

Probing Polaritons in Low-dimensional Materials with Synchrotron Infrared Nanospectroscopy

Ingrid D. Barcelos Brazilian Synchrotron Light Laboratory (LNLS)

TRANSPORT OF THE PARTY OF THE P

T

ALL STREET

3 HHC

Ш

AS F

State University Of Campinas

LNBID de Biociências

Laboratório Nacional de Luz Síncrotron

Commissioning phase New storage ring (Sirius)

TEEEEE

Old storage ring

(uvx)

hutdown

in 2019

LNNANO

Laboratório Nacional de Nan<u>otecnologia</u>

ORGANIZAÇÃO SOCIAL DO MCTI

IMBUIA group

Raul Freitas Group coordinator

Ingrid Barcelos Staff scientist

Francisco Maia Staff scientist

Thiago Santos Engineer

Rafael Mayer PhD student

Flávio Feres PhD student

Gabriela Zoia Intern

AND INNOVATIO

Outline

Adapted from Science 354 (2016)

The synchrotron radiation

Synchrotron emission

From THz to hard X-rays

Brazilian synchrotron light source: Sirius

IR frequency range: 70 meV to 400 meV 564 to 3226 cm⁻¹

AND INNOVATIO

4/26 Willmott, An Introduction to Synchrotron Radiation, Wiley, London, 2011.

Synchrotron Infrared Nanospectroscopy or SINS

- Up to 1000 times more brilliant than black body sources
- Ultra-broadband (THz to near-IR)

Synchrotron Infrared Nanospectroscopy

Synchrotron radiation and the ultrabroadband nanospectroscopy

How SINS is serving nanophotonics in 2Ds?

Synchrotron as a promissing probe of new phenomena in 2Ds

Adapted from Science 354 (2016)

Polaritons

J. Taboada-Gutiérrez, et al; Nat. Mat. (2020)

8/26 InfoMat, Volume: 2, Issue: 5, Pages: 777-790, First published: 28 April 2020

How SINS is serving nanophotonics?

I. Barcelos, et al; Advanced Optical Materials, 2020

Ingrid Barcelos - LNLS

Nanophotonics of 2D Materials, N2D 2020

) _____

How SINS is serving nanophotonics?

AND INNOVATIO

I. Barcelos, et al; Advanced Optical Materials, 2020

How SINS is serving nanophotonics?

Scientific cases

MINISTRY OF SCIENCE, TECHNOLOGY AND INNOVATIONS

CNPEM

Novel 2D material

AND INNOVATIO

Broadband detection up to 30 µm (Ge:Cu detector)

Novel 2D material

Hydrothermal method

- (NH4)6M07O24.4H2O + HNO3 \geq
- Autoclave at 180 °C for 20h ≻
- Washed with distilled water and ethanol ≻

[100]

Oven-dried at 70°C for 24h ≻

Ultrabroadband IR nanocavities of α-MoO₃

PÁTRIA AMADA BRASIL

[001]

а

b

Ζ

Х

Ultrabroadband IR nanocavities of α-MoO₃

AND INNOVATIONS

I. Barcelos, et al; ACS Photonics (2021)

Ultrabroadband IR nanocavities of α-MoO₃

PÁTRIA AMADA BRASIL

MINISTRY OF SCIENCE, TECHNOLOGY

AND INNOVATION

CNPEM

I. Barcelos, et al; ACS Photonics (2021)

g

Dipole source

Far-IR nano-cavities

R. Feres et al. Nat. Commun. 2021, 12, 1995.

Max

Far-IR nano-cavities

Far-IR broadband spectral linescans

Far-IR nano-cavities

R. Feres et al. Nat. Commun. 2021, 12, 1995.

A unique source (far-IR continuous coverage)

- Service for users throughout the whole process:
 - samples preparation
 - Experimental support
 - Post-processing guidance

CNPE

Open for collaborating

https://www.lnls.cnpem.br/facilities/imbuia/

MINISTRY OF SCIENCE, TECHNOLOGY AND INNOVATIONS

Co-workers:

Ângelo Malachias **Raphaela** Oliveira Helio Chacham Alisson R. Cadore Juan Gonzalez **Emilson Viana Rainer Hillenbrand** Shu Chen Hans Bechtel Lukas Wehmeier J. Michael Klopf Lukas M. Eng Susanne C. Kehr Thalita A. Canassa Eynara G. de Oliveira Alem-Mar B. Goncalves Diego C. B. Alves

ingrid.barcelos@lnls.br

https://www.lnls.cnpem.br/facilities/imbuia/

Funding and Institutions:

Thank you!

Ingrid.barcelos@Inls.br

MINISTRY OF SCIENCE, TECHNOLOGY AND INNOVATIONS

Facility updates

IMBUIA beamline status

