
Spectral gaps in PEPS:  
the possible and the impossible

David Pérez-García

Project 648913



REVIEW ON ANALYTICAL RESULTS ON PEPS. 

I. Cirac, D Perez-Garcia, N Schuch, F Verstraete, Matrix product states and projected 
entangled pair states: Concepts, symmetries, and theorems, arXiv preprint arXiv:2011.12127 

javascript:void(0)
javascript:void(0)


Motivation: 
Classification of topological quantum 

phases



Very nice outreach article in  
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 Quantum phases.

What is a phase?

Temperature

Phase transitions

A phase should be something like: “the equivalence class of all states of matter with 
similar properties”

At zero temperature: Quantum phases. 

They include very exotic phenomena: topological order, 
superconductivity, spin liquids, etc. 

Crystal Spin liquid

Strength of repulsion terms



Making it formal. The spectral gap
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The spectral gap

N

N

Spin s particles.

Translational invariant finite range interaction 

Spectral gap:   γN = λ1(N ) − λ0(N )

i

Hamiltonian:

The system has gap if there exists c>0 such that    for all N? ΔN > c

H = ∑
i

hi ⊗ Idrest
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Quantum phases

Two main reasons for this definition: 

It is stable against small errors in the interactions.  

Observable quantities on the ground state behave smoothly through the path (no 
phase transitions).  



An approach to the classification of 
phases with Tensor Networks: 
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The 1D case
Ingredient 1 (Hastings 2007, Arad et al. 2013): MPS approximate well ground states of 1D 
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Hamiltonians having MPS as ground states 

Ingredient 3 (Verstraete et al. 2005, Perez-Garcia et al. 2007): A good description of 
renormalization transformations in MPS and the structure (phase invariants) of their fixed 
points.  
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Hamiltonians with gap. 

Ingredient 2 (Nachtergaele 1995): A lower bound on the spectral gap of certain (parent) 
Hamiltonians having MPS as ground states 

Ingredient 3 (Verstraete et al. 2005, Perez-Garcia et al. 2007): A good description of 
renormalization transformations in MPS and the structure (phase invariants) of their fixed 
points.  

Gap iff same 
invariants 
(Ingredients 2,3)

Renormalization flow.  
Always gap.  
Ingredient 2

Enough to start with MPS. Ingredient 1|MPS1⟩ |MPS2⟩

|RFP1⟩ |RFP2⟩



PERIODIC TABLE in 1D: 
Phases are indexed by the degeneracy of the ground space

Pollmann, Berg, Turner, Oshikawa, Phys. Rev. B. 81, 064439 (2010) 
Chen, Gu, Wen, Phys. Rev. B 83, 035107 (2011) 
Fidkowski, Kitaev, Phys. Rev. B 83, 075103 (2011) 
Schuch, Pérez-García, Cirac, Phys. Rev. B 84, 165139 (2011) 
Haegeman, Pérez-García, Cirac, Schuch, Phys. Rev. Lett. 109, 050402 (2012) 
Bachman, Nachtergaele, Commun. Math. Phys., 329, 509-544 (2014)

The 1D case

Ingredient 4 (Perez-Garcia et al 2008): A characterization for MPS of global symmetries.  

PERIODIC TABLE for Symmetry Protected Topological (SPT)  Phases in 1D: 
Phases are indexed by the second cohomology group.

Y. Ogata: Extend this program to the set of Hamiltonians
Y. Ogata, arXiv:1810.01045, arXiv:1908.08621, arXiv:2101.00426



An approach to the classification of 
phases with Tensor Networks: 

Ingredients in the 2D case



The 2D case

Ingredient 1 (Hastings 2006, Molnar et al. 2014): PEPS approximate well ground states of 2D 
Hamiltonians with gap: 
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FIG. 1: We consider a PEPS state on a square lattice. a) Section of the PEPS on region A ✓ ⇤,
b) Graphical representation of the tensors T k

j1,j2,j3,j4 , c) representation of the operator VA on a one
dimensional lattice. The operator is to be read as mapping virtual indices (from the right) to physical
indices (to the left).

