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Gapped ground state phases
The term phase here refers to an open region in a space of Hamiltonians in which
there are no phase transitions and where the ground states have qualitatively similar
properties.
More precisely: two Hamiltonians, H(0) and H(1) are in the same phase, if there
exists a differentiable interpolation [0, 1] 3 s 7→ H(s) such that H(s) has a gap
≥ γ > 0, for all s ∈ [0, 1], and uniformly in the system size. (Chen-Gu-Wen 2011).

Possible closing of the gap makes sense only for infinite systems, while the
Hamiltonians are, a priori, well-defined only for finite systems.

For example, consider system on Zν that have a well-defined thermodynamic limit and
with Hamiltonians HΛ, for finite Λ ⊂ Zν of the form

HΛ(s) =
∑
X⊂Λ

Φ(X , s), for example Φ(X , s) = (1− s)Φ0(X ) + sΦ1(X ).

and require that the interaction Φ are sufficiently short-range.

For symmetry protected (topological) (SPT) phases one requires that H(s) has a
given symmetry for all s (Pollmann et al, 2012).
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Stability of the spectral gap for finite systems
For a model with a gap above the ground state to represent a gapped phase, the gap
should be stable under a broad class of perturbations.

HΛ(s) = HΛ(0) + sVΛ

s

λ(s)

EΛ
0

EΛ
1

γ

sΛ
γ

The spectral gap of HΛ(s) above the ‘ground state’ is at least γ for all 0 ≤ s ≤ sΛ
γ .

Stability means that there is a Λ-independent lower bound for sΛ
γ .
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Stability of the spectral gap for infinite systems
We start from the observation that the Heisenberg dynamics of observables in the bulk
is not sensitive to boundary effects:

d

dt
A(t) = i lim

Λ→Γ
[HΛ(s),A(t)] = iδs(A(t)),A(0) any local observable,

with Γ the infinite lattice, and δs(A) is the commutator

δs(A) = [H(s),A] = [
∑
x∈Γ

hx + s
∑
X⊂Γ

Φ(X ),A].

We assume that Γ is finite-dimensional in the sense that there is ν > 0 for which

# sites in any ball of radius n ≤ cnν , for all n ≥ 1.

We think of Γ as boundary-less, i.e. describing the bulk.

For finite Λ ⊂ Γ, the gap of HΛ(s) may vanish with increasing Λ, due to edge states.
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Figure: Penrose tiling. Ammann-Beenker tiling. Edges state or not? (T. Loring, J. Math. Phys.
60, 081903 (2019))
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Infinite-system Hilbert space
Assume the ground state is unique for the infinite system: there is a unique
thermodynamic limit of any sequence of ground states, for any choice of boundary
conditions.

〈A〉Λn → 〈A〉Γ, A local.

Fact (GNS representation): there is a Hilbert space H in which the ground state of
the infinite system is given by a vector, say, |1〉.

General vectors in H are of the form |A〉 (or limits thereof).

The (quasi-local) observables A,B, . . . act as follows:

Ã|1〉 = |A〉, and B̃|A〉 = |BA〉.

Here, the Ã, B̃ denote a representation of the observables. This representation is an
isomorphism.

The inner product is
〈B|A〉 = 〈1|B∗A|1〉 = 〈B∗A〉Γ.
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Infinite-system Hamiltonian and bulk spectrum
Our main object of interest is the Hamiltonian on H. One gets it from the Heisenberg
dynamics:

Ã(t) = e itH Ãe−itH , and setting H|1〉 = 0

implies the definition

H|A〉 = HA|1〉 = [H,A]|1〉 = i
d

dt

∣∣∣∣
t=0

e itH Ãe−itH |1〉 = i
d

dt

∣∣∣∣
t=0

Ã(t)|1〉.

H is an unbounded self-adjoint operator. Its spectrum are the energies of excitations
above the ground state in the bulk.

Perturbations in finite regions

H(Λ, s) = H + sṼΛ, VΛ =
∑
X⊂Λ

Φ(X ).

