mu ar X^- X^-) {+} igs_w A_\mu (\partial_\mu ar X^+ X^+ \partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM\left(\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}X^{0}H\right) + \frac{1-2c_{w}^{2}}{2c_{w}}igM\left(\bar{X}^{+}X^{0}\phi^{+} - \bar{X}^{-}X^{0}\phi^{-}\right) + \frac{1}{2}gM\left(\bar{X}^{+}X^{0}\phi^{+} - \bar{X}^{0}\phi^{+}\right) + \frac$ $\frac{1}{2c_w} igM(ar{X}^0 X^- \phi^+ - ar{X}^0 X^+ \phi^-) + igMs_w(ar{X}^0 X^- \phi^+ - ar{X}^0 X^+ \phi^-) +$

$$|\mathcal{M}|^2 - \sigma$$

 $\frac{1}{2}igM\left(\bar{X}^{+}X^{+}\phi^{0}-\bar{X}^{-}X^{-}\phi^{0}\right)$.

•soft/collinear cancellations+PDF renormalisation \Rightarrow reduction of μ_F dependence

Hard (perturbative) scattering process: $d\sigma = d\sigma_{\rm LO} + \alpha_S \, d\sigma_{\rm NLO} + \alpha_S^2 \, d\sigma_{\rm NNLO} + \alpha_S^3 \, d\sigma_{\rm N3LO} + \dots$

 Δ NNLO $\propto \alpha^2$

$$= \frac{1}{2s} \int d\Phi_n \left[|\mathcal{M}_{\text{LO}}|^2 + 2\text{Re}\{\mathcal{M}_{\text{LO}}\mathcal{M}^*_{\text{NLO,V}}\} + 2\text{Re}\{\mathcal{M}_{\text{LO}}\mathcal{M}^*_{\text{NNLO,V}}\} \right]$$

$$= B + V + V2 + \dots$$

$$+ \frac{1}{2s} \int d\Phi_{n+1} \left[|\mathcal{M}_{\text{NLO,R}}|^2 + 2\text{Re}|\mathcal{M}_{\text{NLO,R}}\mathcal{M}^*_{\text{NNLO,RV}}| \right] + \frac{1}{2s} \int d\Phi_{n+2}|\mathcal{M}_{\text{NNLO,RR}}|^2$$

$$+ R + RV + RR$$

 $M_{\rm NNLO,V}$ double-virtual two-loop matrix element $\sim\sim\sim\sim$ $M_{
m NNLO,RV}$ real-virtual one-loop matrix element × × $\mathcal{M}_{\text{NNLO,RR}}$ double-real tree-level matrix element

Automated in NLO+PS MCs (aMG@NLO, Sherpa, Powheg,...)

Automated in NLO+PS MCs (aMG@NLO, Sherpa, Powheg,...)

(public) NNLO fixed-order tools

Automated in NLO+PS MCs (aMG@NLO, Sherpa, Powheg,...)

(public) NNLO fixed-order tools

$2 \rightarrow 3$ at NNLO QCD

• over the last 1.5y the $2 \rightarrow 3$ NNLO barrier has been broken. • pioneering new results:

$pp \rightarrow \chi \chi \chi$

[Chawdhry, Czakon, Mitov, Poncelet '19] [Kallweit, Sotnikov, Wiesemann '20]

> thanks to recent progress on 5-point two-loop integrals and amplitudes in massless QCD

[Papadopoulos, Tommasini, Wever '15] [Gehrmann, Henn, Lo Presti '18] [Gehrmann, Henn, Wasser, Zhang, Zoia '18] [Abreu, Ita, Moriello, Page, Tschernow '20]

- [Badger, Chicherin, Gehrmann, et. al. '19]
- [Abreu, Dormans, Frebres Cordero, Ita, Page, Sotnikov '19]
 - [Abreu, Page, Pascual, Sotnikov '20]
 - [Abreu, Febres Cordero, Ita, Page, Sotnikov '21]
 - [Agarwal, Buccioni, v. Manteuffel, Tancredi '21]

[Chawdhry, Czakon, Mitov, Poncelet '21]

[Czakon, Mitov, Poncelet '21]

pp→**λ**λλ

[Chawdhry, Czakon, Mitov, Poncelet '19]

[Kallweit, Sotnikov, Wiesemann '20]

- significant NNLO/NLO corrections
- improved data/theory agreement at NNLO

precision probes of QCD dynamics

$2 \rightarrow 3$ at NNLO

NNLO mandatory due to large NLO/LO corrections

[Czakon, Mitov, Poncelet '21]

000

→ clear stabilisation of perturbative expansion at NNLO → opens the door to $a_s(\mu)$ determination up to TeV scale

pp→jjj at NNLO

"Tour de force in Quantum Chromodynamics"

COMPARE DATA TO PREDIC

N³LO results needed to establish perturbative convergence / reduce residual theoretical uncertainty and precision tests of Higgs properties

 $XH = VBF + VH + t\bar{t}H + b\bar{b}H$ **Tot. uncert.** (scale, \oplus PDF+ α_{s})

 $\sigma_{N^3LO} = 55.5 \pm 2.9 \text{ pb}$

Theory

N3LO

[Anastasiou et al.;2015 Mistlberger; 2018]

COMPARE DATA TO PREDIC

DY @ N3LO: inclusive

[Duhr, Dulat, Mistlberger, '20-1, '20-2]

→ Very similar behaviour in CC and NC DY

Y*

- → At large Q scale variations bands are nicely overlapping, i.e. convincing convergence of perturbative series.
- ➡ However, for Q < 400 GeV NNLO and N3LO do not overlap! (Here: δ N3LO~I-2%)
- ➡Origin: quite large cancellation of quark and gluon initial state.
- → Might be compensated by currently missing N3LO PDFs

Note: very precise measurements of high-mass DY can be used to constrain BSM, see Farina et. al. '16 (1609.08157)

DY @ N3LO: differential [Chen, Gehrmann, Glover, et. al., '21]

- method: qT subtraction at N3LO: requires V+jet at NNLO
 - ► N3LO/NNLO: -2% (validation of inclusive computation)
 - ► N3LO not covered by NNLO band
 - 7-pt scale variation might not be good enough to estimate perturbative uncertainties at the percent level.

