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Tensor network structure in statistical systems — [ Ising Model ]

Elementary algorithms for the calculation of partition functions (from Baxter)

to higher dimension PEPS/TePS and TRG

Application examples (if there is some time)
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Exotic systems:
Random-bond Ising model

ANNNI models (effect of frustration) 1170010 01

Fractal lattices / Hyperbolic lattices
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why do I have to (?) speak about statistical mechanics?
to confirm that Quantum Mechanics is only a part of physics
... but it is difficult of earn billions with the title “statistical ...”
“Strong correlation” also exists in statistical mechanics and other fields.

Tensor Network Structure is naturally contained in statistical systems.

(Path Integral representation of quantum systems)

Variational Formulation for a QM system “produces” a Statistical system.

(Most of the descriptions on TN are actually statistical.)

just | love statistical physics
from the time | had rich hair.




iISing and uSing
a century? of the Ising Model

. W.Lenz (Rostock), Beitrag zum Verstdnd-
W. Lenz, Phys. Z. 21, 613 (1920)- nis der magnetischen Erschemungen in
festen Korpern.

E. Ising, Z. 31,253 (1925): Beitrag zur Theorie des Ferromagnetismus ).

Von Ernst Ising in Hamburg.

See Rev. Mod. Phys. 39, 883 (1967):

REVIEWS OF MODERN PHYSICS VOLUME 39>,NUMBER4 OCTOBER 1967

History of the Lenz-Ising Model

STEPHEN G. BRUSH

Department of Physics and Department of History of Science, Harvard University, Cambridge, M assachusetts

Many physico-chemical systems can be represented more or less accurately by a lattice arrangement of molecules with
nearest-neighbor interactions. The simplest and most popular version of this theory is the so-called “Ising model,” dis-
cussed by Ernst Ising in 1925 but suggested earlier (1920) by Wilhelm Lenz.

Major events in the subsequent history of the Lenz-Ising model are reviewed, including early approximate methods
of solution, Onsager’s exact result for the two-dimensional model, the use of the mathematically equivalent “lattice gas”
model to study gas-liquid and liquid-solid phase transitions, and recent progress in determining the singularities of
thermodynamic and magnetic properties at the critical point. Not only is there a wide range of possible physical applica-
tions of the model, there is also an urgent need for the application of advanced mathematical techniques in order to
establish its exact properties, especially in the neighborhood of phase transitions where approximate methods are un-
reliable,



Ising Spin: up (1) and down (-1) % --------------- % -------------- % --------------- % --------------- % -------------- % --------------- %

Hamiltonian H = -J(0,0y, + 0505+ -+ oy_j0y) = —J Z 0;0i41

*%* Partition Function of 1D Ising Model is obtained as the
trace of the products among transfer matrices 7.

Z T'(oq]oy) T (05]0g) - T(on_1lon) T(on|oq)
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corresponding diagram (under periodic boundary condition)
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this is an example of tensor network, which is formed by
the contraction among two-leg tensors, the transfer matrices 7.



2D Ising model on Diagonal Lattice

corresponding Boltzmann weight

Putting Ising spins on the diagonal lattice, and W9 — exp [i (O_(j—l)s(j)l 5D o) 4 g0 S(j)agj—1))]
putting local Boltzmann weights for shaded squares. ’ kTN v o

j
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Partition Function: 2D Tensor Network

one-leg tensors represent the boundary conditions.



Vertex model Tensor Network structure

(Local Weight) q 5 naturally emerges from the
lattice statistical models.
C

(transfer matrix)

&¢—¢—¢—¢—¢—¢—D 2AN-dimensional real (symmetric)

To obtain the largest eigenvalue of
the transfer matrix (precisely), when
the system width N is large enough,
is a main purpose of numerical

. calculation. Variational estimation
example: ice model

Lieb, Phys. Rev. 162, 162 (1967) is often considered.



vertex - f?Ff:F)e transformation

* Depending on Physics behind, either face or vertex
representation is more natural than the other.

** unnatural representation might introduce “troublesome” constraints.

* It 1s possible to map a face model to a vertex model.
(vertex-IRF transformation, duality transformation, etc.)

Owczarek and Baxter, J. Stat. Phys. 49, 1093 (1987)

A Class of Interaction-Round-a-Face models and Its Equivalence with an Ice-Type Model

* In the case of Ising model, a way of performing the transformation is to
considering the model on the Lieb (Fisher?) lattice.
(Taking configuration sum for either black or white spins in the figure.)