If instead there are edges connecting ⇤ with its complement in (G, V ), then we obtain a
state in H⇤ for each choice of “boundary condition”, in the following sense: denote with
E⇤̄ the edges which are incident to ⇤, with E⇤ the edges with are contained in ⇤, and with
@⇤ = E⇤̄ \E⇤ the edges that connect ⇤ with its complement. Let H@⇤ =

N
e2@⇤ HD (note

that while at each edge we associated |!ei 2 HD ⌦HD, we are only including one copy of
HD in H@⇤). Then for each vector |Xi 2 H@⇤ we can define a state

|PEPS⇤,Xi = hX|

O

v2⇤

Tv

O

e2E⇤̄

|!ei . (4)

This defines a linear map from H@⇤ to H⇤, which we will denote with V⇤. It is a mapping
from the virtual indices at the boundary of ⇤ to the physical indices in the bulk of ⇤ (see
Fig. 1 for an illustration):

V⇤ :H@⇤ ! H⇤

|Xi 7! |PEPS⇤,Xi .

A PEPS is said to be injective on ⇤ [52] if V⇤ is an injective map. As shown in Ref. [52], if a
PEPS is injective on disjoint regions A and B, it is also injective on A[B, so we will simply
assume, up to coarse graining of the lattice, that V⇤ is injective for every finite ⇤.

Again following Ref. [52], for any injective PEPS, we can define a local Hamiltonian,
called the parent Hamiltonian, for which the PEPS is the unique groundstate. This is done
by considering, for each edge e = (a, b), the orthogonal projector he on the orthogonal
complement of ImV{a,b}. Then H⇤ =

P
(a,b)2E⇤

he is a local Hamiltonian, and clearly
H⇤ |PEPS⇤,Xi = 0. H⇤ is frustration-free: i.e. he |PEPS⇤,Xi = 0 for all e 2 E⇤.

It will be very important for us to talk about sub-regions of the lattice A ✓ ⇤, and to
consider the associated local ground subspace GA = {|'i 2 H⇤ |HA |�i = 0} = ImVA,
for HA =

P
e2EA

he. We will denote with PA the orthogonal projector on GA. Because
of frustration freeness, for any A ✓ B ✓ ⇤, we have G⇤ ✓ GB ✓ GA, and therefore
PAPB = PB = PBPA.

At times, we will need to refer to Hamiltonians both in the bulk (2D) and at the boundary
(1D). In order to avoid confusion, we will always denote one dimensional boundary Hamil-
tonians by the letters Q,R, S, T , while the parent Hamiltonian of the PEPS will always be
referred to as H .
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Ingredient 4 (Perez-Garcia et al 2010, Molnar et al 2021): Full characterization of symmetries in PEPS.  
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It exhibits the global symmetry Y ⌦N , as this is just the
product of all (commuting) terms of the Hamiltonian. To
use the fundamental theorem of PEPS, we first block two
sites of this PEPS such as to make it uniform, and it can
then readily be checked that the local physical symmetry
is equivalent to acting on all virtual legs with the same
Y on all four legs. This cluster state is interesting from
the point of view of quantum information theory, as it
allows to do universal quantum computation by imple-
menting local measurements on its qubits (Raussendorf
and Briegel, 2001). The underlying mechanism which
allows for this remarkable feature is the fact that local
measurements on the physical qubits e↵ectively teleport
the virtual degrees of freedom, and in that process im-
plement quantum gates (Verstraete and Cirac, 2004b).
A related mechanism underlies the concept of topologi-
cal quantum computation by braiding anyons, which can
be understood in terms of quantum circuits on the en-
tanglement degrees of freedom of the PEPS describing
the topological phase.

Note that we had to block sites of the cluster state to
get a uniform PEPS description. From the point of view
of space group symmetries, this is not wholly satisfactory
as this leads to a loss of symmetry in the system. It turns
out that the full space group symmetry can be done jus-
tice for general PEPS by including matrices which just
act on the virtual edges connecting the vertices of the
PEPS. By imposing translational symmetry, it will then
follow that this decorated PEPS will be uniform and ex-
hibit all lattice symmetries (Jiang and Ran, 2017).

b. Non-injective PEPS: SPT phases Injective PEPS on a
square lattice are rare, as the injectivity condition is typi-
cally violated at the corners of the region of interest. Un-
like the MPS case however, non-injective PEPS can still
be unique ground states of local gapped Hamiltonians.
The 2-D AKLT model on the square lattice is such an
example. The non-injectivity gives rise to a much more
interesting algebraic structure in the form of a family of
matrix product operator symmetries Og labelled by the
group elements of the global symmetry (Molnar et al.,
2018b; Williamson et al., 2016):

g

=
Ug

g
(53)

It is easy to see that this local condition is su�cient
for the complete PEPS to be invariant under the global
symmetry U⌦N (g) in the thermodynamic limit.

