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Toward 3D topological order

2D TO: FQHE Higher order 3D TO
topological insulators  Toric code, fractons, ...
Any microscopic
elctronic model?
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Building a model state for a FCHI




Chiral Hinge Insulator: 2" order T in 3D [schindler et al. 201g]
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Chiral Hinge Insulator: 2" order T in 3D [schindler et al. 201g]
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Gapped vertical surfaces




Chiral Hinge Insulator:

2" order T in 3D [schindler et al. 201g]

mod 2).

OBCxOBCxPBC
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Gapped vertical surfaces.
Gapless chiral & antichiral hinge modes.

Hinge modes = IQHE edge modes (BUT
surfaces # IQHE bulk).

Protected by the C4 T symmetry (nbr hinges




Fractional Chern insulator from Gutzwiller projection

@ Two copies of Cl with spin s =71,
@ On-site repulsion U, nytny |
e FCl phase if U > t,A (Laughlin 1/2)

Model wave function from limit U — oo:
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@ Double-occupancy forbidden, 1 particle per site:
Spin s only remaining degree of freedom
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@ Ground state obtained by Gutzwiller projection

PG = H(l — nX,TnX7¢)
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Zhang, T. Grover, and A. Vishwanath PRB (2011)
@ Topological sectors by using PBC/APBC for the Cls
Interacting model wave function: Gutzwiller projection of two spin
copies!




Fractional chiral hinge insulator (FCHI)

@ |¢s) ground state of CHI at half-filling with spin s =1,

@ FCHI model wave function: Gutzwiller projection

[WecnHn) = P [|¥1) @ [¥y)]

Properties accessible in Monte Carlo simulations to characterize our
model state:

o Second Renyi entanglement entropy: S(2) = —In (Tr4p?)
e Spin fluctuations: Var(M,) = Tra(M3p4) — (Tra(Mapa))?

@ Overlaps between different “topological sectors”



Monte Carlo simulations for S(@

Partition into .4 & complement 5, want 5542):

@ Spin configuration |v) = |v4, vi)

@ Swap operator

SWAP (]vA, vB) ® ‘v;l, vg>) = ‘V:4, VB> ® ‘VA, vg>

Entanglement entropy

(W@ W[SWAP|W @ W) 0
= e A
VeV e )

Double-layer simulation

Measured value decays exponentially with |0.A|
@ More than 2 million CPU hours



Probing the FCHI




Luttinger liquids: 1D critical quantum system

Entanglement for subregion of size L scales as In L.

Chiral conformal field theory for finite size N

(Second Renyi) Entropy:

@¢poany_ C [N (7L Expect ¢ =1 for
Scin(LiN) = gn [w il ( N )] Luttinger liquid!

Fluctuations of U(1) current:
K N . («L K # 1 indicates
My) = ~— In | —=sin =
Var(Ma) 272 n [Tr > ( N >] fractionalization!

Study scaling of 5(® and Var(M4) with L



Disentangling the edge & hinge from the bulk contribution

Edge states in 2D: Hinge states in 3D:
z
N,
A\_/Nw
T
Ny
SO(N,4) = azp + 2 x SEUN, a; Ny) SA(N, 4) = azp + 4 x SEUN, 4; N2)

app bulk area law (constant) azp bulk area law (constant)



Monte-Carlo results

FClI: 3.81

c=140.1, ) K =0.5+0.03,
o= 3.29£0.05 0.96 a’=0.95+0.01
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FCHI: ’ =1.19+0.07,

K =049 £0.02,
o' =0.86 +0.01

3 T a=384£005
3  e=103%014, K =0494003,
3 o= 4874012 o = 111 £0.01
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Topological entanglement entropy (TEE) ~

@ Area law for entanglement entropy:
Sa=a|0A| -
o Kitaev-Preskill cut.

o —v = Sac—SaB—SBc—Sac+Sa+Ss+Sc

Periodic boundary conditions in x
@ YpBC = —0.009 +£0.102~ 0
@ Same value if taken along z,

@ vpgc =~ 0 for two system sizes — not a
layered construction.

Open boundary conditions in x
® Yosc = 0.3240.16 ~ In(v/2) = 0.35

V22 = (voBc — vPBC)/2 ~

In(v/2),2



Unconventional surface phase

712?8H1 = In(\/§)/2

But: Strictly 2D topological phase has v =0 or v > In(v/2)

Surfaces host unconventional topological phase that cannot be
described by 2D TQFT

FCHI
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Signature from the bulk

What about the TEE in the bulk?
@ VYpBC = —0.009+0.102 =0
@ Same value if taken along z or x

@ vpgc =~ 0 for two system sizes — not a layered
construction.

@ ... but the cut is macroscopic in one direction

Zhang, Grover, Vishwanath PRB (2011).

Topological degeneracy?

e Can play with PBC/APBC for 3 .. of LE{TTenL

the CHI to generate 8 states ) % 3
(full PBC) or 4 states (OBC a1 N
in x) N .

@ Should be isotropic — size is
a killer.
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Conclusion

Fractional CHI model wave function obtained from Gutzwiller
projection.

Fractionalized chiral hinge modes similar to edge modes of a fractional
Chern insulator.

Gapped vertical surfaces hosting a topological phase that cannot be
realized in 2D.

Outlook:

e 3D is hard. Beyond Monte-Carlo?
o What is the nature of the phase?
e Fate of the Dirac cones in the interacting model?



Anisotropic limit OBCxPBCxPBC
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o OBCxPBCxPBC: 4 states — 2 linearly independent states.
o PBCxPBCxPBC: 8 states — 4 linearly independent states.