PHYSICAL REVIEW VOLUME 113, NUMBER 4 FEBRUARY 15, 1959

Transformations of Ising Models

MicuAEL E. FIsHER
W keatstone Physics Laboratory, King's College, London, England

(Received August 29, 1958)

The “star-triangle’” and “decoration’ transformations are generalized so as to apply to arbitrary mechani-
cal systems coupled to the spins of a standard Ising net. This leads to exact solutions for further plane Ising
nets and also for lattices in which the spins on alternate sites have a magnitude greater than S=4%. A general
class of antiferromagnetic Ising models is constructed; exact closed expressions can be derived for all the
thermodynamic and magnetic properties of these models in an arbitrary magnetic field.

The magnetizations and susceptibilities of Ising nets in which different spins have different magnetic
moments are investigated and a valuable relation between the susceptibilities of the honeycomb and -tri-
angular lattices is derived. It is shown how correlation functions involving a given spin can be expressed in
terms of correlations involving the nearest-neighbor spins instead.



Face model (RFmode) Local Boltzmann Weight is specified
local weight by 4 spins that surrounds a face

Interaction-round-a-face (IRF) Hamiltonian

J
HIRF — _5(0_0_/ _|_ O_/O_I/ + O_IIO_III + O_IIIO_)

1/2: Prevent Double Counting
Transfer Matrix

IRF weight : Boltzmann weight for a “face”

N ) N N
E P ]
I I W Pl 1 — -7z

No contraction is performed

Configuration Sum is taken over all the
Partition Function spins after multiplying all the faces.
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) ) It is possible to perform variational
analysis without mapping the system to

a vertex model.
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Kramers-Wannier, PR60, 252 (1941)




Eigenvector as natural MPS

o—O0
C D)
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BEE!
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half column
transfer
matrix
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Face contracted state
Baxter, J. Stat. Phys. 19,461 (1978)

(black spins are summed up)

)

)

o0—=0

O

L/

W/

O
®
@
@
J
®

* By means of duality
transformation or SVD, one
can map a face contracted
state to a vertex contracted
state.

* The eigenvector of the TM can be

constructed as the (partial) contractions
among half column transfer matrices.

Vertex contracted state
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Variational Construction

T VO — X\ VO eigenvalue problem for a Transfer Matrix

Kramers-Wannier Approximation Phys. Rev. 60,263 (1941)
“Statistics of the Two-Dimensional Ferromagnet. Part 11"

* Variational state is represented as the simplest case of the face contracted state
(without auxiliary variable). Note that the state is finitely correlated.

V( oo s" .. ) . Maa’Ma’ a”Ma” o'’
Baxter introduced auxiliary degree of freedom
;1 . oo’ rro' o ago’ o
Face V(...O-O-O-O- )_Z of Mﬁ’y "o
(1976-) Greek
vertex V(...go'o”c” )= > - MJMG. MM,
(1968-) Greek

This is MPS!

One might feel that the Face representation is more complicated than Vertex one.
Please do not hear your voice from the heart. The Face-type variational state works as
well as the Vertex one, as long as d=2 classical lattice models are concerned.



Kramers-Wannier Approximation  Phys. Rev. 60,263 (1941)

(*part I K-W duahty)

Statlstlcs of the Two Dlmensmnal Ferromagnet Part II

H. A. KrRAMERS, University of Leiden, Leiden, Holland
AND

G. H. WANNIER, Unwversity of Texas, Austin, Texas
(Received June 12, 1941)

The study of the two-dimensional Ising model is continued. Its specific heat at the Curie
¥ point is investigated. The quantity in question is computed for six successive finite matrix ¥
. problems and the conclusion is drawn that the specific heat is infinite at the Curie point. A new §
} closed form approximation of the partition function X is then developed by using the matrix
¢ method in its variational form. The two power series for A at extreme temperatures are used as
£ a test for this and various other approximations, and it is found that the new result is a con- ﬁ
- siderable improvement over the existing solutions. Finally it is pointed out that these closed §
§ form solutions support our conclusion as to the place and nature of the Curie point transition. §

What 1s “the Matrix Method 1n its Variational Form”??



Kramers-Wannier Approx.

. Precision:
to the 2D I Model .
o the Stng VI0ae Nk Exact S ~7% in Tc
5 | L Onsager, I
Phys. Rev. 65, 117 (194B) | ¢ |
K-W
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in R.J.Baxter: J. Stat. Phys. 19, 461 (1978), it is stated that the Face contracted state
without auxiliary variable coincides with Kramers-Wannier approximation.