 $\begin{aligned} \mathcal{L}_{SM} &= -\frac{1}{2} \partial_{\nu} g^{a}_{\mu} \partial_{\nu} g^{a}_{\mu} - g_{s} f^{abc} \partial_{\mu} g^{a}_{\nu} g^{b}_{\mu} g^{c}_{\nu} - \frac{1}{4} g^{2}_{s} f^{abc} f^{abc} g^{b}_{\mu} g^{c}_{\nu} g^{d}_{\mu} g^{e}_{\nu} - \partial_{\nu} W^{+}_{\mu} \partial_{\nu} W^{-}_{\mu} - \\ M^{2} W^{+}_{\mu} W^{-}_{\mu} - \frac{1}{2} \partial_{\nu} Z^{0}_{\mu} \partial_{\nu} Z^{0}_{\mu} - \frac{1}{2c^{2}_{w}} M^{2} Z^{0}_{\mu} Z^{0}_{\mu} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - igc_{w} (\partial_{\nu} Z^{0}_{\mu} (W^{+}_{\mu} W^{-}_{\nu} - U^{-}_{\mu} W^{-}_{\mu}) \right. \end{aligned}$ $\begin{array}{c} W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})) - \\ igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-}) - \\ \end{array}$ $\begin{array}{l} W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+}()) - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + g^{2}c_{w}^{2}(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - Z_{\mu}^{0}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}(A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - 2M^{2}\alpha_{h}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - W_{\mu}^{-} + \frac{1}{2}\partial_{\mu}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}\partial_{\mu}W_{\mu}^{-}W_{\mu}^{-} + \frac{1}{2}\partial_{\mu}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}\partial_{\mu}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}\partial_{\mu}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}\partial_{\mu}W_{\mu}^{-}W_{\mu}^{-} + \frac{1}{2}\partial_{\mu}W_{\mu}^{-}W_{\mu}^{-} + \frac{1}{2}\partial_{\mu}W_{\mu}^{-}W_{\mu}^{-} + \frac{1}{2}\partial_{\mu}W_{\mu}^{-}W_{\mu}^{-} + \frac{1}{2}\partial_{\mu}W_{\mu}^{-} + \frac{1}{2}\partial_{\mu}W_{\mu}^{-}W_{\mu}^{-} + \frac{1}{2}\partial_{\mu}W_{\mu}^{-}W_{\mu}^{-} + \frac{1}{2}\partial_{\mu}W_{\mu}^{-} + \frac{1}{2}\partial_{\mu}$ $\beta_h \left(\frac{2M^2}{a^2} + \frac{2M}{a}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-) \right) + \frac{2M^4}{a^2}\alpha_h -$ $\frac{g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^-\right) - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^-\right) - \frac{1}{8}g^2\alpha_h \left(H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2\right) - \frac{1}{8}g^2\alpha_h \left(H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^-\right) - \frac{1}{8}g^2\alpha_h \left(H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^-\right) - \frac{1}{8}g^2\alpha_h \left(H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^-\right) - \frac{1}{8}g^2\alpha_h \left(H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^-\right) - \frac{1}{8}g^2\alpha_h \left(H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^-\right) + \frac{1}{8}g^2\alpha_h \left(H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^-\right) + \frac{1}{8}g^2\alpha_h \left(H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^-\right) + \frac{1}{8}g^2\alpha_h \left(H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^-\right) + \frac{1}{8}g^2\alpha_h \left(H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^-\right) + \frac{1}{8}g^2\alpha_h \left(H^4 + (\phi^0)^2\phi^+\phi^-\right) + \frac{1}{8}g^$ $gMW^+_\mu W^-_\mu H - rac{1}{2}grac{M}{c_w^2}Z^0_\mu Z^0_\mu H$ – $rac{1}{2} ig \left(W^+_\mu (\phi^0 \partial_\mu \phi^- - \phi^- \partial_\mu \phi^0) - W^-_\mu (\phi^0 \partial_\mu \phi^+ - \phi^+ \partial_\mu \phi^0)
ight) +$ $\frac{1}{2}g\left(W^+_\mu(H\partial_\mu\phi^- - \phi^-\partial_\mu H) + W^-_\mu(H\partial_\mu\phi^+ - \phi^+\partial_\mu H)\right) + \frac{1}{2}g\frac{1}{c_w}(Z^0_\mu(H\partial_\mu\phi^0 - \phi^0\partial_\mu H) +$ $M\left(\tfrac{1}{c_w} Z^0_\mu \partial_\mu \phi^0 + W^+_\mu \partial_\mu \phi^- + W^-_\mu \partial_\mu \phi^+ \right) - ig \tfrac{s^2_w}{c_w} M Z^0_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w (W^+_\mu \phi^- - W^-_\mu \phi^- - W^-_\mu \phi^-) + ig s_w (W^+_\mu \phi^- - W^-_\mu \phi^- - W^-_\mu \phi^-) + ig s_w (W^+_\mu \phi^- - W^-_\mu \phi^-) + ig s_w (W^+$ $W^-_\mu \phi^+) - ig rac{1-2c^2_w}{2c_w} Z^0_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - 0$ $\frac{1}{4}g^2W^+_{\mu}W^-_{\mu}\left(H^2 + (\phi^0)^2 + 2\phi^+\phi^-\right) - \frac{1}{8}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}\left(H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-\right) - \frac{1}{8}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}\left(H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-\right) - \frac{1}{8}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_$ $\frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- + W^-_{\mu}\phi^+) - \frac{1}{2}ig^2\frac{s_w^2}{c_w}Z^0_{\mu}H(W^+_{\mu}\phi^- - W^-_{\mu}\phi^+) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W^+_{\mu}\phi^- + W^-_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^- + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^- + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g$ $\begin{array}{c} & 2g \, c_w \, \mathcal{L}_{\mu} \varphi (m \mu \varphi + m \mu \varphi - 2g \, c_w \, \mathcal{L}_{\mu} \mathcal{L}(m \mu \varphi + m \mu \varphi - 2g \, c_w \mathcal{L}_{\mu} \varphi + m \mu \varphi - 2g \, c_w \, \mathcal{L}_{\mu} \varphi + m \mu \varphi - 2g \, c_w \, \mathcal{L}_{\mu} \varphi + m \mu \varphi + m \mu \varphi - 2g \, c_w \, \mathcal{L}_{\mu} \varphi + m \mu \varphi + m \mu \varphi - 2g \, c_w \, \mathcal{L}_{\mu} \varphi + m \mu \varphi + m \mu \varphi - 2g \, c_w \, \mathcal{L}_{\mu} \varphi + m \varphi + m \mu \varphi + m \mu \varphi + m \varphi + m \mu \varphi + m \varphi + m \mu \varphi + m \varphi + m$ $(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_{w}^{2}+\gamma^{5})u_{j}^{\lambda})\}+\frac{ig}{2\sqrt{2}}W_{\mu}^{+}\left((\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})U^{lep}_{\lambda\kappa}e^{\kappa})+(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})\right)+$ $\frac{ig}{2\sqrt{2}}W^{-}_{\mu}\left((\bar{e}^{\kappa}U^{lep^{\dagger}}_{\kappa\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})+(\bar{d}^{\kappa}_{j}C^{\dagger}_{\kappa\lambda}\gamma^{\mu}(1+\gamma^{5})u^{\lambda}_{j})\right)+$ $\frac{ig}{2M\sqrt{2}}\phi^{+}\left(-m_{e}^{\kappa}(\bar{\nu}^{\lambda}U^{lep}{}_{\lambda\kappa}(1-\gamma^{5})e^{\kappa})+m_{\nu}^{\lambda}(\bar{\nu}^{\lambda}U^{lep}{}_{\lambda\kappa}(1+\gamma^{5})e^{\kappa}\right)+$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{e}^{\lambda}(\bar{e}^{\lambda}U^{lep}_{\ \lambda\kappa}^{\dagger}(1+\gamma^{5})\nu^{\kappa})-m_{\nu}^{\kappa}(\bar{e}^{\lambda}U^{lep}_{\ \lambda\kappa}^{\dagger}(1-\gamma^{5})\nu^{\kappa}\right)-\frac{g}{2}\frac{m_{\nu}^{\lambda}}{M}H(\bar{\nu}^{\lambda}\nu^{\lambda}) \frac{g \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} H(\bar{e}^{\lambda} e^{\lambda}) + \frac{ig \, m_{\lambda}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{5} \nu^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{e}^{\lambda} \gamma^{5} e^{\lambda}) - \frac{1}{4} \, \bar{\nu}_{\lambda} \, M_{\lambda \kappa}^{R} \, (1 - \gamma_{5}) \hat{\nu}_{\kappa} - \frac{ig \, m_{\lambda}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{5} \nu^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{5} \nu^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{5} \nu^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{5} \nu^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{5} \nu^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{5} \nu^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{5} \nu^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{5} \nu^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{5} \nu^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{5} \nu^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{5} \nu^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{5} \nu^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{5} \nu^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{5} \nu^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{5} \nu^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{5} \nu^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{5} \nu^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{5} \nu^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{5} \nu^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{5} \nu^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{5} \nu^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{5} \nu^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{\lambda} \gamma^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{\lambda} \gamma^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{\lambda} \gamma^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{\lambda} \gamma^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{\lambda} \gamma^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{\lambda} \gamma^{\lambda}) - \frac{ig \, m_{e}^{\lambda}}{2 \, \frac{M}{M}} \phi^{0}(\bar{\nu}^{\lambda} \gamma^{\lambda}$ $\frac{1}{4}\overline{\nu_{\lambda}}\frac{M_{\lambda\kappa}^{R}\left(1-\gamma_{5}\right)\dot{\nu_{\kappa}}}{m_{\lambda\kappa}^{R}\left(1-\gamma_{5}\right)\dot{\nu_{\kappa}}}+\frac{ig}{2M\sqrt{2}}\phi^{+}\left(-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa})-m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa}\right)-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda}) \frac{g}{2}\frac{m_{\dot{d}}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda}) + \frac{ig}{2}\frac{m_{u}^{\lambda}}{M}\phi^{0}(\bar{u}_{j}^{\lambda}\gamma^{5}u_{j}^{\lambda}) - \frac{ig}{2}\frac{m_{\dot{d}}^{\lambda}}{M}\phi^{0}(\bar{d}_{j}^{\lambda}\gamma^{5}d_{j}^{\lambda}) + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g_{\mu}^{c} + \bar{X}^{+}(\partial^{2}-M^{2})X^{+} + \bar{X}^{-}(\partial^{2}-M^{2})X^{-} + \bar{X}^{0}(\partial^{2}-\frac{M^{2}}{c_{v}^{2}})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W_{\mu}^{+}(\partial_{\mu}\bar{X}^{0}X^{-} - \bar{X}^{0})X^{-} + \bar{X}^{-}(\partial^{2}-M^{2})X^{-} + \bar{X}^{0}(\partial^{2}-\frac{M^{2}}{c_{v}^{2}})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W_{\mu}^{+}(\partial_{\mu}\bar{X}^{0}X^{-} - \bar{X}^{0})X^{-} + \bar{X}^{-}(\partial^{2}-M^{2})X^{-} + \bar{X}^{-}(\partial^{2}-M^{2}$ $\hat{\partial}_{\mu}ar{X}^{+}X^{0})+igs_{w}W^{+}_{\mu}(\partial_{\mu}ar{Y}X^{-}-\partial_{\mu}ar{X}^{+}ar{Y})+igc_{w}W^{-}_{\mu}(\partial_{\mu}ar{X}^{-}X^{0}-\partial_{\mu}ar{X}^{0}X^{+})+igs_{w}W^{-}_{\mu}(\partial_{\mu}ar{X}^{-}Y-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+}-\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{X}^{+}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}ar{Y}X^{+})+igc_{$ $\partial_\mu ar X^- X^-) + igs_w A_\mu (\partial_\mu ar X^+ X^+ \partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM\left(\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}X^{0}H\right) + \frac{1-2c_{w}^{2}}{2c_{w}}igM\left(\bar{X}^{+}X^{0}\phi^{+} - \bar{X}^{-}X^{0}\phi^{-}\right) + 0$ $\frac{1}{2c_w} igM \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) +$

 $\frac{1}{2}igM\left(\bar{X}^{+}X^{+}\phi^{0}-\bar{X}^{-}X^{-}\phi^{0}\right)$.

