

Spectral gaps in PEPS: the possible and the impossible

David Pérez-García

Project 648913

REVIEW ON ANALYTICAL RESULTS ON PEPS.

I. Cirac, D Perez-Garcia, N Schuch, F Verstraete, Matrix product states and projected entangled pair states: Concepts, symmetries, and theorems, arXiv preprint arXiv:2011.12127

Motivation:

Classification of topological quantum phases

Very nice outreach article in Quanta Magazine

Quantum phases.

What is a phase?

Temperature

Quantum phases.

At zero temperature: Quantum phases.

They include very **exotic phenomena:** topological order, superconductivity, spin liquids, etc.

Strength of repulsion terms

Crystal

Spin liquid

Quantum phases.

A **phase** should be something like: "the equivalence class of all states of matter with *similar* properties"

Making it formal. The spectral gap

The spectral gap

Spin s particles.

Translational invariant finite range interaction

Hamiltonian:

$$H = \sum_{i} h_i \otimes Id_{\text{rest}}$$

The spectral gap

Spin s particles.

Translational invariant finite range interaction

Hamiltonian:

$$H = \sum_{i} h_i \otimes Id_{\text{rest}}$$

Spectral gap: $\gamma_N = \lambda_1(N) - \lambda_0(N)$

The system has gap if there exists c>0 such that $\Delta_N > c$ for all N?

Quantum phases

PHASE = an equivalence relation on
$$\bigcup_{r} M_{d^r}$$

Two systems governed by interactions h^0 , h^1 are in the same phase iff there is a smooth path of interactions $[0,1] \ni \alpha \mapsto h^{\alpha}$ and a constant c>0 s.t the gap $\Delta_N(\alpha)$ of the Hamiltonian $\sum_i h_i^{\alpha} \otimes Id_{\text{rest}}$ is $\Delta_N(\alpha) > c$ for all N, α

Quantum phases

PHASE = an equivalence relation on
$$\bigcup_{r} M_{d^r}$$

Two systems governed by interactions h^0 , h^1 are in the same phase iff there is a smooth path of interactions $[0,1] \ni \alpha \mapsto h^{\alpha}$ and a constant c>0 s.t the gap $\Delta_N(\alpha)$ of the Hamiltonian $\sum_i h_i^{\alpha} \otimes Id_{\text{rest}}$ is $\Delta_N(\alpha) > c$ for all N, α

Two main reasons for this definition:

It is stable against small errors in the interactions.

Observable quantities on the *ground state* behave smoothly through the path (no phase transitions).

An approach to the classification of phases with Tensor Networks: The 1D case

Ingredient 1 (Hastings 2007, Arad et al. 2013): MPS approximate well ground states of 1D Hamiltonians with gap.

Ingredient 2 (Nachtergaele 1995): A lower bound on the spectral gap of certain (parent) Hamiltonians having MPS as ground states

Ingredient 3 (Verstraete et al. 2005, Perez-Garcia et al. 2007): A good description of renormalization transformations in MPS and the structure (phase invariants) of their fixed points.

Ingredient 1 (Hastings 2007, Arad et al. 2013): MPS approximate well ground states of 1D Hamiltonians with gap.

Ingredient 2 (Nachtergaele 1995): A lower bound on the spectral gap of certain (parent) Hamiltonians having MPS as ground states

Ingredient 3 (Verstraete et al. 2005, Perez-Garcia et al. 2007): A good description of renormalization transformations in MPS and the structure (phase invariants) of their fixed points.

Enough to start with MPS. Ingredient 1

Ingredient 1 (Hastings 2007, Arad et al. 2013): MPS approximate well ground states of 1D Hamiltonians with gap.

Ingredient 2 (Nachtergaele 1995): A lower bound on the spectral gap of certain (parent) Hamiltonians having MPS as ground states

Ingredient 3 (Verstraete et al. 2005, Perez-Garcia et al. 2007): A good description of renormalization transformations in MPS and the structure (phase invariants) of their fixed points.

Ingredient 1 (Hastings 2007, Arad et al. 2013): MPS approximate well ground states of 1D Hamiltonians with gap.

Ingredient 2 (Nachtergaele 1995): A lower bound on the spectral gap of certain (parent) Hamiltonians having MPS as ground states

Ingredient 3 (Verstraete et al. 2005, Perez-Garcia et al. 2007): A good description of renormalization transformations in MPS and the structure (phase invariants) of their fixed points.

PERIODIC TABLE in 1D: Phases are indexed by the degeneracy of the ground space

Ingredient 4 (Perez-Garcia et al 2008): A characterization for MPS of global symmetries.

PERIODIC TABLE for Symmetry Protected Topological (SPT) Phases in 1D: Phases are indexed by the second cohomology group.