Another interesting example is the case Jo =J" = Hy = J, = 0. The
‘model then becomes the usual nearest-neighbor Ising model and it turns out

that the n = O solution of (30) is precisely the Kramers-Wannier approxi-
mation.”



a basic tool in TNS: Corner Transfer Matrix

applied to Vertex model
R.J Baxter: “Dimers on a Rectangular Lattice” J. Math. Phys. 9, 650 (1968)

applied to Face (and vertex) model
R.J.Baxter: J. Stat. Phys. 15, 485 (1976) (the term CTM appears!)

applied to Face model
R.J Baxter: J. Stat. Phys. 19,461 (1978)

* The following figure in this article tells everything. Half-infinite system
is represented as the product of two CTMs, and their extension scheme is

also shown.
----- e, prossrssessnens . i
Y A : A
ME[ A AA Fl A A
a : a’
acr—o-——:i, 3 ¢——s : ai{,l:c; = at:G
A|Ft B Al B “Fl B N

Fig. 4. Graphical representation of Egs. (30a) and (30¢).



Corner Transfer Matrlx Formulatlon

¥ monomers and dimers on a rectangular lattice in the thermodynamic limit., As the matrices are strictly of i"
¥ infinite dimensionality, the equations cannot be solved directly, but if they are restricted to be of finite §
f and quite small dimensionality, very good approximations to the thermodynamic properties are obtained. |

The problem is to analyze the thermal [[ We skip the detail! ]]

equilibrium of dimers distributed on the

square lattice. j L ‘
Energy: E =0 when empty. |
E =-2 kT Int when occupied vertically.  — I
E =-2 kT In s when occupied horizontally. I: .
Corresponding Boltzmann Weight W = exp(-E/KT) T T
W =1 when empty. ' 1_f
n

W =1t*t when occupied vertically.

w =s *s when occupied horizontally.



[[ The model naturally contains the Tensor Network Structure. |]

It is convenient to attribute a 4-leg Tensor (Boltzmann Weight) for each Vertex.
We denote horizontal bond variable (= 0 or 1) by ‘a’ and vertical one by ‘b’.

Vertex Weight K:

K=1 for empty vertex.

1 |

Partition Function of the system can be represented as a configuration sum for the
product of local Boltzman weights. the partition function of the

system can be written as

Z = { %ﬁ} H K{a,;, %y, 5+1 l 13z':‘s ﬁz’—f—l,f)’ (2.1)

... we use images from Baxter’s paper to remind his originality .... (and to reduce typing task)



Row-to-Row Transfer Matrix: a horizontal product of Boltzmann weights (Periodic BC)
V,po =V, ﬂnl By e B’ b1 b2 b3 b4 b5 b6 b7 bs
N NI N N NN
Z HK(ajbaJ-i-lIﬁJ!ﬁ)s \r \r \r \IJ \I/ \r

In ,’}'—1
b1 b2 b3 b4 b5 b6 b7 b8

Partition function obtained from the transfer matrix v
Z= Z Vnerrzra Ve =Tr V. ~ T
e where I' is the greatest eigenvalue of V.

Variational evaluation of the largest eigenvalue

As the matrix V is symmetric, it is possible to
obtain its greatest cigenvalue from the variational
principle
I' =x'Vx/x' « x, (3.1) [[ Rayleigh Ratio ]]

where the 2”-dimensional vector x is chosen so as to
maximize the right-hand side of the equation. If x

How to obtain the variational state x?
(This is the Time Evolution Scheme that we know.)
x oc V¥y, (3.2)

where y is some vector which cannot be orthogonal
to x but is otherwise arbitrary.



The Matrix Product Ansatz

x(Br, 5 B) < Tr{G,G,, -+ Gy} | Eq (33)

Half-Column Transfer Matrix = “Local Tensor” in Tensor Network State

erﬁl e aplay’ e Z 1__[ K(‘xz ’ OC l ﬁs ’ ﬁa+1)

Br i=1

Varlatlonal Freedom Exactness and Expected EfflClency

; real symmetnc 1nﬁn1te-d1men51onal matrlces It §
-'j follows that if these symmetric matrices are regarded §
§ as arbitrary, then (3.3) should provide a good trial §
¢ function for the variational principle (3.1). In fact, i
¥ if they are allowed to have infinitely great dimen- }§

t sionality, then the results obtained should be formally }
{ exact. Further, and more significantly, if the matrices §
§ are restricted to be of finite and quite small dimen- §
 sionality, then it should still be possible to obtain §
: good approximations to I' and the thermodynamic §
{ properties. That this is the case will be shown in |
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Column-to-Column Transfer Matrix R, 7, =

Extended C-T-C Transfer Matrix Sqiuja'ary =

2 G}
8
%K(aa lﬂ BYGE,.

Variational Ratio 1 = x'vx/x'.x = Tr $"/Tr R"

= x MPS
oL S N N NE N NN
T I T T T T T

MPS

MPS

MPS

... this is an origin of MPS in statistical mechanics .... (another one is by Derrida.)