Relevance of EW higher-order corrections: Sudakov logs in the tails

I. Possible large (negative) enhancement due to soft/collinear logs from virtual EW gauge bosons:

Relevance of EW higher-order corrections: collinear QED radiation

exclusive observables.

important for radiative tails, Higgs backgrounds etc.

→ O(10%) contributions from photon-induced channels

NNLO QCD + NLO EW for dibosons: pTV2

[M. Grazzini, S. Kallweit, JML, S. Pozzorini, M. Wiesemann; 1912.00068]

- ► NNLO/NLO QCD very small at large pTV2
- ► NNLO QCD uncertainty: few percent

NNLO (QCD + NL							
in Matrix+OpenLoops								
4l-SF-ZZ	$pp \rightarrow \ell^+ \ell^- \ell^+ \ell^-$	\mathbf{Z}						
4l-DF-ZZ	$pp \rightarrow \ell^+ \ell^- \ell'^+ \ell'^-$	\mathbf{Z}						
3l-SF-WZ	$pp \to \ell^+ \ell^- \ell \nu_\ell$	W						
3l-DF-WZ	$pp \to \ell^+ \ell^- \ell' \nu_{\ell'}$	W						
2l-SF-ZZ	$pp \to \ell^+ \ell^- \nu_{\ell'} \bar{\nu}_{\ell'}$	\mathbf{Z}						
2l-SF-ZZWW	$pp \to \ell^+ \ell^- \nu_\ell \bar{\nu}_\ell$	ZZ,V						
2l-DF-WW	$pp \to \ell^+ \ell'^- \nu_\ell \bar{\nu}_{\ell'}$	W						

 $d\sigma_{\rm NNLO\,QCD+EW} = d\sigma_{\rm LO} \left(1 + \delta_{\rm QCD} + \delta_{\rm EW}\right) + d\sigma_{\rm LO}^{gg}$ $\mathrm{d}\sigma_{\mathrm{NNLO\,QCD\times EW}} = \mathrm{d}\sigma_{\mathrm{LO}}\left(1 + \delta_{\mathrm{QCD}}\right)\left(1 + \delta_{\mathrm{EW}}\right) + \mathrm{d}\sigma_{\mathrm{LO}}^{gg}$ $= \mathrm{d}\sigma_{\mathrm{NNLO\,QCD+EW}} + \mathrm{d}\sigma_{\mathrm{LO}}\delta_{\mathrm{QCD}}\,\delta_{\mathrm{EW}}$

• difference very conservative upper bound on $\mathcal{O}(\alpha_S \alpha)$

•multiplicative/factorised combination clearly superior (EW Sudakov logs x soft QCD) •dominant uncertainty at large pTV2: $\mathcal{O}(\alpha^2) \sim \alpha_{\rm W}^2 \log^4(Q^2/M_W^2)$

Giant QCD K-factors and EW corrections: pTVI

[M. Grazzini, S. Kallweit, JML, S. Pozzorini, M. Wiesemann; 1912.00068]

•NLO QCD/LO= \sim <1.5 ("normal K-factor")

•very small NNLO / NLO QCD corrections and ~5% NNLO uncert

I. In additive combination dominant Vj topology does not receive any EW corrections 2. In multiplicative combination EW correction for VV is applied to Vj hard process • Pragmatic solution I: take average as nominal and spread as uncertainty • Pragmatic solution II: apply jet veto to constrain Vj toplogoies • Rigorous solution: merge VVj incl. EW corrections with VV retaining NNLO QCD + EW_

Mixed QCD-EW corrections to DY production: NC

- Complete O(as a) corrections still beyond currently technology
- For precision in resonant region: expand around M²

non-factorizable

[Dittmaier, Huss, Schwinn, '14]

[Dittmaier, Huss, Schwinn, '15]

negligible

For production only

- QCD×weak dominant over QCD×QED
- net effect: few per-mille

prod x decay

dominant

genuine QCD-EW in prod

[Buccioni, Caola, Delto, Jaquier, Melnikov, Röntsch, '20] [Behring, Buccioni, Caola, et. al. '20]

last missing piece

Mixed QCD-EW corrections to NC-DY production: beyond the pole approximation

[Bonciani, Buonocore, Grazzini, Kallweit et. al. '21]

- pole approximation vs. full computation: agree below the percent level

• Comparison against naive factorised NLO QCD x NLO EW ansatz: fail at the 5-10% level

Top-quark spin correlations at NNLO [Czakon, Mitov, Poncelet `20]

- Small corrections and uncertainties in leptonic observables
- Excellent data-theory agreement

 $pp \to t\bar{t} \to 2\ell 2\nu b\bar{b}$

- Might allow for an additional handle on Mtop
- •Need to understand systematics at small mll (EW corrections, finite width effects, ...)

Top-quark spin correlations at NNLO [Czakon, Mitov, Poncelet `20]

- Small corrections and uncertainties in leptonic observables
- Excellent data-theory agreement

 $pp \to t\bar{t} \to 2\ell 2\nu b\bar{b}$

- Might allow for an additional handle on Mtop
- •Need to understand systematics at small mll (EW corrections, finite width effects, ...)

- NNLO accuracy mandatory given data accuracy
- Allows for NNLO top-pair production at detector level

• Requires highly non-trivial extension of MiNNLOPS method to final state radiation

- b

- \bar{b}

- b

 $\nu_{\rm e}$

• e⁺

- µ⁻

– $\bar{
u}_{\mu}$

- $\bar{\rm b}$

- Very important confirmation of (ttbb) double pole approximation

Vector-boson scattering

- direct access to quartic EW gauge couplings
- •VBS: longitudinal gauge bosons at high energies
- •window to electroweak symmetry breaking via off-shell Higgs exchange

