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Topological Phase Transitions

I. S. Tupitsyn et al: Phys. Rev. B 82, 085114 (2010)

Toric code in magnetic field 
(I)  Topological Orders (TO)

(II) Flux Condensed (FC) Phase

(III)  Charge Condensed (CC) Phase

ℤ2

Kitaev’s honeycomb model 
A:  Topological Orders (Abelian)

B: Ising Anyons (non-Abelian)

ℤ2

Can we understand both transitions out of the -TO using the same 
tensor network formalism?

ℤ2

A. Kitaev,  Annals of Physics 321, 2–111 (2006) 



Topological Order in Tensor Network 

• -injective Projected Entangled Pair States


• Using Minimally Entangled States to Detect Topological Transitions


• Warmup: Toric Code with Finite String Tension

ℤ2

Outline

Transitions from Abelian to non-Abelian Topological Phase 

• Kitaev Model on the Star Lattice


• Loop Gas and String Gas Ansatzs as -injective PEPS


• Results

ℤ2

Conclusion



Projected Entangled Pair States (PEPS)
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Injective PEPSs give rise to parent Hamiltonians, to which they are unique ground states

N. Schuch, I. Cirac, and D. Pérez-García, Annals of Physics 325, 2153 (2010) 



-Injective PEPS: Natural Framework for  Topological Orderℤ2 ℤ2

=
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• The ground subspace of the parent 
Hamiltonian of a -injective PEPS is 
spanned by two non-contractible 
loops . 

• These ground states are locally 
indistinguishable owing to the pulling 
through conditions.  topological 
degeneracy.

ℤ2
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→
Pulling through conditions:
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,

N. Schuch, I. Cirac, and D. Pérez-García, Annals of Physics 325, 2153 (2010) 



Anyons and Minimally Entangled States

. . .
...

g h
. . .∑

h∈ℤ2

χα(h)|ψ(g, α)⟩ =

. . .

. . . = χα
Rα

Flux:

Charge:

Anyons (  TC ) 
• Flux: Characterized by group action .

• Charge: Characterized by irreducible 

representation .

• Fermion: Combination of charge and flux.

ℤ2
g

α

Minimally Entangled States (MES) 
• A special basis that spans the ground state with the 

minimum entanglement entropy.


• Reflects the anyonic excitations of topological phases: 

 (vacuum) 
 (charge) 
 (flux) 
 (fermion)

|ψ(I, e)⟩ = | I⟩
|ψ(I, o)⟩ = |e⟩
|ψ(Z, e)⟩ = |m⟩
|ψ(Z, o)⟩ = |ϵ⟩

N. Schuch, I. Cirac, and D. Pérez-García, Annals of Physics 325, 2153 (2010) 

Y. Zhang, T. Grover, A. Turner, M. Oshikawa, and A. Vishwanath, Phys Rev B 85, 235151 (2012) 



Using MES to Detect Anyon Condensation

𝔼
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A*

:= 𝕋g′ ,α′ 
g,α :=

Zg′ 
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. . .. . .
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A -injective PEPS does not guarantee topological orderℤ2

=
g

. . . = . . .

Flux is identical to GS

 Flux condensation→

To detect anyon condensation, we compute the overlap of MESs, which is encoded 
in the dominant eigenvalue  of the transfer matrix (TM).(λ)

Different projector correspond to 
different MES overlap.

• Red: Regular TM.

• Blue: TM measuring charge 

difference.

• Yellow: TM measuring flux 

difference.

• Green: TM measuring flux and 

charge (fermion) difference.
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Transfer Matrix

N. Schuch, D. Poilblanc, J. I. Cirac, and D. Pérez-García, Phys Rev Lett 111, 090501 (2013). 

J. Haegeman, V. Zauner, N. Schuch, and F. Verstraete, Nat Commun 6, 8284 (2015). 



𝕋g′ ,α′ 
g,α :=

Zg′ 
g

Pα′ 
α Pα′ 

α
𝔼

Method: Gauge-Symmetry Preserved HOTRG

Goal: Calculate TM on a long (infinite) cylinder with appropriate 
boundary conditions  

(a) Start from a one-site double tensor.

(b) Merge two double tensors to form a new rank-6 tensor.

(c) Apply appropriate isometries  which truncates the bond dimension. 

