
Tensor Networks for Statistical Mechanics
Tomotoshi. Nishino (Kobe Universty)

Part II. 17:00 PM (Kobe), 24 Feb. 2021

Polygon and Polytope Models

Hyperbolic lattices (optional)

Random-bond Ising model (optional)

http://www2.yukawa.kyoto-u.ac.jp/~qith2021/index.php

Crystal Surface (Disordered Flat phase, Steps, etc.)

Ads from Okunishi: Coming Workshop in March

Fractal lattice (just glance at)



Fractals
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another Fractal: Sierpinski Carpet arXiv:1904.10645

Effective dimension of the system is less than 2. 

HOTRG can be applied
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FIG. 1: Build-up process of a discrete analog of the Sierpiński

carpet. The circles represent the lattice points, where the

Ising spins are located. The vertical and horizontal links de-

note the interacting pairs. The first three units n = 1, 2, and

3 are shown. For each unit n, we draw the corners C(n)
by

the thick lines. We label the shaded regions X(1)
and X(2)

.

ond step (n = 2), the eight units are grouped to form a
new extended unit, as shown in the middle. Now, there
are 64 spins on the 9 ⇥ 9 square lattice grid. On the
right side, we show the third step (n = 3). Generally,
in the n-th step, an extended unit contains 8n spins on
the 3n ⇥ 3n lattice. The Hausdor↵ dimension of this lat-
tice is d

H
= log

3
8 ⇡ 1.8927 in the thermodynamic limit

n ! 1.
In the series of the extended units we have thus con-

structed, there is another type of the recursive structure.
In Fig. 1 at the bottom of each unit, we have drawn a
pyramid-like area by the thick lines. One can identify
four such pyramid-like areas within each unit (enumer-
ated by n), and each area can be called the corner C(n).
The corners are labeled C

(1), C(2), and C
(3) from left to

right therein. It should be noted that there are only 2n�1

spin sites in common, where two adjacent corners meet.
In the case n = 2 drawn in the middle, we shaded a

region on the left, which contains six sites, and label the
region X

(1). Having observed the corner C(2) at the bot-
tom, we found out that the corner consists of two rotated
pieces of X(1) and the four pieces of C(1). In n = 3, we
shaded a larger region X

(2) (in the similar manner as
X

(1)), which now contains 36 sites. We can recognize
that X

(2) consists of seven pieces of X(1) and the two
pieces of C(1). We have thus identified the following re-
cursive relations, which build up the fractal:

• Each n-th unit contains 4 pieces of C(n),

• C(n+1) contains 2 pieces of X(n)and 4 pieces of C(n),

•X(n+1)contains 7 pieces ofX(n)and 2 pieces of C(n).

The Hamiltonian of the Ising model, which is con-
structed on the series of finite-size systems n = 1, 2, 3, · · · ,
has the form

H
(n) = �J
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FIG. 2: Structure of the initial corner matrix C(1)
ij in Eq. (3)

and the 4-leg tensor X(1)
ijkl in Eq. (6).

The summation runs over all pairs of the nearest-
neighbor Ising spins, as shown by the circles in Fig. 1.
The spin positions are labeled by the lattice indices a

and b. They are connected by the lines, which corre-
spond to the ferromagnetic interaction J > 0, and no
external magnetic field is imposed. First we calculate
the partition function (expressed in arbitrary step n)

Z
(n) =

X
exp


� H

(n)

k
B
T

�
(2)

as a function of temperature T , where the summation is
taken over all spin configurations, and where k

B
denotes

the Boltzmann constant. At initial step n = 1, we define
the corner matrix

C
(1)

ij =
X

⇠=±1

exp
⇥
K⇠ (�a + �b)

⇤
, (3)

where K = J/k
B
T , and the matrix indices i = (�a+1)/2

and j = (�b + 1)/2 take the value either 0 or 1. The
structure on the right-hand side is graphically shown in
Fig. 2 (top), and the summation taken over the spin ⇠ is
denoted by the filled circle. We have chosen the ordering

of the indices i and j, which is opposite if comparing C
(1)

ij
with the corresponding graph. The partition function of
the smallest unit (n = 1), which contains 8-spins, is then
expressed as

