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Motivation

Classification of topological quantum

phases



Very nice outreach article in

Quanta Magazine




Quantum phases.

What is a phase?
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At zero temperature: Quantum phases.

They include very exotic phenomena: topological order,
superconductivity, spin liquids, etc.
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Quantum phases.

What is a phase? At zero temperature: Quantum phases.

They include very exotic phenomena: topological order,
superconductivity, spin liquids, etc.

Temperature

Strength of repulsion terms
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Phase transitions Crystal Spin liquid

A phase should be something like: “the equivalence class of all states of matter with
similar properties”




Making it formal. The spectral gap
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The spectral gap

@ © 060 O Spin s particles.

@ ¢ 00 O Translational invariant finite range interaction
66066 Hamiltonian:

@ 00 O |

H= Z hi 2 Idrest

Spectral gap: yy = 4{(N) — Ay(N)

The system has gap if there exists ¢>0 such that A, > ¢ for all N?




Quantum phases

PHASE = an equivalence relation on U M,

r

Two systems governed by interactions hO k! are in the same phase iff there is a smooth

path of interactions [0,1] © a — A% and a constant c>0 s.t the gap Ay(a) of the

Hamiltonian Zh;’@Idrest is Ay(a) > ¢ forall N, a
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Quantum phases

PHASE = an equivalence relation on U M,

r

-

Two systems governed by interactions hO k! are in the same phase iff there is a smooth

path of interactions [0,1] © a — A% and a constant c>0 s.t the gap Ay(a) of the

Hamiltonian Zhi"@)ldrest is Ay(a) > ¢ forall N, a

Two main reasons for this definition:
It is stable against small errors in the interactions.

Observable quantities on the ground state behave smoothly through the path (no
phase transitions).
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Ingredient 1 (Hastings 2007, Arad et al. 2013): MPS approximate well ground states of 1D
Hamiltonians with gap.

Ingredient 2 (Nachtergaele 1995): A lower bound on the spectral gap of certain (parent)
Hamiltonians having MPS as ground states

Ingredient 3 (Verstraete et al. 2005, Perez-Garcia et al. 2007): A good description of
renormalization transformations in MPS and the structure (phase invariants) of their fixed
points.
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The 1D case

Ingredient 1 (Hastings 2007, Arad et al. 2013): MPS approximate well ground states of 1D
Hamiltonians with gap.

Ingredient 2 (Nachtergaele 1995): A lower bound on the spectral gap of certain (parent)
Hamiltonians having MPS as ground states

Ingredient 3 (Verstraete et al. 2005, Perez-Garcia et al. 2007): A good description of
renormalization transformations in MPS and the structure (phase invariants) of their fixed
points.

|RFP1> 4------------} |RFP2>

A4 Gap iff same b
: invariants “ Renormalization flow.
& (Ingredients 2,3) e, Always gap.
" ol Ingredient 2
& .
& .
| a

| MPSI> Enough to start with MPS. Ingredient 1 | MPSZ>



The 1D case

PERIODIC TABLE in 1D:
Phases are indexed by the degeneracy of the ground space

Ingredient 4 (Perez-Garcia et al 2008): A characterization for MPS of global symmetries.

PERIODIC TABLE for Symmetry Protected Topological (SPT) Phases in 1D:
Phases are indexed by the second cohomology group.

Pollmann, Berg, Turner, Oshikawa, Phys. Rev. B. 81, 064439 (2010)

Chen, Gu, Wen, Phys. Rev. B 83, 035107 (2011)

Fidkowski, Kitaev, Phys. Rev. B 83, 075103 (2011)

Schuch, Pérez-Garcia, Cirac, Phys. Rev. B 84, 165139 (2011)

Haegeman, Pérez-Garcia, Cirac, Schuch, Phys. Rev. Lett. 109, 050402 (2012)
Bachman, Nachtergaele, Commun. Math. Phys., 329, 509-544 (2014)

Y. Ogata: Extend this program to the set of Hamiltonians

Y. Ogata, arXiv:1810.01045, arXiv:1908.08621, arXiv:2101.00426



An approach to the classification of
phases with Tensor Networks:

Ingredients in the 2D case



The 2D case

Ingredient 1 (Hastings 2006, Molnar et al. 2014): PEPS approximate well ground states of 2D
Hamiltonians with gap:
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The 2D case

Ingredient 1 (Hastings 2006, Molnar et al. 2014): PEPS approximate well ground states of 2D
Hamiltonians with gap:

Ingredient 3 (Bultinck et al 2015, Cirac et al 2017, ...): RFP are in one to one correspondence with
fusion categories.