Preserve symmetries at each step

U

Y.-H. Chen, C.-Y. Huang, YJK arXiv: 2102.10980



 TOℤ2 CC|Ψ(βx, βz)⟩ = ∏
e

Qe(βx, βz) × |ΩTC⟩

Warmup: Toric Code with String Tension

with Qe(βx, βz) = exp ( βxσ x
e + βzσz

e

4 )
Along  axis,  varying 

Only regular and the charge difference TMs are nonzero. 
 

 (  TO phase):


• :  and  are normalizable 
ground states.


• : Four MESs are orthogonal.


βx = 0 βz

βz < βc
z ℤ2

λ⟨I|I⟩ = λ⟨m|m⟩ = 1 | I⟩ |m⟩

λ⟨I|e⟩ = λ⟨m|ϵ⟩ < 1

βz = βc
z

dashed: L = 1, dotted: L = 16, solid: L = 256
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 TOℤ2 CC|Ψ(βx, βz)⟩ = ∏
e

Qe(βx, βz) × |ΩTC⟩

Warmup: Toric Code with String Tension

with Qe(βx, βz) = exp ( βxσ x
e + βzσz

e

4 )
Along  axis,  varying 

Only regular and the charge difference TMs are nonzero. 
 

 (CC phase):


• :  and  are not orthogonal, 
indicating the charge anyon condense to vacuum.


• :  and  are not normalizable 
states, indicating both flux anyon and fermion are 
confined.

βx = 0 βz

βz > βc
z

λ⟨I|I⟩ = λ⟨I|e⟩ = 1 | I⟩ |e⟩

λ⟨m|ϵ⟩ = λ⟨m|m⟩ < 1 |m⟩ |ϵ⟩

βz = βc
z

dashed: L = 1, dotted: L = 16, solid: L = 256

 ZI
 ⟨I |m⟩

 oo  ⟨ϵ |e⟩

 IZ
 ee

 ⟨m |ϵ⟩

 II

 ⟨e |ϵ⟩

 ⟨ϵ |m⟩

 ⟨m |m⟩

 ⟨I |e⟩

 ⟨e |m⟩

 ⟨m |e⟩ eo

 ⟨I | I⟩  ⟨m | I⟩

 ⟨e |e⟩

 ZZ

 ⟨ϵ |ϵ⟩

 ⟨I |ϵ⟩

 ⟨ϵ | I⟩ ⟨e | I⟩ oe

Along  axis,  varying 

Only regular and the flux difference TMs are nonzero.

βz = 0 βx



No Other MES can become |ϵ⟩
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• CC phase:  becomes  while  and  
are confined.


• FC phase:  becomes  while  and  
are confined.


• Other possibilities? Can  or  become 
? Can  become ? Can  become 
?


• Based on the TM structure, one can show that 
no other MES can become  fermion 
cannot condense.

|e⟩ | I⟩ |m⟩ |ϵ⟩

|m⟩ | I⟩ |e⟩ |ϵ⟩

|e⟩ |m⟩
|ϵ⟩ |ϵ⟩ | I⟩ |e⟩
|m⟩

|ϵ⟩→

We are left with the only possibility that  becomes |e⟩ |m⟩



Kitaev Model on the Star Lattice

H = − J ∑
⟨i, j⟩γ

Sγ
i Sγ

j − J′ ∑
⟨ij⟩∈γ′ 

Sγ′ 

i Sγ′ 

j

J

JJ

J′ 

J′ 
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J = 1, J′ = 0

J = 0, J′ = 1 Isolated-dimer limit: Toric code ground 
state  topological order: , ,

, .
→ℤ2 | I⟩ |e⟩

|m⟩ |ϵ⟩

Isolated-triangle limit: Kitaev’s 
honeycomb model  Ising anyon: , 

, .
→ | I⟩

|σ⟩ |ϵ⟩

z

yx
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x′ J
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 Intrabond

 Interbond

γ = x, y, z :
γ′ = x′ , y′ , z′ :

Perturbative Study:

H. Yao and S. A. Kivelson, Phys Rev Lett 99, 247203 (2007). 

S. Dusuel, K. P. Schmidt, J. Vidal, and R. L. Zaffino, Phys Rev B 78, 125102 (2008). 



Kitaev Model on the Star Lattice

H = − J ∑
⟨i, j⟩γ

Sγ
i Sγ

j − J′ ∑
⟨ij⟩∈γ′ 

Sγ′ 

i Sγ′ 

j

• :  topological order, 4-flold degeneracy on 
the torus.


• : Ising Anyon, 3-flold degeneracy on the 
torus.