Z
(1) =

X

ijkl

C
(1)

ij C
(1)

jk C
(1)

kl C
(1)

li , (4)

and can be abbreviated to Tr
⇥
C

(1)
⇤4
. We will express

Z
(n) for arbitrary n > 1 in the same trace form

Z
(n) = Tr

⇥
C

(n)
⇤4

(5)

by means of the corner matrix C
(n)
ij , where each one un-

dergoes extensions, as we define in the following.
Let us notice that the region X

(1) appears from the
step n = 2. The Boltzmann weight corresponding to this
regionX

(1) can be expressed by the 4-leg (order-4) tensor

X
(1)

ijkl =
X

⇠⌘

exp
⇥
K (�a�b + �c�d + ⇠⌘)

⇤

⇥ exp
⇥
K⇠ (�a + �d) +K⌘ (�b + �c)

⇤
,

(6)
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FIG. 3: Extension of the local matrix C(n)
in Eq. (7) (on

the left) and the tensor X(n)
in Eq. (8) (on the right).

where the spin locations are depicted in Fig. 2 (bot-
tom). We have additionally introduced new indices
k = (�c + 1)/2 and l = (�d + 1)/2. Now we can math-
ematically represent the recursive relations in terms of
contractions among the matrices C(n) and tensors X(n).
Figure 3 shows the graphical representation of the exten-
sion processes. Taking the contraction among the two
tensors X

(n) and the four matrices C
(n), as shown in

Fig. 3 (left), we obtain the extended corner matrix C
(n+1)

through the corresponding formula

C
(n+1)

ij = C
(n+1)

(i1i2)(j1j2)

=
X

abcdef

C
(n)
aj2

X
(n)
abcj1

C
(n)
fc C

(n)
db X

(n)
dei1f

C
(n)
i2e

,
(7)

where the new indices i and j, respectively, represent
the grouped indices (i

1
i
2
) and (j

1
j
2
). Apparently, the

diagram in Fig. 3 (left) is more convenient than Eq. (7)
for the better understanding of the contraction geometry.
This relation can be easily checked for the case n = 1
after comparing Figs. 1, 2, and 3.

Similarly, the extension process from X
(n) to X

(n+1)

shown in Fig. 3 (right) can be expressed by the formula

X
(n+1)

ijkl = X
(n+1)

(i1i2)(j1j2)(k1k2)(l1l2)

=
X

abcdef
ghprqs

X
(n)
abl1p

X
(n)
bck2l2

X
(n)
cdqk1

X
(n)
fgda

X
(n)
efri1

X
(n)
ghj1s

X
(n)
i2j2he

C
(n)
rp C

(n)
sq ,

(8)

where we have again abbreviated the grouped indices to
i = (i

1
i
2
), j = (j

1
j
2
), k = (k

1
k
2
), and l = (l

1
l
2
). This

relation can be checked for the case n = 1 by comparing
the area X

(1) and X
(2) in Fig. 1.

Through the iterative extension of the tensors, we can

formally obtain the corner matrix C
(n)
ij for arbitrary n,

and express Z(n) by Eq. (5). The free energy per spin is
then

f
(n) = � 1

8n
k
B
T lnZ(n) (9)

since the n-th unit contains 8n spins. This function
converges to a value f

(1) in the thermodynamic limit
n ! 1, where convergence with respect to n is rapid,
and n = 35 is su�cient in the numerical analyses. The
specific heat per site can be evaluated by taking the sec-

ond derivative of the free energy cf (T ) = �T
@2

@T 2 f
(1).
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FIG. 4: (Color online) The renormalization group transfor-

mations in Eq. (11) (on the left) and Eq. (12) (on the right)

applied, respectively, to Eq. (8) and (7) (cf. Fig. 3).

III. RENORMALIZATION GROUP

TRANSFORMATION

The matrix dimension of C
(n) is 2n�1 by definition.

Therefore, it is impossible to keep all the matrix elements
faithfully in numerical analysis, when n is large. The sit-
uation is severer for X

(n), which has four indices. By
means of the HOTRG method16, it is possible to reduce
the tensor-leg dimension, the degree of freedom, down to
a realistic number. The reduction process is performed
by the renormalization group transformation U , which is
created from the higher-order singular value decomposi-

tion (SVD)17 applied to the extended tensor X(n+1)

ijkl .

