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Model wavefunctions for interfaces between lattice
Laughlin and Moore-Read states

B lażej Jaworowski, Anne E.B. Nielsen

Motivation: What happens at non-Abelian FQH interfaces?

I Interfaces can have topological structure
which can generate nontrivial phenomena (e.g.
additional topological degeneracy).

I Few microscopic works – ED is hard. Model
wavefunctions can help.
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A different 
FQHE

I Almost all of them describe continuum systems

I Anyons are important, but we are not aware of any microscopic studies.

Method: Model wavefunctions from CFT correlator of two types of vertex
operators,

Ψ(n) = 〈0|
NL∏
i=1

Vi,MR(zi , ni )
N∏

i=NL+1

Vi,Laughlin(zi , ni )|0〉 ,

and Monte Carlo study of their properties (GS+quasiholes+quasielectrons).



0.0 2.5 5.0 7.5 10.0 12.5 15.0
yj yi

10 5

10 4

10 3

10 2

10 1

|C
ij|

L edge
L bulk
L, near interface
R, near interface
R bulk
R edge

0 10 20
Ny

0

2

4

6

8

S(2
)

Middle of the L region
Next to the interface (L)

Interface
Middle of the R region

0 10 20
Ny

0 10 20
Ny

I Ground state: particle density, correlation function, entanglement entropy
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I Anyons: charge and statistics of anyons before and after crossing the interface.

I Multiple islands: topological degeneracy.
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Coupling to environment

SWAP

Instrinsic dynamics

Haar-random

(w/ & w/o charge conservation)
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Anderson Complexes - Why?

Cold atomic system driven by time periodic external force can give
rise to time crystals.
Disordered time periodic driving gives rise to Anderson localization
in time domain.
Cold atoms by Feshbach resonance give control over interaction
strength (even sign).
It is natural to investigate periodic driving of internal interaction
strength instead of external force.
If this interaction strength varies in disordered fashion in time what
will we see?

P. Matus, K. Giergiel, K. Sacha Anderson Complexes Benasque SCS, 22 II 2021 1 / 2



What?
Anderson Complexes - Bound states of atoms due to
Anderson localization

H = p2
12

m∗ + V (r12),

V (r12) is a random function with infinite support.
In localized regime one expect exponential localization in relative distance:

x1- x2

In
te
ra
ct
io
n
po
te
nt
ia
l

0 π 2 π

- 5000

- 2500

0

2500

5000

0 π 2 π

0.005
0.010

0.050
0.100

0.500
1

x1- x2

P
ro
ba
bi
lit
y
de
ns
ity

P. Matus, K. Giergiel, K. Sacha Anderson Complexes Benasque SCS, 22 II 2021 2 / 2



Continuous matrix product
operator approach to finite

temperature quantum states

Wei Tang



Continuous matrix product operator approach

to finite temperature quantum states
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Correlation-enhanced Neural Networks

as Variational Quantum States

RBMs with correlators

Topological phases

Excited states without symmetries
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Efficient MPS methods for extracting spectral information
on rings and cylinders

Quasiparticle ansatz ∑
i

Al
1

. . . Ar
NBi . . . (1)

Applied to

I finite mps

I cylinder infinite mps



Efficient MPS methods for extracting spectral information
on rings and cylinders

(a) spin 1 heisenberg, OBC (b) critical ising, PBC

(c) cylinder ising, py = 0 (d) Magnon hubbard, different py

Figure: The average and standard deviation of critical parameters:
Region R4
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Tensor Networks:

One-particle excitation:

Static structural factor:

𝑆𝛼,𝛽 𝑘 =
1

𝑁
෍

𝑗,𝑗′=1

𝑁

𝑒𝑖𝒌∙(𝒓𝑗−𝒓𝑗′) ෠𝑂𝑗
𝛼 ෠𝑂𝑗′

𝛽

R. Orus, Annals of Physics 349, 117-158 (2014).

𝑀𝑃𝑆𝑗 λ = 𝐴 + λ𝑒−𝑖𝑘𝑟𝑗𝐵

෠𝑂𝑗
𝛽
λ = 𝐼 + λ𝑒−𝑖𝑘𝑟𝑗 ෠𝑂𝛽

𝜕|𝐺Φ 𝐵, λ >

𝜕𝐵
|𝐵=0,
λ=1

,
1

𝑁
<
𝜕 ෠𝐺𝑆𝐹(λ)

𝜕λ
|λ=0 >

Generating 

function

With the help of desired generating functions, 

the number of tensors under consideration 

can be largely reduced!
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Horizon bound in QFT
● Prepare a QFT in a short range correlated 

initial state
● Quench
● Correlations spread within a horizon

● Proven in CFT, demonstrated analytically 
and numerically in many systems, 
observed experimentally

 → Believed to be a general property of 
quantum systems

Ivan Kukuljan, MPQ



  