Perturbative expansion revised: VBF-V, VBS-VV

 $\mathcal{L}_{SM} = -\frac{1}{2} \partial_{\nu} g^a_{\mu} \partial_{\nu} g^a_{\mu} - g_s f^{abc} \partial_{\mu} g^a_{\nu} g^b_{\mu} g^c_{\nu} - \frac{1}{4} g^2_s f^{abc} f^{ade} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \partial_{\nu} W^+_{\mu} \partial_{\nu} W^-_{\mu} - \frac{1}{4} g^2_s g^a_{\mu} g^c_{\nu} g^d_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \frac{1}{4} g^2_s g^a_{\mu} g^c_{\nu} g^d_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \frac{1}{4} g^2_s g^a_{\mu} g^c_{\nu} g^d_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \frac{1}{4} g^2_s g^a_{\mu} g^c_{\nu} g^d_{\mu} g^d_{\nu} g^d_{\mu} g^d_{\mu} g^d_{\mu} g^d_{\nu} g^d_{\mu} g^d_{\nu} g^d_{\mu} g^d_{\mu} g^d_{\mu} g^d_{\mu} g^d_{\mu} g^d_{\nu} g^d_{\mu} g$ $M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2c_{w}^{2}}M^{2}Z_{\mu}^{0}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - igc_{w}(\partial_{\nu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - W_{\mu}^{-}))$ $\begin{array}{c} W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})) - \\ igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})) \\ W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})) - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-} + g^{2}c_{w}^{2}(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - W_{\nu}^{0}W_{\nu}^{-}) \\ \end{array}$ $\begin{array}{c} Z_{\mu}^{0} Z_{\mu}^{0} W_{\nu}^{+} W_{\nu}^{-}) + g^{2} s_{w}^{2} (A_{\mu} W_{\mu}^{+} A_{\nu} W_{\nu}^{-} - A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}) + g^{2} s_{w} c_{w} (A_{\mu} Z_{\nu}^{0} (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\mu}^{-}) - 2A_{\mu} Z_{\mu}^{0} W_{\nu}^{+} W_{\nu}^{-}) - \frac{1}{2} \partial_{\mu} H \partial_{\mu} H - 2M^{2} \alpha_{h} H^{2} - \partial_{\mu} \phi^{+} \partial_{\mu} \phi^{-} - \frac{1}{2} \partial_{\mu} \phi^{0} \partial_{\mu} \phi^{0} - \frac{1}{2} \partial_{\mu} \partial_{\mu} \partial_{\mu} \partial_{\mu} \phi^{0} - \frac{1}{2} \partial_{\mu} \partial_{$ $\beta_h \left(\frac{2M^2}{g^2} + \frac{2M}{g} H + \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^+ \phi^-) \right) + \frac{2M^4}{g^2} \alpha_h$ $g \alpha_h M \left(H^3 + H \phi^0 \phi^0 + 2 H \phi^+ \phi^- \right) \frac{1}{8}g^2\alpha_h\left(H^4+(\phi^0)^4+4(\phi^+\phi^-)^2+4(\phi^0)^2\phi^+\phi^-+4H^2\phi^+\phi^-+2(\phi^0)^2H^2\right)$ $g M W^+_\mu W^-_\mu H - rac{1}{2} g rac{M}{c_w^2} Z^0_\mu Z^0_\mu H$ $rac{1}{2} ig \left(W^+_\mu (\phi^0 \partial_\mu \phi^- - \phi^- \partial_\mu \phi^0) - W^-_\mu (\phi^0 \partial_\mu \phi^+ - \phi^+ \partial_\mu \phi^0)
ight) +$ $\frac{1}{2}g\left(W^+_{\mu}(H\partial_{\mu}\phi^- - \phi^-\partial_{\mu}H) + W^-_{\mu}(H\partial_{\mu}\phi^+ - \phi^+\partial_{\mu}H)\right) + \frac{1}{2}g\frac{1}{c_{\nu\nu}}(Z^0_{\mu}(H\partial_{\mu}\phi^0 - \phi^0\partial_{\mu}H) +$ $M\left(\frac{1}{c_w}Z^0_{\mu}\partial_{\mu}\phi^0 + W^+_{\mu}\partial_{\mu}\phi^- + W^-_{\mu}\partial_{\mu}\phi^+\right) - ig\frac{s^2_w}{c_w}MZ^0_{\mu}(W^+_{\mu}\phi^- - W^-_{\mu}\phi^+) + igs_wMA_{\mu}(W^+_{\mu}\phi^- - W^-_{\mu}\phi^+) + igs_wMA_{\mu}(W^$ $W^{-}_{\mu}\phi^{+}) - igrac{1-2c^{2}_{w}}{2c_{w}}Z^{0}_{\mu}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) + igs_{w}A_{\mu}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) \frac{1}{4}g^2W_{\mu}^{+}W_{\mu}^{-}\left(H^2+(\phi^0)^2+2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)$ $\frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- + W^-_{\mu}\phi^+) - \frac{1}{2}ig^2\frac{s_w^2}{c_w}Z^0_{\mu}H(W^+_{\mu}\phi^- - W^-_{\mu}\phi^+) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W^+_{\mu}\phi^- + W^-_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^- + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^- + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g$ $\tilde{W}_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(\tilde{W}_{\mu}^{+}\phi^{-}-\tilde{W}_{\mu}^{-}\phi^{+}) - g^{2}\frac{s_{w}}{c_{w}}(2c_{w}^{2}-1)\tilde{Z}_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-} - \tilde{W}_{\mu}^{-}\phi^{+})$ $g^2 s^2_w A_\mu A_\mu \phi^+ \phi^- + \frac{1}{2} i g_s \lambda^a_{ij} (\bar{q}^\sigma_i \gamma^\mu q^\sigma_j) g^a_\mu - \bar{e}^\lambda (\gamma \partial + m_e^\lambda) e^{\lambda} - \bar{\nu}^\lambda (\gamma \partial + m_\nu^\lambda) \nu^\lambda - \bar{u}^\lambda_j (\gamma \partial + m_\mu^\lambda) e^{\lambda} - \bar{\mu}^\lambda_j (\gamma \partial + m$ $m_u^{\lambda} u_j^{\lambda} - ar{d}_j^{\lambda} (\gamma \partial + m_d^{\lambda}) d_j^{\lambda} + i g s_w A_{\mu} \left(-(ar{e}^{\lambda} \gamma^{\mu} e^{\lambda}) + rac{2}{3} (ar{u}_j^{\lambda} \gamma^{\mu} u_j^{\lambda}) - rac{1}{3} (ar{d}_j^{\lambda} \gamma^{\mu} d_j^{\lambda})
ight) +$ $\frac{ig}{4c_w}Z^0_\mu\bigl((\bar{\nu}^\lambda\gamma^\mu(1+\gamma^5)\bar{\nu}^\lambda)+(\bar{e}^\lambda\gamma^\mu(4s^2_w-1-\gamma^5)e^\lambda)+(\bar{d}^\lambda_j\gamma^\mu(\frac{4}{3}s^2_w-1-\gamma^5)d^\lambda_j)+$ $(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_{w}^{2}+\gamma^{5})u_{j}^{\lambda})\}+\frac{ig}{2\sqrt{2}}W_{\mu}^{+}\left((\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})U^{lep}_{\lambda\kappa}e^{\kappa})+(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})\right)+$ $rac{ig}{2\sqrt{2}}W^-_\mu\left((ar e^\kappa U^{lep^\dagger}_{\ \kappa\lambda}\gamma^\mu(1+\gamma^5)
u^\lambda)+(ar d^\kappa_jC^\dagger_{\kappa\lambda}\gamma^\mu(1+\gamma^5)u^\lambda_j)
ight)+$ $\frac{\frac{ig}{2M\sqrt{2}}\phi^{+}\left(-m_{e}^{\kappa}(\bar{\nu}^{\lambda}U^{lep}_{\lambda\kappa}(1-\gamma^{5})e^{\kappa})+m_{\nu}^{\lambda}(\bar{\nu}^{\lambda}U^{lep}_{\lambda\kappa}(1+\gamma^{5})e^{\kappa}\right)+$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{e}^{\lambda}(\bar{e}^{\lambda}U^{lep}_{\ \lambda\kappa}^{\dagger}(1+\gamma^{5})\nu^{\kappa})-m_{\nu}^{\kappa}(\bar{e}^{\lambda}U^{lep}_{\ \lambda\kappa}^{\dagger}(1-\gamma^{5})\nu^{\kappa}\right)-\frac{g}{2}\frac{m_{\nu}^{\lambda}}{M}H(\bar{\nu}^{\lambda}\nu^{\lambda}) \frac{g}{2}\frac{m_e^{\lambda}}{M}H(\bar{e}^{\lambda}e^{\lambda}) + \frac{ig}{2}\frac{m_{\nu}^{\lambda}}{M}\phi^0(\bar{\nu}^{\lambda}\gamma^5\nu^{\lambda}) - \frac{ig}{2}\frac{m_e^{\lambda}}{M}\phi^0(\bar{e}^{\lambda}\gamma^5e^{\lambda}) - \frac{1}{4}\bar{\nu}_{\lambda}M_{\lambda\kappa}^R(1-\gamma_5)\hat{\nu}_{\kappa} - \frac{ig}{2}\frac{m_e^{\lambda}}{M}\phi^0(\bar{e}^{\lambda}\gamma^5e^{\lambda}) - \frac{ig}{2}\frac{m_e^{\lambda}}{M}\phi^0(\bar{e}^{\lambda}\gamma^5e^$ $\frac{1}{4}\overline{\nu_{\lambda}}\frac{M_{\lambda\kappa}^{R}\left(1-\gamma_{5}\right)\hat{\nu}_{\kappa}}{\frac{ig}{2M\sqrt{2}}}\phi^{+}\left(-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}\right)+$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa})-m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa}\right)-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}$ $\frac{g}{2}\frac{m_{\hat{d}}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda}) + \frac{ig}{2}\frac{m_{\hat{u}}^{\lambda}}{M}\phi^{0}(\bar{u}_{j}^{\lambda}\gamma^{5}u_{j}^{\lambda}) - \frac{ig}{2}\frac{m_{\hat{d}}^{\lambda}}{M}\phi^{0}(\bar{d}_{j}^{\lambda}\gamma^{5}d_{j}^{\lambda}) + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g_{\mu}^{c} +$ $\bar{X}^{+}(\partial^{2}-M^{2})X^{+}+\bar{X}^{-}(\partial^{2}-M^{2})X^{-}+\bar{X}^{0}(\partial^{2}-\frac{M^{2}}{c^{2}})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-} \partial_\mu ar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu ar{Y} X^- - \partial_\mu ar{X}^+ ar{Y}) + igc_w W^-_\mu (\partial_\mu ar{X}^- X^0 \partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{Y}X^{+})+igc_{w}Z_{\mu}^{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-igc_{w}Z_{\mu}^{\mu})$ $\partial_\mu ar{X}^- X^-) + igs_w A_\mu (\partial_\mu ar{X}^+ X^+ \partial_{\mu} ar{X}^{-} X^{-}) - rac{1}{2} g M \left(ar{X}^{+} X^{+} H + ar{X}^{-} X^{-} H + rac{1}{c_{w}^{2}} ar{X}^{0} X^{0} H
ight) + rac{1 - 2 c_{w}^{2}}{2 c_{w}} i g M \left(ar{X}^{+} X^{0} \phi^{+} - ar{X}^{-} X^{0} \phi^{-}
ight) +$ $\frac{1}{2c_w} igM(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^-) + igMs_w(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^-) +$ $\frac{1}{2}igM\left(\bar{X}^{+}X^{+}\phi^{0}-\bar{X}^{-}X^{-}\phi^{0}
ight)$.