Pollmann, Berg, Turner, Oshikawa, Phys. Rev. B. 81, 064439 (2010) Chen, Gu, Wen, Phys. Rev. B 83, 035107 (2011) Fidkowski, Kitaev, Phys. Rev. B 83, 075103 (2011) Schuch, Pérez-García, Cirac, Phys. Rev. B 84, 165139 (2011) Haegeman, Pérez-García, Cirac, Schuch, Phys. Rev. Lett. 109, 050402 (2012) Bachman, Nachtergaele, Commun. Math. Phys., 329, 509-544 (2014)

Y. Ogata: Extend this program to the set of Hamiltonians

Y. Ogata, arXiv:1810.01045, arXiv:1908.08621, arXiv:2101.00426

An approach to the classification of phases with Tensor Networks: Ingredients in the 2D case

Ingredient 1 (Hastings 2006, Molnar et al. 2014): PEPS approximate well ground states of 2D Hamiltonians with gap:

Ingredient 1 (Hastings 2006, Molnar et al. 2014): PEPS approximate well ground states of 2D Hamiltonians with gap:

Ingredient 3 (Bultinck et al 2015, Cirac et al 2017, ...): RFP are in one to one correspondence with fusion categories.

Ingredient 1 (Hastings 2006, Molnar et al. 2014): PEPS approximate well ground states of 2D Hamiltonians with gap:

Ingredient 3 (Bultinck et al 2015, Cirac et al 2017, ...): RFP are in one to one correspondence with fusion categories.

Ingredient 4 (Perez-Garcia et al 2010, Molnar et al 2021): Full characterization of symmetries in PEPS.

$$\frac{g}{f} = \frac{U_g}{f}$$

Ingredient 1 (Hastings 2006, Molnar et al. 2014): PEPS approximate well ground states of 2D Hamiltonians with gap:

Ingredient 3 (Bultinck et al 2015, Cirac et al 2017, ...): RFP are in one to one correspondence with fusion categories.

Ingredient 4 (Perez-Garcia et al 2010, Molnar et al 2021): Full characterization of symmetries in PEPS.

$$\frac{g}{f} = \frac{U_g}{f}$$

Ingredient 2 (gap) ¿? THIS IS THE MAIN GOAL OF THESE LECTURES

SPECTRAL GAP: THE IMPOSSIBLE

Example 1: AKLT

Non-topological (**gapped**) spin liquid Universal for measurement based quantum computation

Example 1: AKLT

Non-topological (**gapped**) spin liquid Universal for measurement based quantum computation

Evidence for the gap: Pomata, Wei, Phys. Rev. Lett. 124, 177203 (2020). Lemm, Sandvick, Wang, Phys. Rev. Lett. 124, 177204 (2020).

Example 1: AKLT

Non-topological (**gapped**) spin liquid Universal for measurement based quantum computation

Evidence for the gap: Pomata, Wei, Phys. Rev. Lett. 124, 177203 (2020). Lemm, Sandvick, Wang, Phys. Rev. Lett. 124, 177204 (2020).

Example 2: RVB state

Example 1: AKLT

Non-topological (**gapped**) spin liquid Universal for measurement based quantum computation

Evidence for the gap: Pomata, Wei, Phys. Rev. Lett. 124, 177203 (2020). Lemm, Sandvick, Wang, Phys. Rev. Lett. 124, 177204 (2020).

Example 2: RVB state

Topological (**gapped**) spin liquid Proposed to explain high-Tc superconductivity

Evidence for the gap: Schuch et al, Phys. Rev. B 86, 115108 (2012)

Theorem 1 (Cubitt et al 2015, Bausch et al 2020): The existence of spectral gap is an UNDECIDABLE problem, even for 1D systems.

Theorem 1 (Cubitt et al 2015, Bausch et al 2020): The existence of spectral gap is an UNDECIDABLE problem, even for 1D systems.

Indeed many low energy properties are UNDECIDABLE, even for 1D systems. Example: violation of the area law

Theorem 1 (Cubitt et al 2015, Bausch et al 2020): The existence of spectral gap is an UNDECIDABLE problem, even for 1D systems.

Indeed many low energy properties are UNDECIDABLE, even for 1D systems. Example: violation of the area law

Theorem 2 (Scarpa et al 2020): The existence of spectral gap is an UNDECIDABLE problem, even for parent Hamiltonians of PEPS.

Indeed many properties are UNDECIDABLE in a PEPS. Example: existence of on-site symmetries.

Theorem 1 (Cubitt et al 2015, Bausch et al 2020): The existence of spectral gap is an UNDECIDABLE problem, even for 1D systems.

Indeed many low energy properties are UNDECIDABLE, even for 1D systems. Example: violation of the area law

Theorem 2 (Scarpa et al 2020): The existence of spectral gap is an UNDECIDABLE problem, even for parent Hamiltonians of PEPS.