To be consistent, the MPOs Og should form a repre-
sentation of the group G: Og.Oh = Ogh. Remarkably,
the fundamental theorem of MPS allows to translate this
condition into a local condition for the tensors defining
these MPOs, as two MPOs are equal to each other if

and only if there exists an intertwiner (or fusion tensor)
connecting them to each other:

g g

h h
Xghgh =

g

h
Xghghgh

The associativity condition for these fusion tensors
then leads to the condition that both the elements of
these MPOs and of the intertwiners can be identified with
the elements of a 3-cocycle, determined by the third coho-
mology group H3(G,U(1)). This situation is completely
equivalent to the one discussed in Section III.A.6, but
for the special case of the fusion algebra being a group.
The third cohomology group is well known to classify
symmetry protected topological phases in 2 dimensions
(Chen et al., 2011c), and PEPS hence provides a natural
realization of such phases.
Just as in the case of 2-cocycles, there is a systematic

way of writing down PEPS tensors which exhibit such
MPO symmetries (Williamson et al., 2016). Indeed, the
pulling through equation 53 can componentswise be iden-
tified with the 3-cocycle condition.
The canonical example of a non-trivial SPT PEPS

was derived in (Chen et al., 2011c) as the CZX state
with global Z2 symmetry, for which the virtual MPO
symmetry is represented by the following two matrix
product unitaries acting on qubits: O1 = 11 ,
OZ = ⌦iCZi,i+1 ⌦i Xi. Here the commuting matri-
ces CZi,i+1 =

P
ij(�1)i.j |ijihij| represent diagonal con-

trolled Z-gates. OZ has bond dimension 2, but the square
of it is not in canoncial form and has a 1-dimensional in-
variant subspace equal to O1 = 11.

These ideas were worked out in the papers (Buer-
schaper, 2014; Molnar et al., 2018b; Williamson et al.,
2016). It was demonstrated that this notion of MPO-
injectivity - also called semi-injective - is su�cient for
guaranteeing the uniqueness of the ground state of the
corresponding parent Hamiltonian, and that the corre-
sponding PEPS fully characterize short-range entangled
SPT phases.

c. Virtual Symmetries One of the most striking features
of two-dimensional quantum spin systems is the fact that
there exist topological phases of matter which are sta-
ble under any perturbations (Bravyi et al., 2010; Klich,
2010). This robustness is a consequence of its nontriv-
ial entanglement structure, which is reflected in the be-
haviour of the topological entanglement entropy, of its
edge modes, and in the anyonic statistics of its elemen-
tary excitations. Tensor networks provide a natural lan-
guage for describing all those features in terms of the
local symmetries of the tensors involved.

The fact that there is a connection between topological
phases of matter and symmetries in the tensors has its
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It exhibits the global symmetry Y ⌦N , as this is just the
product of all (commuting) terms of the Hamiltonian. To
use the fundamental theorem of PEPS, we first block two
sites of this PEPS such as to make it uniform, and it can
then readily be checked that the local physical symmetry
is equivalent to acting on all virtual legs with the same
Y on all four legs. This cluster state is interesting from
the point of view of quantum information theory, as it
allows to do universal quantum computation by imple-
menting local measurements on its qubits (Raussendorf
and Briegel, 2001). The underlying mechanism which
allows for this remarkable feature is the fact that local
measurements on the physical qubits e↵ectively teleport
the virtual degrees of freedom, and in that process im-
plement quantum gates (Verstraete and Cirac, 2004b).
A related mechanism underlies the concept of topologi-
cal quantum computation by braiding anyons, which can
be understood in terms of quantum circuits on the en-
tanglement degrees of freedom of the PEPS describing
the topological phase.