Example: WW+2 jets

interference QCD-background

 $d\sigma = d\sigma(\alpha_S^2 \alpha^4) + d\sigma(\alpha_S \alpha^5) + d\sigma(\alpha^6) + \dots$

VBS-signal

Perturbative expansion revised: VBF-V, VBS-VV

 $\mathcal{L}_{SM} = -\frac{1}{2} \partial_{\nu} g^a_{\mu} \partial_{\nu} g^a_{\mu} - g_s f^{abc} \partial_{\mu} g^a_{\nu} g^b_{\mu} g^c_{\nu} - \frac{1}{4} g^2_s f^{abc} f^{ade} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \partial_{\nu} W^+_{\mu} \partial_{\nu} W^-_{\mu} - \frac{1}{4} g^2_s g^a_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \frac{1}{4} g^a_{\nu} g^a_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} g^d_{\nu} g^e_{\nu} g^e_{\nu}$ $M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2c_{w}^{2}}M^{2}Z_{\mu}^{0}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - igc_{w}(\partial_{\nu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - W_{\mu}^{-}))$ $\begin{array}{c} W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})) - \\ igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\nu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})) \\ W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})) - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + g^{2}c_{w}^{2}(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - W_{\nu}^{-}) \\ \end{array}$ $\begin{array}{c} Z^{0}_{\mu}Z^{0}_{\mu}W^{+}_{\nu}W^{-}_{\nu}) + g^{2}s^{2}_{w}(A_{\mu}W^{+}_{\mu}A_{\nu}W^{-}_{\nu} - A_{\mu}A_{\mu}W^{+}_{\nu}W^{-}_{\nu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\nu}(W^{+}_{\mu}W^{-}_{\nu} - W^{+}_{\nu}W^{-}_{\nu}) + g^{2}s_{w}c_{w}(A_{\mu}Z^{0}_{\nu}(W^{+}_{\mu}W^{-}_{\nu} - W^{+}_{\nu}W^{-}_{\nu}) - 2A_{\mu}Z^{0}_{\mu}W^{+}_{\nu}W^{-}_{\nu}) - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - 2M^{2}\alpha_{h}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - M^{2}\alpha_{h}H^{2} - \partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - M^{2}\alpha_{h}H^{2} - \partial_{\mu}\phi^{0} - M^{2}\alpha_{h}H^{2} - \partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - M^{2}\alpha_{h}H^{2} - \partial_{\mu}\phi^{0} - \partial_{\mu}\phi^{0}$ $\beta_h \left(\frac{2M^2}{q^2} + \frac{2M}{q} H + \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^+ \phi^-) \right) + \frac{2M^4}{q^2} \alpha_h$ $g \alpha_h M (H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^-) \frac{1}{8}g^2\alpha_h\left(H^4+(\phi^0)^4+4(\phi^+\phi^-)^2+4(\phi^0)^2\phi^+\phi^-+4H^2\phi^+\phi^-+2(\phi^0)^2H^2\right)$ $g M W^+_\mu W^-_\mu H - rac{1}{2} g rac{M}{c_w^2} Z^0_\mu Z^0_\mu H$ $rac{1}{2}ig\left(W^+_\mu(\phi^0\partial_\mu\phi^--\phi^-\partial_\mu\phi^0)-W^-_\mu(\phi^0\partial_\mu\phi^+-\phi^+\partial_\mu\phi^0)
ight)+$ $\frac{1}{2}g\left(W^+_{\mu}(H\partial_{\mu}\phi^- - \phi^-\partial_{\mu}H) + W^-_{\mu}(H\partial_{\mu}\phi^+ - \phi^+\partial_{\mu}H)\right) + \frac{1}{2}g\frac{1}{c_{\nu\nu}}(Z^0_{\mu}(H\partial_{\mu}\phi^0 - \phi^0\partial_{\mu}H) +$ $M\left(\tfrac{1}{c_w} Z^0_\mu \partial_\mu \phi^0 + W^+_\mu \partial_\mu \phi^- + W^-_\mu \partial_\mu \phi^+ \right) - ig \tfrac{s^2_w}{c_w} M Z^0_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w (W^-_\mu \phi^- - W^-_\mu \phi^-) + ig s_w (W^+_\mu \phi^- - W^-_\mu \phi^-) + ig s_w (W^+_\mu \phi^- - W^-_\mu \phi^-) + ig s_w (W^-_\mu \phi^-) + ig s_w (W^-_\mu \phi^- - W^-_\mu \phi^-) + ig$ $W^-_\mu \phi^+) - ig rac{1-2c^2_w}{2c_w} Z^0_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) \frac{1}{4}g^2W^+_{\mu}W^-_{\mu}\left(H^2+(\phi^0)^2+2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)$ $\frac{1}{2}g^2\frac{s_w^2}{c_w}Z_{\mu}^0\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) - \frac{1}{2}ig^2\frac{s_w^2}{c_w}Z_{\mu}^0H(W_{\mu}^+\phi^--W_{\mu}^-\phi^+) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W_{\mu}^-\phi^-+W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^- + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^- + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_$ $W^{-}_{\mu}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W^{+}_{\mu}\phi^{-}-W^{-}_{\mu}\phi^{+}) - g^{2}\frac{s_{w}}{c_{w}}(2c_{w}^{2}-1)Z^{0}_{\mu}A_{\mu}\phi^{+}\phi^{-} - M^{-}_{\mu}\phi^{+})$ $g^2 s_w^2 A_\mu A_\mu \phi^+ \phi^- + rac{1}{2} i g_s \lambda^a_{ij} (ar q_i^\sigma \gamma^\mu q_j^\sigma) g_\mu^a - ar e^\lambda (\gamma \partial + m_e^\lambda) e^{\omega \lambda} - ar
u^\lambda (\gamma \partial + m_\nu^\lambda)
u^\lambda - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} = ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} = ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} - ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} = ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} = ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} = ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega \lambda} = ar u_j^\lambda (\gamma \partial + m_\mu^\lambda) e^{\omega$ $m_u^{\lambda} u_j^{\lambda} - ar{d}_j^{\lambda} (\gamma \partial + m_d^{\lambda}) d_j^{\lambda} + i g s_w A_{\mu} \left(-(ar{e}^{\lambda} \gamma^{\mu} e^{\lambda}) + rac{2}{3} (ar{u}_j^{\lambda} \gamma^{\mu} u_j^{\lambda}) - rac{1}{3} (ar{d}_j^{\lambda} \gamma^{\mu} d_j^{\lambda})
ight) +$ $\frac{ig}{4c_w}Z^0_\mu\{(\bar{\nu}^\lambda\gamma^\mu(1+\gamma^5)\nu^\lambda)+(\bar{e}^\lambda\gamma^\mu(4s^2_w-1-\gamma^5)e^\lambda)+(\bar{d}^\lambda_j\gamma^\mu(\frac{4}{3}s^2_w-1-\gamma^5)d^\lambda_j)+$ $(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_{w}^{2}+\gamma^{5})u_{j}^{\lambda})\}+\frac{ig}{2\sqrt{2}}W_{\mu}^{+}\left((\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})U^{lep}{}_{\lambda\kappa}e^{\kappa})+(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})\right)+$ $rac{ig}{2\sqrt{2}}W^-_\mu\left((ar e^\kappa U^{lep^\dagger}_{\kappa\lambda}\gamma^\mu(1+\gamma^5)
u^\lambda)+(ar d^\kappa_j C^\dagger_{\kappa\lambda}\gamma^\mu(1+\gamma^5)u^\lambda_j)
ight)+$ $\frac{\frac{ig}{2M\sqrt{2}}\phi^{+}\left(-m_{e}^{\kappa}(\bar{\nu}^{\lambda}U^{lep}_{\lambda\kappa}(1-\gamma^{5})e^{\kappa})+m_{\nu}^{\lambda}(\bar{\nu}^{\lambda}U^{lep}_{\lambda\kappa}(1+\gamma^{5})e^{\kappa}\right)+$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{e}^{\lambda}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}^{\dagger}(1+\gamma^{5})\nu^{\kappa})-m_{\nu}^{\kappa}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}^{\dagger}(1-\gamma^{5})\nu^{\kappa}\right)-\frac{g}{2}\frac{m_{\nu}^{\lambda}}{M}H(\bar{\nu}^{\lambda}\nu^{\lambda}) \frac{g}{2}\frac{m_{e}^{\lambda}}{M}H(\bar{e}^{\lambda}e^{\lambda}) + \frac{ig}{2}\frac{m_{\nu}^{\lambda}}{M}\phi^{0}(\bar{\nu}^{\lambda}\gamma^{5}\nu^{\lambda}) - \frac{ig}{2}\frac{m_{e}^{\lambda}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{1}{4}\bar{\nu}_{\lambda}M_{\lambda\kappa}^{R}\left(1-\gamma_{5}\right)\hat{\nu}_{\kappa} - \frac{ig}{2}\frac{m_{e}^{\lambda}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{ig}{2}\frac{m$ $\frac{1}{4}\overline{\nu_{\lambda}}\frac{M_{\lambda\kappa}^{R}(1-\gamma_{5})\hat{\nu_{\kappa}}}{M_{\lambda\kappa}^{R}(1-\gamma_{5})\hat{\nu_{\kappa}}} + \frac{ig}{2M\sqrt{2}}\phi^{+}\left(-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})\right) + \frac{ig}{2M\sqrt{2}}\phi^{+}\left(-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}\right) + \frac{ig}{2M\sqrt{2}}\phi^{+}\left(-m_{d}^{\kappa}(1-\gamma^{5})d_{j}^{\kappa}\right) + \frac{ig}{2M\sqrt{2}}\phi^{+}\left(-m_{d}^{\kappa}(1-\gamma^{5})d_{j}^{\kappa}\right) + \frac{ig}{2M\sqrt{2}}\phi^{+}\left(-m_{d}^{\kappa}(1-\gamma^{5})d_{j}^{\kappa}\right) + \frac{ig}{2M\sqrt{2$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa})-m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa}\right)-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}$ $\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda}) + \frac{ig}{2}\frac{m_u^{\lambda}}{M}\phi^0(\bar{u}_j^{\lambda}\gamma^5 u_j^{\lambda}) - \frac{ig}{2}\frac{m_d^{\lambda}}{M}\phi^0(\bar{d}_j^{\lambda}\gamma^5 d_j^{\lambda}) + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_{\mu}\bar{G}^a G^b g_{\mu}^c +$ $ar{X^+}(\partial^2 - M^2)X^+ + ar{X^-}(\partial^2 - M^2)X^- + ar{X^0}(\partial^2 - rac{M^2}{c^2})X^0 + ar{Y}\partial^2Y + igc_wW^+_u(\partial_\muar{X^0}X^- - M^2)X^- + ar{X^0}(\partial^2 - rac{M^2}{c^2})X^0 + ar{Y}\partial^2Y + igc_wW^+_u(\partial_\muar{X^0}X^- - M^2)X^- + ar{X^0}(\partial^2 - rac{M^2}{c^2})X^0 + ar{Y}\partial^2Y + bc_wW^+_u(\partial_\muar{X^0}X^- - M^2)X^- + ar{X^0}(\partial^2 - rac{M^2}{c^2})X^0 + ar{Y}\partial^2Y + bc_wW^+_u(\partial_\muar{X^0}X^- - M^2)X^- + ar{X^0}(\partial^2 - rac{M^2}{c^2})X^0 + ar{Y}\partial^2Y + bc_wW^+_u(\partial_\muar{X^0}X^- - M^2)X^- + ar{X^0}(\partial^2 - rac{M^2}{c^2})X^0 + ar{Y}\partial^2Y + bc_wW^+_u(\partial_\muar{X^0}X^- - M^2)X^- + ar{X^0}(\partial^2 - rac{M^2}{c^2})X^0 + ar{Y}\partial^2Y + bc_wW^+_u(\partial_\muar{X^0}X^- - M^2)X^- + ar{X^0}(\partial^2 - rac{M^2}{c^2})X^0 + ar{Y}\partial^2Y + bc_wW^+_u(\partial_\muar{X^0}X^- - M^2)X^- + ar{X^0}(\partial^2 - rac{M^2}{c^2})X^0 + ar{Y}\partial^2Y + bc_wW^+_u(\partial_\muar{X^0}X^- - M^2)X^- + ar{X^0}(\partial^2 - rac{M^2}{c^2})X^0 + ar{Y}\partial^2Y + bc_wW^+_u(\partial_\muar{X^0}X^- - M^2)X^- + ar{X^0}(\partial^2 - rac{M^2}{c^2})X^0 + ar{Y}\partial^2Y + bc_wW^+_u(\partial_\muar{X^0}X^- - M^2)X^- + ar{X^0}(\partial^2 - M^2)X^$ $\partial_\mu ar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu ar{Y} X^- - \partial_\mu ar{X}^+ ar{Y}) + igc_w W^-_\mu (\partial_\mu ar{X}^- X^0 - \partial_\mu ar{X}^+ ar{Y}))$ $\partial_\mu \bar{X}^0 X^+) + igs_w W^-_u (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{Y} X^+) + igc_w Z^0_\mu (\partial_\mu \bar{X}^+ X^+ - \partial_\mu \bar{Y} X^+))$ $\partial_\mu ar{X}^- X^-) + igs_w A_\mu (\partial_\mu ar{X}^+ X^+ \partial_{\mu}ar{X}^{-}X^{-}) - rac{1}{2}gM\left(ar{X}^{+}X^{+}H + ar{X}^{-}X^{-}H + rac{1}{c_{w}^{2}}ar{X}^{0}X^{0}H
ight) + rac{1-2c_{w}^{2}}{2c_{w}}igM\left(ar{X}^{+}X^{0}\phi^{+} - ar{X}^{-}X^{0}\phi^{-}
ight) + rac{1}{c_{w}^{2}}ar{X}^{0}X^{0}H
ight)$ $\frac{1}{2c_w} igM \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) +$ $\frac{1}{2}igM\left(\bar{X}^{+}X^{+}\phi^{0}-\bar{X}^{-}X^{-}\phi^{0}
ight)$.