Suppose that the tensor-leg dimension in X
(n)
ijkl is D

for each index, i.e., i, j, k, l = 0, 1, . . . , D � 1. As we
have shown in Eq. (8), the dimension of the grouped in-

dex i = (i
1
i
2
) in X

(n+1)

(i1i2)(j1j2)(k1k2)(l1l2)
is equal to D

2.

We reshape the four tensor indices to form a rectangular
matrix with the grouped index (i

1
i
2
) and the remaining

grouped index (j
1
j
2
k
1
k
2
l
1
l
2
) with the dimensionD

6. Ap-
plying the singular value decomposition to the reshaped
tensor, we obtain

X
(n+1)

(i1i2)(j1j2k1k2l1l2)
=

X

⇠

U
(i1i2) ⇠

!⇠ V(j1j2k1k2l1l2) ⇠
,

(10)
where U and V are generalized unitary, i.e. orthonormal,
matrices U

T
U = V

T
V = 1. We assume the decreasing

order for the singular values !⇠ by convention. Keeping
D dominant degrees of dominant freedom for the index
⇠ at most, we regard the matrix U

(i1i2) ⇠
as the renor-

malization group (RG) transformation from (i
1
i
2
) to the

renormalized index ⇠. For the purpose of clarifying the
relation between the original pair of indices (i

1
i
2
) and

the renormalized index ⇠, we rename ⇠ to i and write the
RG transformation as U

(i1i2) i
. In the same manner, we

obtain U
(j1j2) j

, U
(k1k2) k

, and U
(l1l2) l

, where we have dis-

tinguished the transformation matrices by their indices.
The RG transformation is then performed as

X
(n+1)

ijkl  
X

i1i2j1j2
k1k2l1l2

U
(i1i2) i

U
(j1j2) j

U
(k1k2) k

U
(l1l2) l

X
(n+1)

(i1i2)(j1j2)(k1k2)(l1l2)
,

(11)
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generacy of the ground state of the DOF phase (and also
of the BCSOS Hat phase) in half-integer spin chains. This
degeneracy couples to the parity of the height of the sur-
face (i.e., whether the average height of the surface is an
even or odd integer plus —,'). The corrugation of the sur-
face in the BCSOS model acts like a local variable that
keeps track of the parity of the average height of the sur-
face. This aspect is sufficient to be able to express the or-
der parameters of the BCSOS Aat and DOF phase in
terms of local spin operators.
In the final analysis the content of the Haldane conjec-

ture is quite limited. DOF phases are realized in integer
and half-integer spin chains alike. They have exactly the
same type of long-range order, are stabilized by exactly
the same physical mechanism, have exactly the same
properties, and the phase diagrams of integer and half-
integer spin chains look alike. The only difference is that
in half-integer spin chains the long-range AF order of the
"spins" (the l1 and l1 excitations with respect to the
perfectly ordered Neel ground state) can be expressed in
terms of a local order parameter, while in integer-spin
chains this information is lost.

II. DISORDERED FLAT PHASES
IN CRYSTAL SURFACES

A. Surface roughening

The roughening of crystal surfaces is conventionally
described by solid-on-solid (SOS) models. " The surface is

FIG. 1. Rectangular lattice with column heights h;, step vari-
ables S;„and vertices R.

characterized by means of integer-valued column height
variables h, defined on a two-dimensional lattice. We
consider the so-called restricted solid-on-solid (RSOS)
model, which is the special SOS model where nearest-
neighbor columns r and r' are allowed to differ by at most
1, h, —h, =0, +1. In other words, where only steps of
height 1 are allowed.
The most general RSOS model Hamiltonian with in-

teractions between the four heights h„h2, h3, and h4,
around each vertex R, see Fig. 1, can be written as'