Horizon violation
● Oscillating infinite range correlations of  

currents 

● Found in the sine-Gordon model (using 
bosonisation and truncated Hamiltonian 
methods)
IK, Sotiriadis, Takács,  JHEP 2020, 224 

● Recently found in gauge theory - 1+1D 
quantum electrodynamics (using THM)
IK, arXiv:2101.07807 [hep-th]

● Related to nontrivial field topology

Ivan Kukuljan, MPQ
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I. Gradient based 
optimization with AD

II. Extract symmetry 
structure

III. Analyze with finite 
correlation-length 

scaling

HOW TO iPEPS:
The case of J1-J2

Juraj Hasik, Federico 
Becca, Didier Poilblanc

Investigation of the Néel phase of the frustrated Heisenberg antiferromagnet 
by differentiable symmetric tensor networks, SciPost Phys. 10, 012 (2021) 
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quantum circuits: from stroboscopic to continuous
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Phys. Rev. B 100, 064204 (2019) & Phys. Rev. Lett. 125, 210602 (2020)

Quantum circuit
• Random unitary evolution (U) and 

weak measurements (M)

• What is the stationary state 
entanglement?

Stroboscopic measurements: 
phase diagram

U

M

𝑈 favours
volume law.

𝑀 (if strong) 
favours area law.

Area law

Volume law

Measurement frequency 𝑝
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Measurement-induced transition in random
quantum circuits: from stroboscopic to continuous

BY M. SZYNISZEWSKI, A. ROMITO, H. SCHOMERUS
Phys. Rev. B 100, 064204 (2019) & Phys. Rev. Lett. 125, 210602 (2020)

Continuous measurements: 
phase transition

Universality of the phase 
transition

𝜇 ∼ 𝑑𝑡

• Phase transition still present when 
continuous measurement is used

Discrete and continuous regimes seem 
to be smoothly connected and exhibit 
similar critical exponents. Universality 
between the two regimes?
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Abstract
Periodically driven many-body quantum systems provide a comfortable platform for modelling crystalline struc-
ture in the time dimension which opens a path to realize temporal condensed matter physics and explore novel
phenomena. It has been already shown that the time domain can host Anderson localization, Mott insulator
phase [1], topological phases [2], dynamical phase transitions [3], quasi-crystals [4] and fractional time crystals
[5].

Here, we present a simple implementation of non-separable two-dimensional lattices with a non-trivial topol-
ogy in the time domain that can be created for a Bose-Einstein condensate bouncing resonantly between two
oscillating mirrors. As an example, we consider a three-band Lieb lattice [6] on the Möbius strip with a middle
flat band. The dynamics of the flat band is governed solely by interactions, which can be easily tuned by periodic
changes of scattering length using Feshbach resonance mechanism. This allows us to engineer exotic long-range
interactions [7] and offers a new perspective for studying exotic many-body dynamics.

Single-particle bouncing between two oscillating mirrors

� Hamiltonian in the frame oscillating with the mirrors

H =
p2
x + p2

y

2
+ x + y + (x + y)fy(t) + yfy−x(t) y ≥ x ≥ 0

Fg


45
o

y x

hjjhkjki

the mirrors are located around x = 0 and x − y = 0
and form a wedge with the angle 45◦

•H(t) = H(t + T ) T = 2π
ω

• fy(t), fy−x(t) - periodic functions correspond to
the mirror oscillations

The static wedge for fy(t) = fy−x(t) = 0

� wedge with the angle 90◦

• the system is integrable→ action-angle variables

H0(Ix, Iy) =
(3π)2/3

2

(
I

2/3
x + I

2/3
y

)
θx,y = Ωx,yt + θx,y(0) Ωx,y(Ix,y) =

dH0(Ix, Iy)

dIx,y

• for kxΩx(Ix) = kyΩy(Iy)

– all trajectories are periodic

– third independent integral of motion Iθ = (kyθy − kxθx) (mod 2π)

– periodic orbit can be described by a single frequency only

– canonical transformation from (Ix, Iy, θx, θy) to new variables (I+, I−, θ+, θ−)

I± = const θ− = const θ+ = Ωt + θ0
+

� wedge with the angle 45◦ for kx = ky

İ± = θ̇− = 0 θ̇+ = Ω+(I+) with {θ+ = π, θ−} = {θ+ = 0, π − θ−}

0 π

0

π

θ+

θ
-

Periodically oscillating mirrors

� resonant driving of a particle ω = sΩ+(I0
+, I

0
−) s− integer number

� classical secular approximation

• canonical transformation to the frame moving along a resonant orbit

Θ+ = θ+ − Ω+t Θ− = θ− P± = I± − I0
±

• Cartesian coordinates x(I±,Θ±) and y(I±,Θ±) can be expanded in the Fourier series

x, y =

∞∑
n=−∞

c
x,y
n (I+,Θ−)ein(Ω+t+Θ+)

• all dynamical variables evolve slowly if we choose initial conditions close to the resonant orbits

• averaging over the fast time variable

� effective time-independent Hamiltonian that describes the motion of a particle close to a resonant orbit

Heff = 〈H〉t =
P 2
− + P 2

+

2meff
+ Veff (Θ±, fy, fy−x) {Θ+ = π,Θ−} = {Θ+ = 0, π − Θ−}

By different shaking protocols of two mirrors i.e. fy(t) and fy−x(t), it is feasible to construct many lattice
geometries, just like in optical lattice engineering.