• Two types of flux operators: 
, 


• Both ground states live in vortex-free sector:

J′ /J > 3 ℤ2

J′ /J < 3

Ŵp = ̂Sx
1

̂Sz
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̂Sy
3 . . . ̂Sy

12
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̂Sx
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{Wp = + 1,Vp = + 1}

 Intrabond

 Interbond

γ = x, y, z :
γ′ = x′ , y′ , z′ :

Exact Results

H. Yao and S. A. Kivelson, Phys Rev Lett 99, 247203 (2007). 
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Loop Gas Projector Gives -injective Ansatzℤ2

Originally defined on the honeycomb lattice

Q000 = I, Q011 = − iUx, Q101 = − iUy, Q110 = − iUz

Q̂LG = tTr∏
α

Qss′ 
iα jαkα

|s⟩⟨s′ |

Applying  on any injective PEPS gives -injective PEPS 

• Loop gas (LG) states (parameter  ):  
 

 

• String gas (SG) states (parameter  ): 
 

Q̂LG ℤ2

θ

|ψLG(θ)⟩ = Q̂LG |ψ(θ)⟩, |ψ(θ)⟩ = ⊗α |θ, γα⟩

α, β

|ψSG(α, β)⟩ = Q̂LGR̂DG(α, β) |ψ(θ = tan−1 2)⟩

Any LG Ansatz satisfies vortex-free conditions Flux in -injective PEPS corresponds to physical vortexℤ2

H.-Y. Lee, R. Kaneko, T. Okubo, and N. Kawashima, Phys. Rev. Lett. 123, 087203 (2019). 



Loop Gas Projector Gives -injective Ansatzℤ2
 

 
 :  topological order 

 : Ising Anyon.


 
 
LG states :  

 




• Yield exact energy in both isolated-dimer ( ) and isolated-
triangle ( ) limit.  

• Large energy deviation for .  Label them using 
variational parameter . 

• In the isolated-dimer limit , LG and SG states are 
-isomteric, i.e., they corresponds to toric code ground states.

H = − J ∑
⟨i, j⟩γ

Sγ
i Sγ

j − J′ ∑
⟨ij⟩∈γ′ 

Sγ′ 
i Sγ′ 

j

J = cos ϕ, J′ = sin ϕ
ϕ > tan−1 3 ℤ2
ϕ < tan−1 3

|ψLG(θ)⟩

|Ψ⟩ = ⊗α |ψα⟩, |ψα(θ)⟩ = |θ, xα⟩ |θ, yα⟩ |θ, zα⟩

⟨θ, γ |σγ′ |θ, γ⟩ = δγ′ γ cos θ + (1 − δγ′ γ)
sin θ

2
ϕ = π/2

ϕ = 0

0 < ϕ < π/2 →
θ

(θ = 0,ϕ = π/2)
ℤ2

H.-Y. Lee, R. Kaneko, T. Okubo, and N. Kawashima, Phys Rev B 101, 035140 (2020). 

Y.-H. Chen, C.-Y. Huang, YJK arXiv: 2102.10980
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|Ψ⟩ = ⊗α |ψα⟩, |ψα(θ)⟩ = |θ, xα⟩ |θ, yα⟩ |θ, zα⟩ ⟨θ, γ |σγ′ |θ, γ⟩ = δγ′ γ cos θ + (1 − δγ′ γ)
sin θ

2

-Isometry: ℤ2 θ = 0
|θ, x1⟩|θ, y1⟩

|θ, z1⟩

|θ, x2⟩

|θ, y2⟩

|θ, z2⟩

1 2
x
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z

σγ |γ, ± ⟩ = ± |γ, ± ⟩ |γ, + ⟩ = |θ = 0,γ⟩
Y.-H. Chen, C.-Y. Huang, YJK arXiv: 2102.10980



Loop Gas Projector Gives -injective Ansatzℤ2
 

 
 :  topological order 

 : Ising Anyon.


 
SG states :  

• Yield accurate energy for all different .  Label them using 
Hamiltonian’s parameter :   

• Topological entanglement entropy shows that flux anyon 
( ) transmutes into  anyon ( ). 