Note that we had to block sites of the cluster state to
get a uniform PEPS description. From the point of view
of space group symmetries, this is not wholly satisfactory
as this leads to a loss of symmetry in the system. It turns
out that the full space group symmetry can be done jus-
tice for general PEPS by including matrices which just
act on the virtual edges connecting the vertices of the
PEPS. By imposing translational symmetry, it will then
follow that this decorated PEPS will be uniform and ex-
hibit all lattice symmetries (Jiang and Ran, 2017).

b. Non-injective PEPS: SPT phases Injective PEPS on a
square lattice are rare, as the injectivity condition is typi-
cally violated at the corners of the region of interest. Un-
like the MPS case however, non-injective PEPS can still
be unique ground states of local gapped Hamiltonians.
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example. The non-injectivity gives rise to a much more
interesting algebraic structure in the form of a family of
matrix product operator symmetries Og labelled by the
group elements of the global symmetry (Molnar et al.,
2018b; Williamson et al., 2016):

g

=
Ug

g
(53)

It is easy to see that this local condition is su�cient
for the complete PEPS to be invariant under the global
symmetry U⌦N (g) in the thermodynamic limit.
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(Chen et al., 2011c), and PEPS hence provides a natural
realization of such phases.
Just as in the case of 2-cocycles, there is a systematic

way of writing down PEPS tensors which exhibit such
MPO symmetries (Williamson et al., 2016). Indeed, the
pulling through equation 53 can componentswise be iden-
tified with the 3-cocycle condition.
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was derived in (Chen et al., 2011c) as the CZX state
with global Z2 symmetry, for which the virtual MPO
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of it is not in canoncial form and has a 1-dimensional in-
variant subspace equal to O1 = 11.

These ideas were worked out in the papers (Buer-
schaper, 2014; Molnar et al., 2018b; Williamson et al.,
2016). It was demonstrated that this notion of MPO-
injectivity - also called semi-injective - is su�cient for
guaranteeing the uniqueness of the ground state of the
corresponding parent Hamiltonian, and that the corre-
sponding PEPS fully characterize short-range entangled
SPT phases.

c. Virtual Symmetries One of the most striking features
of two-dimensional quantum spin systems is the fact that
there exist topological phases of matter which are sta-
ble under any perturbations (Bravyi et al., 2010; Klich,
2010). This robustness is a consequence of its nontriv-
ial entanglement structure, which is reflected in the be-
haviour of the topological entanglement entropy, of its
edge modes, and in the anyonic statistics of its elemen-
tary excitations. Tensor networks provide a natural lan-
guage for describing all those features in terms of the
local symmetries of the tensors involved.

The fact that there is a connection between topological
phases of matter and symmetries in the tensors has its
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Example 1: AKLT

Example 2: RVB state

Evidence for the gap:
Pomata, Wei, Phys. Rev. Lett. 124, 177203 (2020).
Lemm, Sandvick, Wang, Phys. Rev. Lett. 124, 177204 (2020). 

Evidence for the gap:
Schuch et al, Phys. Rev. B 86, 115108 (2012)

Non-topological (gapped) spin liquid
Universal for measurement based quantum computation

Topological (gapped) spin liquid
Proposed to explain high-Tc superconductivity
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Undecidability. Turing Machines
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Turing Machines

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A

Head with internal state A

Infinite tape with starting cell

Initial 
config.

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

C

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

B

Time =1

Time =2

Finite number of internal states Q = {A, B, C, …} ∪ {H =  halmng state}

Finite alphabet S = {0,1}

Instructions  δ : Q × S → Q × S × {L, R} E.g.  δ(A,0) = (C,1,R)
 δ(C,0) = (B,1,L)Turing Machines  Natural numbers⇔
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A TM halts on input  if it eventually enters the halting state  η

Halting problem: Given a TM, does it halt? 

Theorem  (1936, Turing): The halting problem is undecidable. That is, there is no algorithm 
(= TM) that on input another TM ( ), decides whether it halts or not.= η

We say simply that a TM halts if it halts on input 0. 

Theorem  (1936, Turing): There exists a TM M, called universal (UTM), so that it halts on 
input  iff the TM=  halts on input 0.η η

Corollary: There is no algorithm that on input a natural number , decides whether 
the UTM halts or not on input .

η
η

0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0

A In binary η = 1101



    Theorem:  

  

Undecidability of the spectral gap in 1D
Given a natural number , denotes the number of digits in the binary expansion  
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    Theorem:  
We construct explicit matrices  so that for all rational  the interactions 

have norm  and the Hamiltonian   

  

1.- Has gap  and unique product state for all N, if the UTM does not halt on input   

2.  Has spectrum =  when  if the UTM halts on input 

Ai, Bj 0 < β < 1

≤ 1

≥ 1 η
ℝ N → ∞ η

Only dependency on η

h(1) h(2) h(1)(η) = A1 + β (2−2|η|A2 + A3)

h(2)(η) = B1 + β (2−2|η|B2 + eiπϕ(η)B3 + eiπ2−2|η|B4 + B5 + h . c.)