Httsos ——g [K[5( h, —h2 I

—I)+5( Ih, —h, I

—I )]+LI '5( lh 1
—h3 I

—I)+L'p"'5( Ih )
—h3 I

—2)
R

+L", 5( Ih~ —h4, I
1)+L2' 5( Ih~ —h4 I 2)+Q5( h, —h3 I 1)5( Ih2 —h4 I 1)I, (2.1)
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with 5(x)=1 for x=0 and 5(x)=0 for x&0. All ener-
gies are measured in units of 1/kz T, and we have chosen
a square lattice. Throughout this section the interactions
are isotropic, L']"'=L']" and L2 '=L2", but this is not
essential, and in the following sections anisotropy will
play an important role. Figure 2 shows the phase dia-

gram of the RSOS model in the (K,L2) subspace with
Q=L, =0.
First we summarize brieAy the conventional roughen-

ing theory, as realized, e.g. , in models with only nearest-
neighbor interactions (along the K axis in Fig. 2). At low
temperatures (K))0) the surface is Aat. It contains a
few thermodynamically excited terraces where the sur-
face is higher or lower (by one unit); see Fig. 3(a). Ther-
modynamic excitations are of order k~ T. The free ener-
gy of a terrace is proportional to its step length ~g. g is
the average terrace diameter and is proportional to the
correlation length. We measure all free energies in units

(a) (b)
FIG. 2. Phase diagram of the RSOS model with nearest-

neighbor interactions K and step repulsion Lz=Lz =Lz and
the coupling constants Q =LI' =L',"=0.

FICs. 3. Typical configurations in the RSOS flat phase (a), the
disordered flat (DOF) phase (b), and RSOS rough phase (c).

On the solid surface, atoms are stacking 

on top of each other. (Solid on Solid)

RSOS Model

Surface state is specified by the height h,

where the nearest neighbor sites can differ

at most one. (Restriction)     ex. h1 and h2, etc.

When the height differs by one between nearest neighbor sites, energy 
increases by E. (A large E favors the completely flatness.)

When the height differs by two between next nearest neighbor sites (in the 
diagonal direction), energy increases by Q.  ex. h1 and h3, h2 and h4, etc.

(Step Repulsion)

(Step Energy)

(IRF Model)
… thus local energy is determined 4 heights surrounding a surface, 

dented as a crossing point of lines in the figure.
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Preroughening Transitions in Surfaces

Koos Rommelse and Marcel den Nijs
Department of Physics, Unt vers'ity of Washington, Seattle, Washington 98195

(Received 28 September 1987)

We introduce a new type of phase of crystal surface and interfaces. This disordered flat phase appears
intermediate between the familiar flat and rough phases in the presence of short-range interactions of a
type common in experiments. The surface remains flat on average although it contains a disordered ar-
ray of steps. The preroughening transition into the disordered flat phase belongs to a new universality
class. Finite-size-scaling calculations for the restricted solid-on-solid model confirm the existence of the
disordered flat phase and the preroughening transition.

PACS numbers: 68.35.Rh, 64.60.Fr, 68.35.Md, 82.65.Dp

Crystal surfaces and interfaces undergo several types
of phase transitions. One type is the roughening transi-
tion, where thermodynamically excited steps transform a
flat surface into a terraced mountainlike landscape. Con-
ventionally this is a Kosterlitz- Thouless (KT) transi-
tion. The step free energy vanishes with an essential
singularity. In the rough phase, the height-height corre-
lation function diverges logarithmically. Its amplitude,
1/trig, measures the roughness of the surface. Kg =tr/2
at the KT transition and decreases monotonically with
temperature. Numerous numerical and exact results for
solid-on-solid (SOS) models ' and experimental evi-
dence have confirmed this.
Here we show that a novel type of phase appears inter-

mediate between the flat and rough phases in the pres-
ence of short-range interactions between the steps. We
call this the disordered flat (DOF) phase, because the
surface remains flat on average although it contains a
disordered array of steps. First the step free energy van-
ishes at the preroughening transition from the flat into
the DOF phase. Next the surface undergoes a KT tran-
sition from the DOF phase into the rough phase. Before
we present our results for the restricted solid-on-solid
(RSOS) model, we discuss the mechanism that stabilizes
the DOF phase in general.
A flat surface contains thermodynamically excited ter-

races where the surface is higher or lower (by one unit).
The free energy of a terrace is proportional to the length
of its edge (the step length). This determines the size of
a typical terrace, since its free energy is of order kBT.
The terraces increase with temperature because meander
entropy reduces the step free energy. This continues un-
til temperatures at which the terraces start to see each
other. The topological rules that govern how steps in-
tertwine and the nature of the short-range interactions
between steps become the limiting factors in the increase
in entropy and determine the universality class of the
transition —a KT transition in the conventional case,
when hard-core repulsion between steps dominates.
Most studies considered only nearest-neighbor (nn) in-

