Tensor Networks for Machine Learning:
Architectures, Algorithms, and Applications
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Talk Advertisement:
Prof. Jens Eisert will speak about tensor networks in

machine learning today at 9pm CET (3pm EST)

"Tensor networks as a data structure in probabilistic
modelling and for learning dynamical laws from data”

Zoom Meeting ID: 923 9226 6655, Password: 919332

T

Screen shot this if interested



Last Time...

Introduced machine learning: system which given
more data performs increasingly well at a task




Last Time...

Introduced tensor networks: factorization of N-
index tensor into contraction of many small tensors

KiK.



Last Time...

Introduced tensor network machine learning models
with weights as tensor network (entering linearly)

n, N3 Ny Ns g

niy N9 Neg
flxy,z2, ... E, 6—(5—(5—(5—(5—(5 Ly Lp™ - Le



Last Time...

Discussed to both real-world and
physics-specific machine learning tasks
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Outline of Today's Talk

Review of tensor network machine learning

Architectures beyond MPS

Direct learning for training MPS tensor
network (for generative modeling)

Theoretical prediction of generalization
performance



Typical Ingredients of Machine Learning

Dataset represented as vectors {Xj}

Labels are numbers or vectors  {y;}

Model function f;,(x)

with adjustable weight parameters W

Choose weights to minimize cost function

C =) E(fy(x).y)
J



Typical Ingredients of Machine Learning

Dataset represented as vectors {Xj}

e

X = {0.0, 0.0, 0.1, 0.1, 0.1, 0.0, 0.1, 0.7, 0.7, 0.7, 0.2, ...



Typical Ingredients of Machine Learning

Dataset represented as vectors {Xj}

Labels are numbers (or vectors) {y;}
Task: distinguish 7's from 8's

X=4{0.0, 0.0, 0.1, 0.1, 0.1, 0.0, 0.1, 0.7, 0.7, 0.7, 0.2, ...

y = + 1



Typical Ingredients of Machine Learning

Dataset represented as vectors {Xj}

Labels are numbers (or vectors) {y;}
Task: distinguish 7's from 8's

X=4{0.0, 0.0, 0.1, 0.1, 0.1, 0.0, 0.1, 0.7, 0.7, 0.7, 0.2, ...

y= -1



Typical Ingredients of Machine Learning

Model function f(x)

with adjustable weight parameters W

For example, linear classifier model
fw®) = W-x+ W,

just a dot product of weights with input

Works suprisingly welll



Typical Ingredients of Machine Learning

Choose weights to minimize cost function,
for example squared error cost function:
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Typical Ingredients of Machine Learning

Can optimize weights using gradient descent

] & 2
C=NZ(W°XJ°_}}J')

j=1
dC P
i NZ(YJ—W'XJ)XJ' = A
n ]=1
Wt —- W+ agA” a = learning rate

Project: program this in Julia or Python



Adding Features

What if a linear classifier is not enough?
fw®) = W-x+ W,

— W0+ Wl.xl ~+ W2X2+ W3X3+



Adding Features

What if a linear classifier is not enough?
fw®) = W-x+ W,

— WO + Wl.xl + WzXz + W3X3 + ...
Can make extended linear classifier as follows:

Swv(X) = Wy + Wix; + Wox, + Waxg + ...

+ Vx5 + Visxixs + Vorxoxy + ...

Think of W @ V as weight vector of this 'linear' model

Manifestly non-linear function of x



Adding Features

Why not keep going, adding third-order x;x,x;
and fourth-order x;xsx7x9 terms etc. ?

Arrive at model with weight tensor

f(x17x27"°7$N) — ZWnan...nN L1 Loy x?\fN

Non-linear function of x

Weights enter linearly into model

Novikov, Trofimov, Oseledets

Stoudenmire, Schwab

, arxiv:1605.03795
, arxiv:1605.05775



By factorizing exponentially big weight tensor

LR

i

Into a tensor network, model becomes efficiently
trainable & we will see other advantages



Architectures Beyond
Matrix Product States
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Matrix product state (MPS)
weights already a powertful representation

» expressive, especially for one-dimensional correlations
* multiple optimization algorithms & strategies

* best understood network theoretically

But worthwhile to explore other tensor networks —
let's briefly see why...