We want to estimate the gap of H(Λ, s) uniformly in the perturbation region Λ.
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Relative form bounded perturbations

Theorem (persistence of gaps)
Let H a densely defined self-adjoint operator on H suppose V is a self-adjoint operator
with dom(H) ⊂ dom(V ). Suppose there exist a constant β ∈ [0, 1), such that

|〈ψ,Vψ〉| ≤ β〈ψ,Hψ〉, for all ψ ∈ dom(H).

Then, if a < b ∈ R, such that (a, b) ∩ spec(H) = ∅, then

((1 + sβ)a, (1− sβ)b) ∩ spec(H + sV ) = ∅, for all |s| ≤ 1.

Bravyi-Hastings-Michalakis strategy: combine with quasi-adiabatic
unitary transformation (Bravyi-Hastings-Michalakis 2010-11, Michalakis-Zwolak 2013)

U∗Λ (s)(H + sṼΛ)UΛ(s) = H + sW̃Λ(s) + E(Λ, s)1l,

with E(Λ, s) the ground state energy of H(Λ, s) = H + sṼΛ, and

W̃Λ(s) =
∑

x∈Λ,n≥1

Φ̃(x , n, s),

where Φ̃(x , n, s) satisfies the condition Φ̃(x , n, s)Pbx (n) = 0, and

‖Φ(x , n, s)‖ ≤ Ce−a′nθ
′
, for |s| ≤ sΛ

γ .
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Assumptions
Assumptions on the unperturbed model:

I finite-range and frustration-free: H =
∑

x hx .

I bulk gap: (0, γ0) ∩ specH = ∅.
I finite-volume gaps do not vanish too fast: for HΛn :=

∑
x,supp hx⊂Λn

hx , for
suitable Λn with diamΛn ∼ n,

gap(HΛn ) ≥
γ1

nα
, α ≥ 0.

I LTQO: next slide

Assumption on the perturbation:

Assume Φ(x) 6= 0 only for X = bx (n), a ball of radius n centered at x ∈ Γ and that

I the perturbation has stretched exponential decay or faster:

‖Φ(x , n)‖ ≤ ‖Φ‖e−anθ , θ ∈ (0, 1], a > 0.
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Local Topological Quantum Order (LTQO)
Define PΛ to be the projection onto the unperturbed ground states in finite or infinite
volume Λ. bx (n) denotes a ball of radius n centered at x ∈ Γ.

Definition (Indistinguishability radius)
For any Ω : R→ [0,∞) non-increasing function with limr→∞ Ω(r) = 0, the
indistinguishability radius of HΛ at x ∈ Λ is the largest integer rΩ

x (Λ) ≤ diam(Λ) such
that for all integers 0 ≤ k ≤ n ≤ rΩ

x (Λ) and all observables A ∈ AbΛ
x (k),

‖PbΛ
x (n)APbΛ

x (n) − 〈A〉ΛPbΛ
x (n)‖ ≤ |b

Λ
x (k)|‖A‖Ω(n − k).

Here,

〈A〉Λ =
TrPΛA

TrPΛ
.

This expresses that an observable in bΛ
x (k) cannot distinguish the ground states in

bΛ
x (n), if n − k is sufficiently large. As a consequence, the possibly many different

ground states will not split under the influence of the perturbation A.

For stability of the bulk gap we require rΩ
x (Γ) =∞ for a fucntion Ω that decays at

least as a power law with sufficiently large exponent. This by itself implies that the
ground states have a unique thermodynamic limit.
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Proof of relatively boundedness and, hence, gap stability

Theorem (Michalakis-Zwolak 2013, N-Sims-Young 2021)
For all ψ ∈ domH(Λ, s),

∣∣∣〈ψ|W̃Λ(s)ψ〉
∣∣∣ ≤ β〈ψ|H ψ〉, with

β = C‖Φ‖γ−1
1

∑
n≥1

nν+α
√

nΩ(n).

Theorem (N-SIms-Young 2021)
Under the assumptions above, if a frustration-free model H on Γ has bulk gap γ0 > 0,
we have

gap(H + s
∑
X⊂Γ

Φ(X )) ≥ (1− |s|β)γ0.
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Concluding Remarks
I infinite system setting simplifies defining and studying the bulk gap

I infinite system setting also useful to study boundary system

I the frustration-free condition should not be needed