Ingredient 4 (Perez-Garcia et al 2010, Molnar et al 2021): Full characterization of symmetries in PEPS.
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Ingredient 2 (gap) é? THIS IS THE MAIN GOAL OF THESE LECTURES



SPECTRAL GAP:
THE IMPOSSIBLE



The gap problem is notoriously hard, even for PEPS

Non-topological (gapped) spin liquid
Universal for measurement based quantum computation

Example 1: AKLT
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The gap problem is notoriously hard, even for PEPS

Non-topological (gapped) spin liquid
Universal for measurement based quantum computation

Example 1: AKLT

Evidence for the gap:
Pomata, Wei, Phys. Rev. Lett. 124, 177203 (2020).
Lemm, Sandvick, Wang, Phys. Rev. Lett. 124, 177204 (2020).

Example 2: RVB state Topological (gapped) spin liquid
Proposed to explain high-Tc superconductivity

Evidence for the gap:
Schuch et al, Phys. Rev. B 86, 115108 (2012)



The spectral gap problem is officially hard, even for PEPS

Theorem 1 (Cubitt et al 2015, Bausch et al 2020): The existence of spectral gap is an

UNDECIDABLE problem, even for 1D systems.



The spectral gap problem is officially hard, even for PEPS

Theorem 1 (Cubitt et al 2015, Bausch et al 2020): The existence of spectral gap is an

UNDECIDABLE problem, even for 1D systems.

Indeed many low energy properties are UNDECIDABLE, even for 1D systems. Example:
violation of the area law



The spectral gap problem is officially hard, even for PEPS

Theorem 1 (Cubitt et al 2015, Bausch et al 2020): The existence of spectral gap is an

UNDECIDABLE problem, even for 1D systems.

Indeed many low energy properties are UNDECIDABLE, even for 1D systems. Example:
violation of the area law

Theorem 2 (Scarpa et al 2020): The existence of spectral gap is an UNDECIDABLE

problem, even for parent Hamiltonians of PEPS.

Indeed many properties are UNDECIDABLE in a PEPS. Example: existence of on-site
symmetries.



The spectral gap problem is officially hard, even for PEPS

Theorem 1 (Cubitt et al 2015, Bausch et al 2020): The existence of spectral gap is an

UNDECIDABLE problem, even for 1D systems.

Indeed many low energy properties are UNDECIDABLE, even for 1D systems. Example:
violation of the area law

Theorem 2 (Scarpa et al 2020): The existence of spectral gap is an UNDECIDABLE

problem, even for parent Hamiltonians of PEPS.

Indeed many properties are UNDECIDABLE in a PEPS. Example: existence of on-site
symmetries.

THESE ARE WORST CASE STATEMENTS



Let’s get a bit more formal.

Undecidability. Turing Machines



Turing Machines

Finite number of internal states Q = {A, B, C, ...} U {H = halting state}

Finite alphabet S = {0,1} Head with internal state

=

A

E—
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Infinite tape with starting cell f
Instructions 0 : O XS - O XS X {L,R}

Turing Machines < Natural numbers

Initial
config.



Turing Machines

Finite number of internal states O = {A, B, C, ...} U {H = halting state}

e

Infinite tape with starting cell f

Instructions 0 : O XS - O XS X {L,R} E.g. 6(A,0) = (C,1,R)
o(C,0) = (B,1,L)

Finite alphabet S = {0,1}

Turing Machines < Natural numbers @

=

Head with internal state A

E—

=_

Initial
config.

0 Jo oo o Jo jo |1 oo Jojojo o lo o BELL

0 jo o oo Jo jo |1 1o Jo jo [0 o lo o BRI



The halting problem of a TM

A TM halts on input 7 if it eventually enters the halting state

@ In binary n = 1101
0 [0 Jo [0 jo Jo 0o jo 1 o1 1[0 o0 o

We say simply that a TM halts if it halts on input 0.
Halting problem: Given a TM, does it halt?
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The halting problem of a TM

A TM halts on input 7 if it eventually enters the halting state

@ In binary n = 1101
0 [0 Jo [0 jo Jo 0o jo 1 o1 1[0 o0 o

We say simply that a TM halts if it halts on input O.

Halting problem: Given a TM, does it halt?

Theorem (1936, Turing): The halting problem is undecidable. That is, there is no algorithm
(= TM) that on input another TM ( = 7), decides whether it halts or not.

Theorem (1936, Turing): There exists a TM M, called universal (UTM), so that it halts on
input 7 iff the TM=n halts on input O.

Corollary: There is no algorithm that on input a natural number #, decides whether

the UTM halts or not on input 7.