Since 2016, tensor network machine learning now
successfully "ported” to other tensor net architectures
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Infinite MPS

Miller, Rabusseau, Terilla, "Tensor Networks for Probabilistic Sequence Modeling"”, arxiv:2003.01039

A0 A0 Gaird

boundary tensors

e used to generate model langauges with various grammars
* very few parameters and parallel optimization
* superior results to LSTM in many cases, equal in most others

® can generalize from training on shorter sequences to correct
results on longer sequences (so really learning the grammar)

Miller, Rabusseau, Terilla, arxiv:2003.01039



Locally purified states

Anomaly
Detection with
Tensor Networks

arxiv:2006.02516
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Table 3: Mean AUROC scores (in %) and standard errors on ODDS datasets.

Dataset OC-SVM IF GOAD DAGMM TNAD

Wine 60.0 46.0+£ 84 48.2+24.7 51.7+19.3 97.3+4.5
Glass 62.0 57.2+16 53.5+13.6 525+129 81.8+7.3
Thyroid 98.8 99.0+0.1 95.8+13 888+6.8 99.0+0.1
Satellite 79.9 772+09 606+53 721+47 81.3+0.5
Forest 97.7 71.7+26 646+47 609+89 98.8+0.6

Novel anomaly detection
framework

Results better than neural
networks for tabular data

Quantum process
tomography with ...
tensor networks

arxiv:2006.02424

a [Ao]T7,

M

Scalable learning of noisy
quantum "“channels" or
processes from experiments



PEPS (Projected Entangled Pair States)

Cheng, Wang, Zhang, "Supervised Learning with PEPS" arxiv:2009.09932

PEPS = 2D analogue of MPS

Framework for learning

MNIST dataset

e comparable results to NN with fewer parameters R e

e starting to see overfitting at larger D? >

e convolutional layers help (91% test correct on ol
FashionMNIST using CNN+PEPS!)

- [~MPS
- |- -MLP
- |~ -CNN-MLP

® cost to train is high 4t < peps

- |-©-CNN-PEPS

2 3 4 5 6
Bond dimension



Architectures & Applications

Many other applications & architectures could be mentioned:

e Selvan, Dam, "Tensor Networks for Medical Image Classification"
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arxiv:2011.06982

e Wall et al. "Generative machine learning with tensor networks:

benchmarks on near-term quantum computers”
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FIG. 4.  Exemplar NISQ hardware architecture. The qubit layout



Algorithms for Optimizing
Tensor Network Models



Exploring performance of tensor networks is interesting
But also seek

theory of training algorithms

theory of generalization

understanding which models best for certain data

even if it means trading away performance



Theory is Already Being Developed

Theory of expressive power of tensor architectures:

TT/MPS
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Plan for This Section

Let's study training more systematically

Use synthetic data (even-parity dataset) to make
evaluation of model well-posed

Contrast two training algorithms

Theoretical prediction of generalization
performance of second algorithm



For the synthetic data set, we
consider even-parity data set

Bit strings of length L with even number of 1 bits

Even-parity data set (L = 10):

00000O0O0O0O0¢~0
10000O0O01T171
0101001001
00110001T1¢0



Two ways of representing probability distribution
through a tensor:

1-norm
p(81, 52,53, 54, 55, 36) — formalism

2-norm
p(Sla 52,53, 54, 55, 56) — formalism

Advantages & disadvantages of each
(will use 2-norm in what follows)



Seek an MPS which generates this data with
uniform probability

PPIPRPPPPT

00000O0O0O0O0¢~0
10000O0O01T171
0101001001
00110001T1¢0



Entire even-parity dataset can be fit by
MPS of bond dimension 2

So we already know model is in the right class

PPIPRPPPPT

00000O0O0O0O0¢~0
10000O0O01T171
0101001001
00110001T1¢0



There are many ways one can devise to optimize MPS
for machine learning objectives

Let's discuss two:

1. Alternating Optimization of 0
2099

Tensors L1 0

2. Density matrix algorithm (: | "L ?mmm




1. Alternating Optimization of MPS Tensors



Alternating Optimization of MPS Tensors
Optimize one MPS tensor at a time

Project data samples through MPS tensors to obtain
gradient:

s RERSEAS

0 1 1 0

proportional to
gradient

T 7

Scaling linear in training set size & linear in length of MPS



Alternating Optimization of MPS Tensors

Used by Stokes and Terilla to study even-parity data set

Locally optimal update for generative
training:

By e o9

b(]) b(]) b(]) b(])

Bond dimension related
to generalization gap:

Bond Dimension

Stokes, Terilla, arxiv:1902.06888



Alternating Optimization of MPS Tensors

But alternating optimization has some
drawbacks:

e can get stuck in local minimum
* requires good initialization to work

* results depend on how algorithm is run

Alternatives?