Indeed many properties are UNDECIDABLE in a PEPS. Example: existence of on-site symmetries.

THESE ARE WORST CASE STATEMENTS

Let's get a bit more formal. Undecidability. Turing Machines

Turing Machines

Finite number of internal states $Q = \{A, B, C, ...\} \cup \{H = \text{ halting state}\}$

Turing Machines

Finite number of internal states $Q = \{A, B, C, ...\} \cup \{H = \text{ halting state}\}$

The halting problem of a TM

A TM halts on input η if it eventually enters the halting state

We say simply that a TM **halts** if it halts on input 0.

Halting problem: Given a TM, does it halt?

The halting problem of a TM

A TM halts on input η if it eventually enters the halting state

We say simply that a TM **halts** if it halts on input 0.

Halting problem: Given a TM, does it halt?

Theorem (1936, Turing): The halting problem is *undecidable*. That is, there is no algorithm (= TM) that on input another TM (= η), decides whether it halts or not.

The halting problem of a TM

A TM halts on input η if it eventually enters the halting state

We say simply that a TM **halts** if it halts on input 0.

Halting problem: Given a TM, does it halt?

Theorem (1936, Turing): The halting problem is *undecidable*. That is, there is no algorithm (= TM) that on input another TM (= η), decides whether it halts or not.

Theorem (1936, Turing): There exists a TM M, called *universal* (UTM), so that it halts on input η iff the TM= η halts on input 0.

Corollary: There is no algorithm that on input a natural number η , decides whether the UTM halts or not on input η .

Given a natural number η , $|\eta|$ denotes the number of digits in the binary expansion $\eta = \eta_1 \eta_2 \dots \eta_{|\eta|}$ $\phi(\eta) := 0.\eta_1 1 \eta_2 1 \dots 1 \eta_{|\eta|} \in [0,1]$

Given a natural number η , $|\eta|$ denotes the number of digits in the binary expansion $\eta = \eta_1 \eta_2 \dots \eta_{|\eta|}$ $\phi(\eta) := 0.\eta_1 1 \eta_2 1 \dots 1 \eta_{|\eta|} \in [0,1]$

Theorem:

We construct explicit matrices A_i , B_j so that **for all** rational $0 < \beta < 1$ the interactions

$$h^{(1)} \qquad h^{(2)} \qquad h^{(1)}(\eta) = A_1 + \beta (2^{-2|\eta|}A_2 + A_3)$$

$$h^{(2)}(\eta) = B_1 + \beta (2^{-2|\eta|}B_2 + e^{i\pi\phi(\eta)}B_3 + e^{i\pi 2^{-2|\eta|}}B_4 + B_5 + h \cdot c.)$$

$$h^{(2)}(\eta) = B_1 + \beta (2^{-2|\eta|}B_2 + e^{i\pi\phi(\eta)}B_3 + e^{i\pi 2^{-2|\eta|}}B_4 + B_5 + h \cdot c.)$$

$$h^{(2)}(\eta) = B_1 + \beta (2^{-2|\eta|}B_2 + e^{i\pi\phi(\eta)}B_3 + e^{i\pi 2^{-2|\eta|}}B_4 + B_5 + h \cdot c.)$$

$$h^{(2)}(\eta) = \sum_{i=1}^{N-1} h^{(2)}_{i,i+1}(\eta) + \sum_{i=1}^{N} h^{(1)}_i(\eta)$$

1.- Has gap ≥ 1 and unique product state for all N, if the UTM does not halt on input η

2. Has spectrum = \mathbb{R} when $N \to \infty$ if the **UTM halts on input** η

Given a natural number η , $|\eta|$ denotes the number of digits in the binary expansion $\eta = \eta_1 \eta_2 \dots \eta_{|\eta|}$ $\phi(\eta) := 0.\eta_1 1 \eta_2 1 \dots 1 \eta_{|\eta|} \in [0,1]$

Theorem:

We construct explicit matrices A_i , B_j so that **for all** rational $0 < \beta < 1$ the interactions

$$h^{(1)} \qquad h^{(2)} \qquad \qquad h^{(1)}(\eta) = A_1 + \beta (2^{-2|\eta|}A_2 + A_3) \\ h^{(2)}(\eta) = B_1 + \beta (2^{-2|\eta|}B_2 + e^{i\pi\phi(\eta)}B_3 + e^{i\pi 2^{-2|\eta|}}B_4 + B_5 + h \cdot c.)$$
have norm ≤ 1 and the Hamiltonian
$$H(\eta) = \sum_{i=1}^{N-1} h^{(2)}_{i,i+1}(\eta) + \sum_{i=1}^{N} h^{(1)}_i(\eta)$$
Classical interaction

1.- Has gap ≥ 1 and unique product state for all N, if the UTM does not halt on input η