teractions. The DOF phase appears when we merely ex-

tend the range of the interactions, such that the further-
than-nn columns prefer to be at the same height, just as
nn columns do. Such interactions must be common in
experimental systems. It is important to distinguish be-
tween up and down steps, i.e., to acknowledge the direc-
tion of the change in height. In Fig. 1 we denote this by
arrows along the steps: When one looks in the direction
along the arrow, the height to the left of the step is (one
unit) lower. The nn interactions contribute only to the
step energy. They are blind to the arrows. The further-
than-nn interactions can look across two or more steps.
They imply a short-range repulsion between steps with
parallel arrows, but an attraction (or no interaction, like
in the RSOS model discussed below) between steps with
opposite arrows. In the extreme case when this interac-
tion is infinitely strong, steps with parallel arrows are
forbidden to approach each other closer than the interac-
tion range, while steps with antiparallel arrows can ap-
proach each other at will. So the meander entropy is
larger in configurations where up and down steps alter-
nate, Fig. 1(a), than in configurations where they form a
staircase, Fig. 1(b). At temperatures high enough that

n (a)

n

FIG. 1. Surface configuration with (a) nested up-down steps
and (b) up-up steps.
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Disordered Flat 

(DOF) Phase

a bridge to 1D quantum spin chain
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The line R L-is the threshold where rl
—(1) and

rl
+ (2) vanish with universal amplitudes S + (a ) =a rr/4

and S (a) =rr/4. We used this property to locate this
line numerically. Similarly, S-M -I is the threshold
where gt vanishes. At point I, we find numerically a
universal amplitude Si /2rr =0.1245 ~ 0.001, consistent
with an Ising transition.
Figure 3 confirms that the DOF phase has the type of

long-range order described above. In the RSOS flat
phase, every q,—(a) must vanish and qt must be finite.
In the DOF phase gt must vanish, and rl,—(2) must be
finite. Figure 3 shows their behavior across the pre-
roughening transition at L ~ (point P in Fig. 2). As
predicted, S (1)=Si +S, (0), Fig. 3(a), diverges in
the RSOS flat phase and vanishes in the DOF phase,
while S (0) =S, (1), Fig. 3(b), vanishes in the RSOS
flat phase and diverges in the DOF phase.
At the multicritical point L, on approach from the

rough side, the universal amplitudes must take the limit
values: S+(a) =a rr/4 and S (a) =rr/4. Along L P-
we find numerically a monotonic variation from these
values at L towards the following values at P:
S (1)=0.799+ 0.001, S (0) =0.770~0.002, S+(1)
=0.923~0.003 and S+(2)=3.69~0.01. At point P
we find numerically a thermal critica1 exponent y,
=0.303 ~ 0.001 (a =2—2/y =4.60+ 0.02). So the
preroughening transition is much weaker than Ising. In
a system with an intermediate DOF phase, the behavior
of the specific heat will be almost identical to that in the
conventional KT theory, with only a second weak singu-
larity near its maximum. It might be useful to reanalyze
previous numerical and experimental specific heat data.
The numerical convergence is slow about L. This is

not surprising since the DOF phase is stabilized by an in-
tricate entropy effect. We cannot rule out that the g's
scale not only at L-P, but also inside a part of the DOF
phase close to L (The infinite Isin. g backbone cluster
might change into a set of fractal-shaped clusters as is
the case along L P.)-

The RSOS model is related to the one-dimensional
spin-1 quantum chain. We can show that the DOF-
type order is related to the so-called Haldane gap, and
that the preroughening transition is analogous to one of
the transitions in that model.
In Fig. 2, the DOF phase appears when the ratio be-

tween the step repulsion L and the step energy K be-
comes larger than L/K =1.23 ~ 0.04. In the unrestricted
SOS model with Gaussian nn and nnn interactions J and
M, the DOF phase should appear at M/1 =0.75 (since
K=1+2M and L = 4M). This estimate ignores the at-
traction between up-down steps (of order 2M) which
favors the AF step order. We expect that the DOF
phase is realized in experimental systems.
This research is supported by National Science Foun-

dation Grant No. DMR 85-09392, and one of us
(M.d.N. ) was supported by the Alfred Sloan Founda-
tion.
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dimensional classical system share the same property. How about the Haldane State? 
Here is their reply!!!