2. Density Matrix Algorithm



Density Matrix Algorithm

This algorithm involves a deterministic strategy:

write 'perfect' answer then compress into MPS

Because every step of the algorithm involves
linear algebra, we could product a theoretical
prediction of generalization performance

Tai-Danae Bradley John Terilla
Bradley, Stoudenmire, Terilla, arxiv:1910.07425



First let's review the learning

Then give a summary of the theoretical prediction



Density Matrix MPS Learning Algorithm

Map data to rank-one tensors

o & [
6
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011011 — 000000

X; (I)(XZ)



Density Matrix MPS Learning Algorithm

Define "target tensor" which perfectly overfits
training data

N =T]

e LY 866666

jeT

(D O N Ot a Ct U a | |y Pe rfo 'Mm S U m yet !) See also: Stokes, Terilla, arxiv:1902.06888



Density Matrix MPS Learning Algorithm

Perfectly overfits because data vectors orthonormal

LI
528888080

1
N if €7

p(Xi)

otherwise zero




Density Matrix MPS Learning Algorithm

Compute closest MPS to this tensor
(restricting to bond dimension 2)

1 51 52 83 54 55 56
¢518283845536 — \/—N Z d) d) d) d) d) d)

jeT



Density Matrix MPS Learning Algorithm

Algorithm is density matrix algorithm for compressing
tensor to MPS form (closely related to TT-SVD and DMRG)

Compute Hermitian, positive semi-definite matrix

P12 =

o=




Density Matrix MPS Learning Algorithm

Can compute density matrix with
summed form of ¢ inserted

m”g,,ﬂﬂﬂﬂ -




Density Matrix MPS Learning Algorithm

Diagonalizing pi2 gives first & second MPS tensors

P12 = H — O f\/truncate to

Q dimension 2
4




Density Matrix MPS Learning Algorithm

Use diagonalizing unitary to compress data

e — L5 30460

jeT

0000

1
-=y

jeT

& recursively repeat algorithm to generate all MPS tensors



Density Matrix MPS Learning Algorithm

Computing next density matrix p3

TR leedd



Density Matrix MPS Learning Algorithm

Diagonalizing ps3 gives third MPS tensor

-
P3 = # — ® f\/truncate to
Q

dimension 2
/.J. .

At DA SN
N a N a [ ] a
-’ * * '

a4y " a4y " a4y "



Density Matrix MPS Learning Algorithm

Use diagonalizing unitary to compress data

1 %
¢81828384S586 — \/—N Z ‘ d) d) d)
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@000
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& recursively repeat algorithm to generate all MPS tensors



Density Matrix MPS Learning Algorithm
Deterministic algorithm for generative modeling

Truncation of density matrix determines
bond dimension of MPS

Intentionally make 'error' from overfitted model
in order to generalize

compression = learning



Density Matrix MPS Learning Algorithm

How well does it work?

L=16 results: [+

Bhattacharyya distance 31
to true distribution

0000 0025 0050 0075 0100 0125 0150 0175 0.200

Fraction of data used
as training set

Bhattacharyya distance:

o can evaluate exactly for
Dp =—In (Z \/p(w)Q(CE)) parity data set
X

experimental avg.