2. Has spectrum = \mathbb{R} when $N \to \infty$ if the **UTM halts on input** η

For each Turing machine, there exists a nearest neighbor interaction in 1D whose ground state has the following periodic structure:

Halting time

For each Turing machine, there exists a nearest neighbor interaction in 1D whose ground state has the following periodic structure:

For each Turing machine, there exists a nearest neighbor interaction in 1D whose ground state has the following periodic structure:

lalting time			
4		0	1
Grows faster than any computable	A	1RB	1LE
	В	1RC	1RF
, e.g.	С	1LD	ORB
$2^{2^{2^n}}$	D	1RE	OLC
	E	1LA	ORD
	F	1RH	1RC

For each Turing machine, there exists a nearest neighbor interaction in 1D whose ground state has the following periodic structure:

Innocent looking, but ... Halting time > 10^{35000}

Associated to any PEPS there is a **parent** Hamiltonian

Associated to any PEPS there is a **parent** Hamiltonian

Associated to any PEPS there is a **parent** Hamiltonian

R

Theorem (Scarpa et al 2020) For 2D PEPS, the spectral gap problem for the parent Hamiltonian is undecidable

Theorem (Scarpa et al 2020) For 2D PEPS, the spectral gap problem for the parent Hamiltonian is undecidable

Key idea: Tiling problems can be translated into PEPS problems (and many tiling problems are undecidable)

Theorem (Scarpa et al 2020) For 2D PEPS, the spectral gap problem for the parent Hamiltonian is undecidable

Key idea: Tiling problems can be translated into PEPS problems (and many tiling problems are undecidable)

Theorem (Scarpa et al 2020) For 2D PEPS, the spectral gap problem for the parent Hamiltonian is undecidable

Key idea: Tiling problems can be translated into PEPS problems (and many tiling problems are undecidable)

YES

Theorem (Scarpa et al 2020) For 2D PEPS, the spectral gap problem for the parent Hamiltonian is undecidable

Key idea: Tiling problems can be translated into PEPS problems (and many tiling problems are undecidable)

Can one tile the plane? It is undecidable (Berger 66)

Bond dimension = number of colors

Tiles

Coefficients of the tensor = 1 (Rest = 0)

Bond dimension = number of colors

This defines a "tiling" tensor **B** with the property: **if the tile set admits a valid tiling, the tensor network gives a non-zero value for all system size. Otherwise, it give zero from some (uncomputable large) system size on.**

Bond dimension = number of colors

This defines a "tiling" tensor **B** with the property: **if the tile set admits a valid tiling, the tensor network gives a non-zero value for all system size. Otherwise, it give zero from some (uncomputable large) system size on.**

Now consider two other tensors A, C whose parent Hamiltonians are, respectively, gapped and gapless.

Verstaete et al 2016, PRL 96, 220601

Bond dimension = number of colors

This defines a "tiling" tensor **B** with the property: **if the tile set admits a valid tiling, the tensor network gives a non-zero value for all system size. Otherwise, it give zero from some (uncomputable large) system size on.**

Now consider two other tensors A, C whose parent Hamiltonians are, respectively, gapped and gapless.

T Verstaete et al 2016, PRL 96, 220601 Consider the tensor $A \oplus B \otimes C$

Gapped if and only if there is valid tiling

Appendix: Ingredient 3

RFP are in one to one correspondence with fusion categories

(J.I. Cirac, DPG, N. Schuch, F. Verstraete. Annals of Physics 2017)

Renormalization Fixed Points (RFP)

PEPS fulfill a very strong area law: isometric bulk-boundary mapping

(Poilblanc et al 2013). Bulk properties can be understood at the boundary.

More next week !!!

Renormalization Fixed Points (RFP)

PEPS fulfill a very strong area law: isometric bulk-boundary mapping

(Poilblanc et al 2013). Bulk properties can be understood at the boundary.

More next week !!!

If a PEPS is a RFP, its boundary state is an exact Matrix Product Density

Operator (MPDO), which in turn will be a RFP.

Which MPDO are RFP?

RFP = no correlation lengths in the system

RFP = no correlation lengths in the system

Type 1: Correlation functions are independent of the distance between the observables.

Type 2: Saturation of the area law for the mutual information.

"Theorem": A MPDO is a RFP if and only if there exist two quantum channels T and

"Theorem": A MPDO is a RFP if and only if there exist two quantum channels T and S so that

"Theorem": Such T and S exist if and only if the operators O_A form a finite dimensional algebra (with dimension Independent of N)

"Theorem": A MPDO is a RFP if and only if there exist two quantum channels T and S so that

"Theorem": Such T and S exist if and only if the operators O_A form a finite dimensional algebra (with dimension Independent of N)

Verstraete's group

One obtains a fusion category. The RFP MPDO is exactly the boundary theory associated to the corresponding string-net model.

More next week!