Example: WW+2jets

separation formally meaningless at NLO strictly well defined measurements: fiducial cross sections

VBS-@ full NLO

WW full NLO: [Biedermann, Denner, Pellen '16+'17]

WZ-EW NLO QCD+EW: [Denner, Dittmaier, Maierhöfer, Pellen, Schwan, 19]

ZZ-EW NLO QCD+EW: [Denner, Franken, Pellen, Schmidt, '20]

- •2 \rightarrow 6 particles at NLO EW !
- highly challenging computation!

•NLO corrections dominated by α^7 :

	$\mathcal{O}(lpha^7)$	$\mathcal{O}(lpha_{ m s}lpha^6)$	$\mathcal{O}(lpha_{ m s}^2 lpha^5)$	$\mathcal{O}(lpha_{ m s}^3 lpha^4)$	Sum
fb]	-0.2169(3)	-0.0568(5)	-0.00032(13)	-0.0063(4)	-0.2804(7)
$\sigma_{\rm LO}$ [%]	-13.2	-3.5	0.0	-0.4	-17.1

with $M_{jj} > 500 \,\text{GeV}, \ p_{T,j} > 30 \,\text{GeV}, \ p_{T,\ell} > 20 \,\text{GeV},$

[Biedermann, Denner, Pellen '16+'17]

VBS-W+W+ @ full NLO

→Large NLO EW corrections: intrinsic feature of VBS at the LHC

Conclusions

- There is no clear scale/signature for new physics effects: Let's explore the unknown leaving no stone unturned!
- Precision is key for SM (QCD/EW/Higgs) measurements,
 SM parameter determination, as well as for BSM searches.
- First $2 \rightarrow 3$ NNLO results are becoming available.
- ► N3LO for some $2 \rightarrow 2$ processes within reach
- At the 1% level a multitude of relevant effects might play an important role:
 PDFs, EW, QCD-EW, resummation/PS, off-shell/finite width...
- EW corrections become large at the TeV scale
- Let's push the SM precision frontier!