It follows that in the limit of # large,

I' ~ «™, (3.8)
Eigenvalue of the where
C-T-C Transfer Matrix k =1/ (3.9)

and £ and % are the greatest eigenvalues of R and S,

Eigenvectors; X for R and P for S

LI
)
LI

x
-
|

3

|

> Ko, o | B, PGP, Gy = 7P,

a'pp = =
‘ T = G =
(**) these equations are written in the
matrix form. Please look and guess!
=G =
A =G =




Variational Estimate of the Partition Function per Vertex

Tr X*Tr > K(x, o' | B, 8/)P.G,P, G,

a1’ B’
= 3.12
: TrS XG,XG, Tr 3 P G12)
I o

G

X X P & P
G
G

P P X | X
G

The rest of the task is to find out the variational minimum, adjusting G
and obtaining the eigenvectors of CTC matrices. Direct optimization is
straightforward; Baxter went further!



Introduction of the CORNER TRANSFER MATRIX

The CTM corresponds to a Quadrant of the system.

One rather unsatisfactory feature of the transfer

matrix technique is that it treats the rows of the A = X?

lattice on a different basis from the columns, and so N —
destroys the symmetry that exists between them. It is — = A

therefore very gratifying to find that this symmetry is = I

restored in the above equations. To show this, ] X -
introduce two further matrices G¥ and G} by defining = = A

P, = X'G*X!, (3.15)

“Gauge” degree of freedom, = = A
“Gauge” fixing by the diagonalization of CTM, which is = =L
equivalent to the diagonalization of the Density Matrix. 1p - _ G*
11

Inspection of Eqs. (3.19)-(3.21) reveals that they = =
are unaffected by applying the same orthogonal — ] = A

transformation to each of the r by r matrices A, G,
and H. It follows that it is possible to choose A to be
diagonal, and this representation clearly reduces the
amount of numerical work involved in evaluating the
various matrix products.

To obtain the diagonalized CTM is to solve the variational problem, since A is
constructed as a product of tensors G.



Evolution (or extension) Scheme for CTM itself 111

L. = GAG + s(GAH + HAG), (4.1) G
M — sGAG LM “.2) ~ L ~ [T

B (M 0)’ = A =GcH A
... GKG induces an evolution for CTM.

Every after this extension, the matrix

dimension is doubled. ‘ D is a 2r by 2r diagonal
Diagonalization of the extended CTM matrix of the form
A O
ca=apb, D= ”(o ) (4.6)

Cut off the irrelevant parts: Renormalization!!

Using (4.6) and the condition that 4,; be unity,

calculate n and A from the first r diagonal elements
of D.

From the eigenvectors in Q, obtain the “improved” G. (This is a bit different from CTMRG.)

§ The calculations were performed on

an IBM 360 !
l computer using double-precision floating-point arith-
§ metic accurate to 16 decimal places.

< . A - ) =y




Baxter’s numerical result on the dimer problem

K/s

s=1.0 s =40 s = 10.0 5§ = O

1.937416664 1.444670083 1.356095932 1.299038106
1.940215341 1.460590906 1.381143005 1.335033348
1.940215344 1.460623453 1.381458447 1.337338271
1.940215351 1.460629381 1.381506501 1.337984697
1.940215351 1.460629397 1.381508315 1.338250017
1.940215351 1.460629398 1.381508512 1.338380390

SN A P o B

Extrap-
olated 1.940215351 1.460629398 1.381508536 1.338506344

One finds a careful statement on his numerical result.

It is clearly not possible to deduce rigorously from
the above working whether or not the dimer system
undergoes a phase transition, but the fact that the
successive approximations vary smoothly with s and
tend towards the known results at both the high-
and low-density limits suggests very strongly that no
transition occurs in this system.

~

.. can anyone here can be as careful as Baxter? Apparently, | cannot ...



DMRG applied to 2D Ising Model  Nishino,J. Phys. Soc. Jpn. 64, 3598 (1995)

1 L} 1 T
07 O, O3 O2n
O
O

Face representation is used oo _ QO o=
" 7= JugwlJwlu]

for Transfer Matrix. 6, G, O 1 Oon

LY,

Vertex representation is used £ o o £ E o
for variational MPS. ~ o — - S owe)
T"= 10wl T = ..