• Ground state subspace 

• Abelian: 4-fold degeneracy  

• Non-Abelian: 3-fold degeneracy (incompatible with 

-injective classification !)
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j

J = cos ϕ, J′ = sin ϕ
ϕ > tan−1 3 ℤ2
ϕ < tan−1 3

|ψSG(α, β)⟩

ϕ →
ϕ |ψSG⟩ = |ψSG(θ)⟩

γ = ln(2) σ γ = ln( 2)

ℤ2
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Ŵp
1

2
3 4

5
6

7

8
910

11

12

1
23

J
J′ 

|θ, x1⟩|θ, y1⟩

|θ, z1⟩

|θ, x2⟩

|θ, y2⟩

|θ, z2⟩

1 2
x

y

y

z

z

H.-Y. Lee, R. Kaneko, T. Okubo, and N. Kawashima, Phys Rev B 101, 035140 (2020). 

Y.-H. Chen, C.-Y. Huang, YJK arXiv: 2102.10980



Results: LG States
Only regular and fermion difference TMs are nonzero.  
 

:

• :  

Four MES are orthogonal and normalizable, 
indicating  TO phase. 

:

•  for all . 


• As  increases,  Power-
law decay correlation. 


• One-parameter family of LG states  are all 
in  TO phase except for .  

θ ≠ θc
λ⟨m|e⟩ = λ⟨I|ϵ⟩ < 1, λ⟨I|I⟩ = λ⟨m|m⟩ = 1

ℤ2

θ = θc
λ⟨m|e⟩ = λ⟨m|m⟩ > λ⟨I|ϵ⟩ L

L λ⟨m|e⟩, λ⟨m|m⟩, λ⟨I|ϵ⟩ → 1⇒

|ψLG(θ)⟩
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Results: SG States

ϕ = 0 ϕ = π /2
ϕ ≈ 0.24 isolated-dimerisolated-triangle

:

•  

 TO phase (Similar to LG states for ).

 

:

•  for all . 


• As  increases,   
Power law decaying correlation (Similar to LG 
states for ). 


• Since no other MES can become ,  and 
 should be regarded as different states. 


Note that the crossing point coincides the point 
that the entanglement entropy of  change from 

 to .


Can we identify  and  as the same 
states? 

ϕ > 0.24π
λ⟨m|e⟩ = λ⟨I|ϵ⟩ < 1, λ⟨I|I⟩ = λ⟨m|m⟩ = 1→
ℤ2 θ ≠ θc

ϕ < 0.24π
λ⟨m|e⟩ = λ⟨m|m⟩ > λ⟨I|ϵ⟩ L

L λ⟨m|e⟩, λ⟨m|m⟩, λ⟨I|ϵ⟩ → 1 ⇒

θ ≠ θc
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log 2 log 2
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ϕ ≈ 0.24

dashed: L = 1, dotted: L = 16, solid: L = 256
H.-Y. Lee, et al., Phys Rev B 101, 035140 (2020). 
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Results: TM Spectrum
TM spectrum of LG at  with  shows that ,  and  
have exactly the same spectrum:  and  are the same states   
The ground state is 3-fold degenerate in non-Abelian phase.

θ = θc L = 6 ⟨e |e⟩ ⟨e |m⟩ ⟨m |m⟩
|e⟩ |m⟩ ⇒

Y.-H. Chen, C.-Y. Huang, YJK arXiv: 2102.10980



Physical Interpretation
Kitaev’s honeycomb model: H = − Jx ∑

⟨i, j⟩x

Sx
i Sx

j − Jy ∑
⟨i, j⟩y

Sy
i Sy

j − Jz ∑
⟨i, j⟩z

Sz
i Sz

j



TO: 

|Ji | > |Jj | + |Jk |
ℤ2 I, e, m, ϵ



Ising anyon: 
|Ji | ≤ |Jj | + |Jk |

I, σ, ϵ

eeee e

eeee e
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σσ σ σ

σσ σ σ

σσ σ σ

σσ σ σ

σσ σ σσ

σ

Isolated-dimer Isolated-triangle

A. Kitaev,  Annals of Physics 321, 2–111 (2006) 



• Within the framework of -injective PEPS, we can understand 
the transition from Abelian to non-Abelian topological order 
phase as charge and flux anyons transmuting into  anyon.


• Since no other MES can become , we conclude that 
-injective PEPS can only describe three kinds of anyonic 
transitions: , , and .


• Our study shows that -injective PEPS can unify the transition 
from -TO phase to both trivial phases (product states) and 
nontrivial phases (non-Abelian phase).


• Generalization to other symmetry groups? MPO-injective 
PEPS?

ℤ2

σ

|ϵ⟩ ℤ2

|e⟩ = | I⟩ |m⟩ = | I⟩ |e⟩ = |m⟩

ℤ2
ℤ2

Conclusion