Theory frontier

Nontrivial features in NLO QCD \rightarrow NLO EW

I. QCD-EW interplay

3. virtual EW corrections more involved than QCD (many internal masses)

At NLO EW corrections in production, decay and non-factorizable contributions for V decays
 → complex-mass-scheme

4. photon contributions in jets and proton \rightarrow photon-jet separation, γ PDF

EW vacuum stability Dark Matter GUT unification Neutrino masses Hierarchy problem

The motivation for BSM searches are as compelling as ever

• Higgs at 125 GeV allowed for very clean discovery in $\gamma\gamma$ & 41 channels

From a pheno perspective finding the Higgs was "easy"...

• Bump hunting: little to no theoretical input needed.

Is the S(125 GeV) really the SM Higgs? • CP properties? Is there a small CP-odd admixture? • Precise couplings with vector-bosons/fermions as in SM? •what is the Higgs width? Is there a significant invisible decay? •only one Higgs doublet?

- •what is the Higgs potential? self-coupling?
- the hunt to pin down the SM has just started.

... understanding the Higgs and its properties is tough!

2 = - + FAL FAL + iFDy +h.c

$$\mathrm{d}\sigma_{\mathrm{NLO}} = \frac{1}{2s} \int d\Phi_n \left[|\mathcal{M}_{\mathrm{LO}}|^2 + 2\mathrm{Re} \{\mathcal{M}_{\mathrm{LO}}\} \right]^2 + 2\mathrm{Re} \left\{ \mathcal{M}_{\mathrm{LO}} \right\}^2 + 2\mathrm{Re} \left\{$$

General solution to "NLO problem" exist since long time: However: for a long time one-loop amplitudes bottleneck due to exploding tensor reduction (since 1970s) algebraic expressions for multi-particle • IR subtraction methods (since 1990s) processes $(2 \rightarrow 4,5,6)$

NLO Revolution (last ~20years):

- radically new approaches: on-shell methods, OPP reduction, recursion-relations at NLO...
- automation of one-loop algorithms (BlackHat, CutTools, Collier, GoSam, HELAC I-loop, MadLoop,
- •vast range of multi-particle NLO predictions at LHC $(pp \rightarrow 5j, W + 5j, H + 3j, WWjj, WZjj, \gamma\gamma + 3j, W\gamma\gamma j, WWbb(+jet), bbbb, ttbb, ttjjj, tttt, ...)$

 \rightarrow Opened the door for very detailed pheno analyses.

```
Theoretical Predictions for the LHC
                               \mathcal{M}_{\mathrm{NLO,V}}^* \} + I ] + \frac{1}{2s} \int d\Phi_{n+1} |\mathcal{M}_{\mathrm{NLO,R}}|^2 - S
```

NGluon, **OpenLoops**, Recola, Samurai, Ninja,...) and NLO MCs (MadGraph_aMC@NLO, Sherpa, POWHEG,...)

•Recent important achievement: extension to NLO EW (Sherpa+OpenLoops/Recola and MadGraph_aMC@NLO)

→ Still room for important improvements: speed, stability, flexibility.

The need for precision in tails

many effective BSM operators yield growth with energy

 \rightarrow expect small deviations in high energy shapes of distributions

→ very good control on SM predictions necessary!