Lattice structures
� effective Hamiltonian

Heff =
P 2
− + P 2

+

2meff
− λ2

ω2
cos (2sΘ+) cos (2sΘ−)− 4λ1

ω2
cos(sΘ+) cos(sΘ−) +

λ3

2ω2
cos (2sΘ+ + φ)

with flips Θ±→ π − Θ± at Θ+ = π for fy(t) = λ1 cos(ωt) + λ2 cos(2ωt) and fy−x(t) = −λ3 cos(2ωt + φ)

� Heff describes a particle moving on the Möbius strip in the presence of a non-separable lattice potential

hexagon lattice Lieb lattice checkerboard lattice

Tightly bounded particle in the asymmetric Lieb lattice

• quantum description in resonant Hilbert subspace

•Heff = −J1
∑
ij â
†
i âj − J2

∑
i′j′ â

†
i′âj′

• for J2/J1 � 1, eigenvalues of Heff form well
separated three bands where the central band is flat

• λx/ω2, λy/ω2 - amplitudes

Ultra-cold bosonic atoms in the flat band
� N bosons interact via Dirac-delta potential g0δ(r)

� many-body Floquet Hamiltonian restricted to the flat band subspace

Ĥ =
1

sT

sT∫
0

dt

∫
dxdy ψ̂†

[
H − i∂t +

g0

2
ψ̂†ψ̂

]
ψ̂ ≈

∑
ijkl

Uijklb̂
†
i b̂
†
j b̂kb̂l + const

� ψ̂ ≈
∑s(s+1)/2
i=1 wib̂i with the bosonic operators [b̂i, b̂

†
j] = δij

� control of the contact interactions by changes of scattering length using Feshbach resonance mechanism

Uijkl = 1
sT

∫
dt
∫
dxdyg0(t)w∗iw

∗
jwkwl

� Wannier states corresponding to the flat band wi(x, y, t) = wi(x, y, t + sT )

Pair tunnelling processes
� hard-core bosons Floquet Hamiltonian

HF = V
∑
〈ij〉

n̂in̂j − J
∑
〈〈ijkl〉〉

(
b̂
†
i b̂
†
j b̂kb̂l + H.c.

)
n̂i = b̂

†
i b̂i

� simultaneous tunneling of two particles between four distinct lattice sites J = 4Uijkl|{i 6=j 6=k 6=l}
� nearest neighbour repulsion V = 4Uijij

References
[1] K. Sacha, Sci. Rep. 5, 10787 (2015).
[2] K. Giergiel, A. Dauphin, M. Lewenstein, J. Zakrzewski, and

K. Sacha, NJP 21, 052003 (2019).
[3] A. Kosior and K. Sacha, Phys. Rev. A 97, 053621 (2018).
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We propose resonating valence bond (RVB) wave functions 
for a spin-1 lattice system on the torus that realize a 
non-Abelian chiral spin liquid.


These wave functions are shown to be equivalent to chiral 
correlation functions in a certain conformal field theory 
(CFT) and identified to be a lattice analogue of the 
bosonic Moore-Read state at unit filling.


The topological order of this system is revealed by 
explicit construction of the topologically degenerate 
ground states and analytical computation of their 
modular matrices.
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Simulation of three-dimensional quantum 
systems with projected entangled-pair states
• Tensor network techniques very successful in 1D 

and 2D, however applications in 3D are limited
• We present two techniques
• Cluster contraction
• Full contraction

• We expect this work to be an imporant step 
towards making iPEPS a promising tool to study 
open problems in 3D
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Goal Construct SOP for characterizing the symmetry fractionalization pattern of the anyons: 
detect the SET phase

We start from TC on edges decoupled from

 ferromagnet on vertices

We end in a decorated TC 

with cluster states

The charge fractionalizes TRS, BC inversion and the on-site symmetry

[1] J.Garre-Rubio & S.Iblisdir New Journal of Physics 21, 113016 (2019)

We generalize the SOP of [1] beyond PEPS and 
RGFP to measure the SF class of the charge.



Results
Test the SOP in the Hamiltonian interpolation

Phase diagram under magnetic fields

We observe SSB because of the condensation of the 
anyon that fractionalizes the symmetry (charge vs flux)

The phase diagram changes from the one of the TC: 

infinite line between trivial (topological) phases!
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Random hopping elements in a flat band

Interaction elements are random

H SYK= ∑
i , j ,k , l

J i , j , k , lγ iγ j γ j γk

H Strain= ∑
n1 ,n2 ;m3 , m4

J n1 ,n2 ;m3 , m4 γn1
A γn2

A γm3
B γm4

B
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