Sketch of the theoretical prediction

Tai-Danae Bradley John Terilla



Observe that density matrices have a block-diagonal
form (blocks for even & odd parity 'sectors’)

m”g,,ﬂﬂﬂﬂ -

P12 — di s

Reason is trace over bits 3,4,...,N pairs identical
suffixes (& identical parity), otherwise zero



Assume two most dominant eigenvectors come
from the two blocks (one from each)

00 d1 Se
11| se d

p12 o 01 d3 So
10 So  da

Es5) = cos05]00) + sin 65|11)
O3) = cos ¢2|01) 4 sin ¢2|10)

(Notation |v) means a vector v )



Easily find expressions for angles in terms of entries
of density matrix

00 d1 Se
11| Se d2

P12 = 01 d; so
10 So da

|E5) = cos 02|00) + sin 65]11)
|O2) = cos ¢2]01) + sin ¢2|10)

2S¢ 28,
6>, = arctan ¢o = arctan
VG2 +4s2 + G, VG2 +4s2+ G,

G. = |dy — do G, = |ds — dy



11| Se d

P12 = 01 d3 so

10

2S¢

28,
= arctan
\/Gg—|—4sg—|—Ge> P2 <\/Gg—|—4sg—|—Go>

0> = arctan (
G. = |dy — ds] G, = |d3 — dy4|

Importantly, if gaps G, G, zero, perfect learning
occurs as long as Se, So non-zero

Non-zero gaps are what drive errors in learning
(coming from strings with unique suffixes)



00 d1 Se
11| Se d2

P12 = 01 d; so
10 So  da

2S¢

28,
= arctan
¢Gg+4sg+(;e> P2 <¢Gg+4sg+(}0>

0> = arctan (

Ge:‘dl_dQ‘ Gozde_dZL’

Quantities d1, dz, ds3, ds are frequency of observing a
certain pretix (00,11,01,10). So "gaps" are from
imbalance in symmetry-related training examples.



Use combinatorics of even-parity data set (taking a
finite fraction as training set)

Determine facts such as:

number bitstrings with even prefix (00,11)

Se =
having same suffix

T
25| = f4\ \

)

— ( ) o — 9L—3




From combinatorial formulas, can estimate
typical MPS tensors as function of training set fraction

Encouraging agreement with experimental results (L=16)

experimental avg.

Bhattacharyya distance
to true distribution ;|

theory prediction

0000 0025 0050 0075 0100 0125 0150 0175 0.200

Fraction of data used
as training set



From combinatorial formulas, can estimate

typical MPS tensors as function of training set fraction

Encouraging agreement with experimental results (L=16)

Bhattacharyya distance
to true distribution

0.016 -
0.014 1
0.012 1
0.010 -
0.008 A
0.006 -

0.002 -

0.004

0.000

(Zoom of same plot)

0.15 0.16 0.17 0.18 0.19

Fraction of data used
as training set

0.20

experimental avg.

theory prediction



For an expanded discussion, see Tai-Danae's recent
thesis

arxiv:2004.05631

-

An isometric embedding U is a linear map from a space V to a

Tai-Danae Bradley

@math3ma (on Twitter) Z

space W of larger dimension that preserves the lengths of vectors. 00 .
Such a map satisfies UtU = idy but UUT # idy. In words,

In symbols,

e oy= Y Miabc)(abe|M'

oo e (a,b,c)e AxBxC
hude dums ot esm WTA emplojees
wenr Dﬁ“\ﬁ
s

e saei-a

s

where we are using the fact that
Ailp) = M|x;) for each i, as remarked
in the main text.

start with |¢)

<
LITT |

%
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finish with |¢\ps)




Future Directions to Pursue %

* Develop theoretical prediction into rigorous,
probabilistic bounds

* Apply this algorithm & theory for other synthetic data

 Find ways to estimate, just from summary stats of data,
how likely learning is to succeed for what complexity of
model

R



Summary %

e Tensor networks can be used as machine learning
models with interesting training algorithms, offering
theoretical insights

e Can apply to variety of tasks with good results,
sometimes state-of-the-art

* Importantly, opportunity to investigate deeper
qguestions about learning from data

R



Recommended resource for learning about
machine learning:

Physics Reports

Volume 810, 30 May 2019, Pages 1-124

A high-bias, low-variance introduction to
Machine Learning for physicists

Pankaj Mehta ? &, Marin Bukov bo = Ching-Hao Wang 2, Alexandre G.R. Day ?, Clint Richardson 2,
Charles K. Fisher ¢, David J. Schwab d

Show more v

https://doi.org/10.1016/j.physrep.2019.03.001 Get rights and content

Under a Creative Commons license open access

https://www.sciencedirect.com/science/article/pii/S0370157319300766