Undecidability of the spectral gap in 1D

Given a natural number 7, | 17| denotes the number of digits in the binary expansion n = 1,7,.. i

Theorem:
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Given a natural number 7, | 17| denotes the number of digits in the binary expansion n = 1,7,.. i

Theorem:
We construct explicit matrices A;, B; so that for all rational 0 < / < 1 the interactions
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2. Has spectrum = R when N — oo if the UTM halts on input




Undecidability of the spectral gap in 1D

Given a natural number 7, | 17| denotes the number of digits in the binary expansion n = 1,7,.. i

Theorem:
We construct explicit matrices A;, B; so that for all rational 0 < / < 1 the interactions

0 e WD) = Ay + f (27214, + A3)
@ © 00 O K@) = B, + B (2721B, + ¢™WB, + ¢ "B, 4 B. + h.c.)

‘ A A A

have norm < 1 and the Hamiltonian Only dependency on 7

N—1 N
H(np) = Z hl_(?}rl(ﬂ) + Z hi(l)(n) Classical interaction
i=1 i=1

1.- Has gap > 1 and unique product state for all N, if the UTM does not halt on input #
2. Has spectrum = R when N — oo if the UTM halts on input
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Key ingredient: very long periods (or a very exotic spin chain)

For each Turing machine, there exists a nearest neighbor interaction in 1D whose ground
state has the following periodic structure:

BT T T T T N T T T T TN TTTTT I

Halting time

A
Grows faster than A 1RB 1LE
any computable B 1RC 1RF
function, e.g. C 1LD ORB
72" D 1RE OLC
E 1LA ORD
F 1RH 1RC

Innocent looking, but ...

Halting time > 1035000
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Theorem (Scarpa et al 2020) For 2D PEPS, the spectral gap problem for the parent
Hamiltonian is undecidable

Key idea: Tiling problems can be translated into PEPS problems (and many tiling problems
are undecidable)

X DA KK
K X [ 4 g X X

KD

% "




Undecidability of the spectral gap in PEPS

Theorem (Scarpa et al 2020) For 2D PEPS, the spectral gap problem for the parent
Hamiltonian is undecidable

Key idea: Tiling problems can be translated into PEPS problems (and many tiling problems
are undecidable)

. . . . . . Can one tile the plane? It is undecidable (Berger 66)
X X X P} o PRI XS

b S
- NO PO 60000
N\

Al
¢ 0974
4

YES '4: PO OO0 1:'
g XP

0.0 0 0.9,



Undecidability of the spectral gap in PEPS
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some (uncomputable large) system size on.
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Undecidability of the spectral gap in PEPS

Bond dimension = number of colors

m E E . E Tiles «———» Coefficients of the tensor =1
X X XK T4 D DX DX (Rest = 0)

This defines a “tiling” tensor B with the property: if the tile set admits a valid tiling, the
tensor network gives a non-zero value for all system size. Otherwise, it give zero from
some (uncomputable large) system size on.

Now consider two other tensors A, C whose parent Hamiltonians are, respectively, gapped
and gapless.

f Consider thetensorA @ B ® C
Verstaete et al 2016, PRL 96, 220601

Gapped if and only if there is valid tiling



Appendix: Ingredient 3

RFP are in one to one correspondence with fusion categories
(J.1. Cirac, DPG, N. Schuch, F. Verstraete. Annals of Physics 2017)



Renormalization Fixed Points (RFP)

PEPS fulfill a very strong area law: isometric bulk-boundary mapping

(Poilblanc et al 2013). Bulk properties can be understood at the boundary.

More next week !!!




Renormalization Fixed Points (RFP)

PEPS fulfill a very strong area law: isometric bulk-boundary mapping

(Poilblanc et al 2013). Bulk properties can be understood at the boundary.

More next week !!!

If a PEPS is a RFP, its boundary state is an exact Matrix Product Density
Operator (MPDO), which in turn will be a RFP.

Which MPDO are RFP?

RFP = no correlation lengths in the system



RFP MPDOs

RFP = no correlation lengths in the system

Type 1: Correlation functions are independent of the distance

between the observables.

Type 2: Saturation of the area law for the mutual information.
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RFP MPDOs
“Theorem”: A MPDO is a RFP if and only if there exist two quantum channels T and

S so that
T

S

“Theorem”: Such T and S exist if and only if the

T4 operators O, form a finite dimensional algebra

(with dimension Independent of N)

Verstraete’s group

One obtains a fusion category. The RFP MPDO is

exactly the boundary theory associated to the

corresponding string-net model.




More next week!