H(η) =
N−1

∑
i=1

h(2)
i,i+1(η) +

N

∑
i=1

h(1)
i (η) Classical interaction

Given a natural number , denotes the number of digits in the binary expansion  

 

η |η | η = η1η2…η|η|

ϕ(η) := 0.η11η21…1η|η| ∈ [0,1]
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Halting time

Key ingredient: very long periods (or a very exotic spin chain)

For each Turing machine, there exists a nearest neighbor interaction in 1D whose ground 
state has the following periodic structure:

0 1

A 1RB 1LE
B 1RC 1RF
C 1LD 0RB
D 1RE 0LC
E 1LA 0RD
F 1RH 1RC

Grows faster than 
any computable 
function, e.g.  

222n

Innocent looking, but … 
Halting time > 1035000
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Undecidability of the spectral gap in PEPS

XGR = { : X}

Associated to any PEPS there is a parent Hamiltonian

hR = P⊥
GR

H = ∑
R

hR
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Undecidability of the spectral gap in PEPS

Theorem (Scarpa et al 2020) For 2D PEPS, the spectral gap problem for the parent 
Hamiltonian is undecidable

Key idea: Tiling problems can be translated into PEPS problems (and many tiling problems 
are undecidable)

NO

YES

Can one tile the plane?  It is undecidable (Berger 66)



Undecidability of the spectral gap in PEPS

Bond dimension = number of colors 

Tiles  Coefficients of the tensor = 1  
(Rest = 0)



Undecidability of the spectral gap in PEPS

Bond dimension = number of colors 

Tiles  Coefficients of the tensor = 1  
(Rest = 0)

This defines a “tiling” tensor B with the property: if the tile set admits a valid tiling, the 
tensor network gives a non-zero value for all system size. Otherwise, it give zero from 
some (uncomputable large) system size on.  



Undecidability of the spectral gap in PEPS

Bond dimension = number of colors 

Tiles  Coefficients of the tensor = 1  
(Rest = 0)

This defines a “tiling” tensor B with the property: if the tile set admits a valid tiling, the 
tensor network gives a non-zero value for all system size. Otherwise, it give zero from 
some (uncomputable large) system size on.  

Now consider two other tensors A, C whose parent Hamiltonians are, respectively, gapped 
and gapless.

Verstaete et al 2016, PRL 96, 220601 



Undecidability of the spectral gap in PEPS

Bond dimension = number of colors 

Tiles  Coefficients of the tensor = 1  
(Rest = 0)

This defines a “tiling” tensor B with the property: if the tile set admits a valid tiling, the 
tensor network gives a non-zero value for all system size. Otherwise, it give zero from 
some (uncomputable large) system size on.  

Now consider two other tensors A, C whose parent Hamiltonians are, respectively, gapped 
and gapless.

Consider the tensor   

Gapped if and only if there is valid tiling 

A ⊕ B ⊗ C
Verstaete et al 2016, PRL 96, 220601 



Appendix: Ingredient 3 
RFP are in one to one correspondence with fusion categories 

(J.I. Cirac, DPG, N. Schuch, F. Verstraete. Annals of Physics 2017)
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Renormalization Fixed Points (RFP)

A A A A…

Which MPDO are RFP? 

RFP = no correlation lengths in the system

If a PEPS is a RFP, its boundary state is an exact Matrix Product Density 

Operator (MPDO), which in turn will be a RFP.

PEPS fulfill a very strong area law: isometric bulk-boundary mapping 

(Poilblanc et al 2013). Bulk properties can be understood at the boundary. 

More next week !!!



RFP MPDOs

RFP = no correlation lengths in the system

Type 1: Correlation functions are independent of the distance 

between the observables. 

Type 2: Saturation of the area law for the mutual information. 

A A A A…
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RFP MPDOs
“Theorem”: A MPDO is a RFP if and only if there exist two quantum channels T and 
S so that 

 

A AA
T

S

“Theorem”: Such T and S exist if and only if the 
operators  OA form a finite dimensional algebra 

(with dimension Independent of N)  
OA

N =

One obtains a fusion category. The RFP MPDO is 
exactly the boundary theory associated to the 
corresponding string-net model. 

Verstraete’s group

A

A

…



More next week!