Search limits

ATLAS Preliminary

ATLAS SUSY Searches* - 95% CL Lower Limits

December 2017								$\sqrt{s} = 7, 8, 13 \text{ TeV}$
	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fb	D ⁻¹] Mass limit	$\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$	Reference
gen. Inclusive Searches	$\begin{split} \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \text{ (compressed)} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{1} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\ell} (\ell \ell) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \text{GMSB } (\tilde{\ell} \text{ NLSP}) \\ \text{GGM (bino NLSP)} \\ \text{GGM (higgsino-bino NLSP)} \\ \text{Gravitino LSP} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0} \end{split}$	0 mono-jet 0 $ee, \mu\mu$ $3e, \mu$ 0 $1-2\tau + 0-1\ell$ 2γ γ 0 0	2-6 jets 1-3 jets 2-6 jets 2-6 jets 2-6 jets 2-6 jets 2-6 jets 2-6 jets 2-11 jets 0-2 jets mono-jet 3 b	T Yes Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 14.7 36.1 36.1 36.1 36.1 20.3 36.1		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1712.02332 1711.03301 1712.02332 1712.02332 1611.05791 1706.03731 1708.02794 1607.05979 ATLAS-CONF-2017-080 ATLAS-CONF-2017-080 1502.01518 1711.01901
$\frac{3^{rd}}{direct}$ gen. squarks $\frac{3^{rd}}{8}$ g m	$\begin{split} \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_{1}^{0^{\circ}} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b \tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t \tilde{\chi}_{1}^{\pm} \\ \tilde{h}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b \tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b \tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow c \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow c \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1} (natural GMSB) \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + h \end{split}$	$\begin{array}{c} 0 - 1 \ e, \mu \\ 0 \\ 2 \ e, \mu \ (SS) \\ 0 - 2 \ e, \mu \\ 0 - 2 \ e, \mu \ 0 \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1 - 2 \ e, \mu \end{array}$	3 b 2 b 1 b 1-2 b -2 jets/1-2 mono-jet 1 b 1 b 4 b	Yes Yes Yes 4 Yes 2 Yes Yes Yes Yes	36.1 36.1 36.1 .7/13.3 0.3/36.1 36.1 20.3 36.1 36.1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} \textbf{1.97 TeV} & \textbf{m}(\tilde{x}_{1}^{0}){<}200 \text{GeV} \\ & \textbf{m}(\tilde{x}_{1}^{0}){<}420 \text{GeV} \\ & \textbf{m}(\tilde{x}_{1}^{0}){<}200 \text{GeV}, \textbf{m}(\tilde{x}_{1}^{1}){=} \textbf{m}(\tilde{x}_{1}^{0}){+}100 \text{GeV} \\ & \textbf{m}(\tilde{x}_{1}^{0}){=} 2\textbf{m}(\tilde{x}_{1}^{0}), \textbf{m}(\tilde{x}_{1}^{0}){=} 55 \text{GeV} \\ & \textbf{m}(\tilde{x}_{1}^{0}){=} 1 \text{GeV} \\ & \textbf{m}(\tilde{x}_{1}^{0}){=} 15 \text{GeV} \\ & \textbf{m}(\tilde{x}_{1}^{0}){=} 150 \text{GeV} \\ & \textbf{m}(\tilde{x}_{1}^{0}){=} 0 \text{GeV} \\ & \textbf{m}(\tilde{x}_{1}^{0}){=} 0 \text{GeV} \\ & \textbf{m}(\tilde{x}_{1}^{0}){=} 0 \text{GeV} \end{array}$	1711.01901 1708.09266 1706.03731 1209.2102, ATLAS-CONF-2016-077 1506.08616, 1709.04183, 1711.11520 1711.03301 1403.5222 1706.03986 1706.03986
EW direct	$ \begin{array}{l} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{+} / \tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu}), \tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau} \tau(\nu \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} \lambda \tilde{\chi}_{1}^{0}, h \rightarrow b \tilde{b} / W W / \tau \tau / \gamma \gamma \\ \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R} \ell \\ \text{GGM (wino NLSP) weak prod., } \tilde{\chi}_{1}^{0} \rightarrow \gamma \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ -3 \ e, \mu \\ e, \mu, \gamma \\ 4 \ e, \mu \\ \tilde{G} \ 1 \ e, \mu + \gamma \\ \tilde{G} \ 2 \ \gamma \end{array}$	0 0 - 0-2 jets 0-2 <i>b</i> 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 36.1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{split} \mathfrak{m}(\tilde{\chi}_{1}^{0}) = 0 \\ \mathfrak{m}(\tilde{\chi}_{1}^{0}) = 0, \mathfrak{m}(\tilde{\ell}, \tilde{\nu}) = 0.5(\mathfrak{m}(\tilde{\chi}_{1}^{+}) + \mathfrak{m}(\tilde{\chi}_{1}^{0})) \\ \mathfrak{m}(\tilde{\chi}_{1}^{0}) = 0, \mathfrak{m}(\tilde{\tau}, \tilde{\nu}) = 0.5(\mathfrak{m}(\tilde{\chi}_{1}^{+}) + \mathfrak{m}(\tilde{\chi}_{1}^{0})) \\ \mathfrak{m}(\tilde{\chi}_{1}^{0}) = \mathfrak{m}(\tilde{\chi}_{2}^{0}), \mathfrak{m}(\tilde{\chi}_{1}^{0}) = 0, \mathfrak{m}(\tilde{\ell}, \tilde{\nu}) = 0.5(\mathfrak{m}(\tilde{\chi}_{1}^{+}) + \mathfrak{m}(\tilde{\chi}_{1}^{0})) \\ \mathfrak{m}(\tilde{\chi}_{1}^{+}) = \mathfrak{m}(\tilde{\chi}_{2}^{0}), \mathfrak{m}(\tilde{\chi}_{1}^{0}) = 0, \tilde{\ell} \text{ decoupled} \\ \mathfrak{m}(\tilde{\chi}_{1}^{+}) = \mathfrak{m}(\tilde{\chi}_{2}^{0}), \mathfrak{m}(\tilde{\chi}_{1}^{0}) = 0, \tilde{\ell} \text{ decoupled} \\ \mathfrak{m}(\tilde{\chi}_{2}^{0}) = \mathfrak{m}(\tilde{\chi}_{3}^{0}), \mathfrak{m}(\tilde{\chi}_{1}^{0}) = 0, \mathfrak{m}(\tilde{\ell}, \tilde{\nu}) = 0.5(\mathfrak{m}(\tilde{\chi}_{2}^{0}) + \mathfrak{m}(\tilde{\chi}_{1}^{0})) \\ \mathfrak{c}\tau < 1 \operatorname{mm} \\ \mathfrak{c}\tau < 1 \operatorname{mm} \end{split}$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1708.07875 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5086 1507.05493 ATLAS-CONF-2017-080
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$ GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu)$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow eev/e\mu v/\mu\mu v$	Disapp. trk dE/dx trk 0 trk dE/dx trk displ. vtx $1-2 \mu$ 2γ displ. $ee/e\mu/\mu\mu$	1 jet - 1-5 jets - - - - - - - - - - - -	Yes Yes - - Yes - Yes - Yes	36.1 18.4 27.9 3.2 3.2 32.8 19.1 20.3 20.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{split} \mathbf{m}(\tilde{\chi}_1^{+})-\mathbf{m}(\tilde{\chi}_1^{0})\sim&160\ \text{MeV},\ \tau(\tilde{\chi}_1^{+})=&0.2\ \text{ns}\\ \mathbf{m}(\tilde{\chi}_1^{+})-\mathbf{m}(\tilde{\chi}_1^{0})\sim&160\ \text{MeV},\ \tau(\tilde{\chi}_1^{+})<&15\ \text{ns}\\ \mathbf{m}(\tilde{\chi}_1^{0})=&100\ \text{GeV},\ 10\ \mu\text{s}<&\tau(\tilde{g})<&1000\ \text{s} \end{split}$	1712.02118 1506.05332 1310.6584 1606.05129 1604.04520 1710.04901 1411.6795 1409.5542 1504.05162
RPV	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ Bilinear RPV CMSSM $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow eev, e\mu\nu, \mu\mu\nu$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau\tau\nu_{e}, e\tau\nu_{\tau}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\tilde{t}\chi_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{t}_{1}t, \tilde{t}_{1} \rightarrow bs$ $\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\ell$	$e\mu, e\tau, \mu\tau$ $2 e, \mu$ (SS) $4 e, \mu$ $3 e, \mu + \tau$ 0 4-1 $1 e, \mu 8-1$ $1 e, \mu 8-1$ $0 2 e, \mu$	- 0-3 <i>b</i> - - 5 large- <i>R</i> je -10 jets/0-4 -10 jets/0-4 2 jets + 2 <i>b</i> 2 <i>b</i>	- Yes Yes ets - b - b -	3.2 20.3 13.3 20.3 36.1 36.1 36.1 36.7 36.7	\tilde{v}_{τ} \tilde{q} , \tilde{g} \tilde{x}_{1}^{\pm} \tilde{x}_{2}^{\pm} \tilde{x}_{1}^{\pm} \tilde{x}_{2}^{\pm} \tilde{x}_{1}^{\pm} \tilde{x}_{2}^{\pm} \tilde{x}_{2}^{\pm} \tilde{x}_{2}^{\pm} \tilde{x}_{2}^{\pm} \tilde{x}_{2}	1.9 TeV $\lambda'_{311}=0.11, \lambda_{132/133/233}=0.07$ 1.45 TeV $m(\tilde{q})=m(\tilde{g}), c\tau_{LSP}<1 \text{ mm}$ V $m(\tilde{\chi}_1^0)>400 \text{GeV}, \lambda_{12k}\neq0 \ (k=1,2)$ $m(\tilde{\chi}_1^0)>0.2\times m(\tilde{\chi}_1^\pm), \lambda_{133}\neq0$ 1.875 TeV $m(\tilde{\chi}_1^0)=1075 \text{ GeV}$ 2.1 TeV $m(\tilde{\chi}_1^0)=1 \text{ TeV}, \lambda_{112}\neq0$ 1.65 TeV $m(\tilde{t}_1)=1 \text{ TeV}, \lambda_{323}\neq0$ 1.45 TeV $BR(\tilde{t}_1 \rightarrow be/\mu)>20\%$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 SUSY-2016-22 1704.08493 1704.08493 1710.07171 1710.05544
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 <i>c</i>	Yes	20.3	õ 510 GeV	m(𝔅1)<200 GeV	1501.01325
*Only phen	a selection of the available mas omena is shown. Manv of the li	s limits on n mits are bas	new state sed on	s or	1	0 ⁻¹ 1	Mass scale [TeV]	

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

> ➡ BSM certainly not 'around the corner' ► Leave no stone unturned

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: July 2017

*Only a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J).

Push towards smaller couplings / exotic signatures

ATLAS Preliminary

$\sqrt{s} = 8, 13 \text{ TeV}$ Reference ATLAS-CONF-2017-060 CERN-EP-2017-132 1703.09217 1606.02265 1512.02586 CERN-EP-2017-132 ATLAS-CONF-2017-051 ATLAS-CONF-2016-104 ATLAS-CONF-2017-027 ATLAS-CONF-2017-050 1603.08791 ATLAS-CONF-2016-014 1706.04786 CERN-EP-2017-147 ATLAS-CONF-2017-055 1410.4103 1408.0886 1703.09217

TLAS-CONF-2017-027 1504.04605 ATLAS-CONF-2017-060 1704.03848 1608.02372 1605.06035 1605.06035 1508.04735 ATLAS-CONF-2016-104 1705.10751 CERN-EP-2017-094 1505.04306 1409.5500 CERN-EP-2017-094 1509.04261 1703.09127 CERN-EP-2017-148 ATLAS-CONF-2016-060 1510.02664 1411.2921 1411.2921 1506.06020

LAS-CONF-2017-053 1411.2921 1410.5404 1504.04188 1509.08059

Taming tTH backgrounds

- ➡ in principle this process can be calculated out of the box at NLO+PS: NLO reduces scale uncertainties from 80% to 20-30% \rightarrow However: notoriously difficult multi-scale problem: ET_t, ET_t, ET_b, ET_b \rightarrow Large shower effects, in particular from double $g \rightarrow b\bar{b}$ splittings Large systematic uncertainties from parton shower matching

- Careful study required to understand these systematics

background

500000

10000000

g ooooot

googgoogh

- La theory uncertainty!

N_{B-jets}

Careful look inside the NLO+PS black-boxes necessary: ongoing within HXSWG!

Without understanding their origin (physical or not?) we should not use MC differences as

Origin of these differences

•origin: different shower-induced bins migrations across b-jets cuts

> anti- k_t , R = 0.4cuts: $p_T > 25$ GeV, $\eta < 2.5$

Study recoil observables: $\Delta \phi_{\text{rec},X} = \Delta \phi \left(\vec{p}_{\text{rec}}, \vec{p}_X \right)$,

• leading top absorbs strong recoil form QCD radiation

• NLOPS enhancement of recoil well consistent with ttbbj at NLO (nontrivial!)

[Buccioni, Pozzorini, Zoller, 1907.13624]

Study recoil observables: $\Delta \phi_{\text{rec},X} = \Delta \phi \left(\vec{p}_{\text{rec}}, \vec{p}_X \right)$,

• leading top absorbs strong recoil form QCD radiation

• NLOPS enhancement of recoil well consistent with ttbbj at NLO (nontrivial!)

[Buccioni, Pozzorini, Zoller, 1907.13624]

- unphysical since no evidence of recoil in ttbb, ttbbj, or PWG+PY8 at NLO
- unphysical recoil strongly suppressed only by Powheg / attenuated by MC@NLO matching (MG and Sherpa)

- attenuated by MC@NLO matching (MG and Sherpa)