* m = 60 states are kept. £ o, 0y Eg BV G

* as long as one uses DMRG, variational state is always MPS regardless of TM.

* Infinite System Algorithm is employed.

[ O—0 L . . )
* Eigenvector of the renormalized TM can be obtained by the
- O—0O = power method, which is the vertical stack of TM.
T O—O mm * One finds that Face-type variational state is naturally formed
for the colum-to-colum transfer matrix.
L O—0O -
L1 * Similarity with Baxter’s CTM formulation in Face representation
- T 7T - is apparent.
. O0—O -

* This is our (historical?) route to CTMRG.



Diagrams in vertex representation

Transfer Matrix Variational MPS

mmn o p q r a b c

@WM

a b ¢c d e f

Variational Partition Function per raw Renormalized Transfer Matrix
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C u




CTMRG: Face and Vertex Extension Scheme

n
(First trial)

Face representation is used k

for Corner Transfer Matrix. _

J

Nishino Okunishi, .

J. Phys. Soc. Jpn. 65, 891 (1996) '
* m = 98 states are kept. £

* Fixed point of CTMRG is the same as Baxter’s original CTM method.
This 1s natural because the variational construction is the same.

* Convergence speed in CTMRG is a bit faster.

ba
®
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(Second Trial)

Vertex representation is used
for Corner Transfer Matrix.

Nishino Okunishi, J. Phys. Soc. Jpn. 66, 3040 (1997)

* m = 200 states are kept.

Environment for a central vertex



Nishino et al, Prog. Theor. Phys. 105, 409 (2001)

Toward 3D: Vertex Scheme

* Local Boltzmann Weights and TM are

/\J
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* Inner Product: a 2-layer statistical system.

* Variational Partition Function: a 3-layer statistical system.



Toward 3D: Vertex Scheme (D=2) Nishino et al, Prog. Theor. Phys. 105, 409 (2001)
(D=3) Gendiar, Maeshima, Nishino, Prog. Theor. Phys. 110, 691 (2003)

* Environment Tensor is created for the
improvement of local variational weight.

.)’
Oe .
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a
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3

* Variational tensor is improved gradually according to the Generalized
Eigenvalue Problem shown above.

Z Bgs{ﬁch?c}vs{nc} — A[L-D] Z Ags{ﬁc|nc}v8{n(}}
s{n.} s{n.}

* (Obtained variational state is fully optimized within the parameter space.
(full variational update)



Gendiar, Maeshima, Nishino, Prog. Theor. Phys. 110, 691 (2003)

* Note that the calculated spontaneous magnetization sharply drops to zero. This is
the right (mean-field) behavior with the fully optimized variational TPS.

Vertex

4.42 4.50 4.58 7

1.0 1.0
0.9 1 09 -
0.8 : 0.8 -
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~
T 06 . o 090
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S & ,
504 ] @ 04 . 030
V - L
0.3 | 03| 020
" 0.10 *
02 7 02| 0107
| 0.00 — — O S—— I 0.00 “—
0.1 f 4.34 4.42 450 458 0.1 h 434
O-O L L L L L L L L L L L L L 0.0 L | L
10 15 20 25 30 35 40 45 50 10 15
T [J/k,]

(additional Note)

L | L L
20 25 30 35 40 45 50
T [J/k,]

* Current World Record: Vanhecke et al, arXiv:2102.03143 (4 digits in Tc up to D=4)

https://arxiv.org/abs/2102.03143



Levin, Nave (2006)

TRG / TERG / HOTRG / etc.
Xie et al (2012)

Modern developments in Real-space renormalization.
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(diagrams are schematic: in actual calculation the RG transformation
is performed independently for vertical and horizontal directions.)

()
J
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J
()
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isometries are created by (higher-order)
Singular Value Decomposition (SVD).

Tree tensor network is hidden in
the renormalized tensor.
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Further Developments Xie et al, Second RG (2006)

Environment

Environ should be considered for the right construction of isometries.

isometries are optimized in a self-consistent manner.

Evenbly, Vidal (2014)
Tensor Network RG

Morita et al: Higher-order moments TRG (arxiv:1806.10275)
lino et al: Boundary TRG (arxiv:1905.02351)

Adachi et al: Bond weighted TRG (arxiv:2011.01679)

Lyu et al: Linearized RG transformation (arxiv:2102.08136)



a discussion:

* How can we find out an appropriate isometry which correctly produce the right
local tensor that is fully updated?

5
28 Egﬂ}

T

C|>\
NN N
K|/\ \|/\ \|/\