DisOrderedFlat Phase

40 PREROUGHENING TRANSITIONS IN CRYSTAL SURFACES. . . 4711

generacy of the ground state of the DOF phase (and also
of the BCSOS Hat phase) in half-integer spin chains. This
degeneracy couples to the parity of the height of the sur-
face (i.e., whether the average height of the surface is an
even or odd integer plus —,'). The corrugation of the sur-
face in the BCSOS model acts like a local variable that
keeps track of the parity of the average height of the sur-
face. This aspect is sufficient to be able to express the or-
der parameters of the BCSOS Aat and DOF phase in
terms of local spin operators.
In the final analysis the content of the Haldane conjec-

ture is quite limited. DOF phases are realized in integer
and half-integer spin chains alike. They have exactly the
same type of long-range order, are stabilized by exactly
the same physical mechanism, have exactly the same
properties, and the phase diagrams of integer and half-
integer spin chains look alike. The only difference is that
in half-integer spin chains the long-range AF order of the
"spins" (the l1 and l1 excitations with respect to the
perfectly ordered Neel ground state) can be expressed in
terms of a local order parameter, while in integer-spin
chains this information is lost.

II. DISORDERED FLAT PHASES
IN CRYSTAL SURFACES

A. Surface roughening

The roughening of crystal surfaces is conventionally
described by solid-on-solid (SOS) models. " The surface is

FIG. 1. Rectangular lattice with column heights h;, step vari-
ables S;„and vertices R.

characterized by means of integer-valued column height
variables h, defined on a two-dimensional lattice. We
consider the so-called restricted solid-on-solid (RSOS)
model, which is the special SOS model where nearest-
neighbor columns r and r' are allowed to differ by at most
1, h, —h, =0, +1. In other words, where only steps of
height 1 are allowed.
The most general RSOS model Hamiltonian with in-

teractions between the four heights h„h2, h3, and h4,
around each vertex R, see Fig. 1, can be written as'

Httsos ——g [K[5( h, —h2 I
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—I )]+LI '5( lh 1
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—2)
R

+L", 5( Ih~ —h4, I
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with 5(x)=1 for x=0 and 5(x)=0 for x&0. All ener-
gies are measured in units of 1/kz T, and we have chosen
a square lattice. Throughout this section the interactions
are isotropic, L']"'=L']" and L2 '=L2", but this is not
essential, and in the following sections anisotropy will
play an important role. Figure 2 shows the phase dia-

gram of the RSOS model in the (K,L2) subspace with
Q=L, =0.
First we summarize brieAy the conventional roughen-

ing theory, as realized, e.g. , in models with only nearest-
neighbor interactions (along the K axis in Fig. 2). At low
temperatures (K))0) the surface is Aat. It contains a
few thermodynamically excited terraces where the sur-
face is higher or lower (by one unit); see Fig. 3(a). Ther-
modynamic excitations are of order k~ T. The free ener-
gy of a terrace is proportional to its step length ~g. g is
the average terrace diameter and is proportional to the
correlation length. We measure all free energies in units

(a) (b)
FIG. 2. Phase diagram of the RSOS model with nearest-

neighbor interactions K and step repulsion Lz=Lz =Lz and
the coupling constants Q =LI' =L',"=0.

FICs. 3. Typical configurations in the RSOS flat phase (a), the
disordered flat (DOF) phase (b), and RSOS rough phase (c).
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the terraces intertwine, the surface prefers a structure
where the steps have an up-down-up-down order.
Our results for the RSOS model show that this entro-

py difference is sufficient to stabilize the DOF phase,
with a nonzero up-down-up-down step order parameter.
The DOF phase represents a new type of surface recon-
struction with randomly rather than periodically ar-

ranged steps. Only the arrows have long-range order.
In SOS models, the surface is characterized by inte-

ger-valued column-height variables h(r). In the RSOS
model, nn columns r and r' are allowed to differ by at
most one, h(r) —h(r') =0, +'1. This restriction retains
the effect that we want to study, while it allows high-
accuracy numerical calculations. We consider the Ham-
iltonian

HRsos= It+&, , ) 6(l &(r) —h(r') l

—1)—Lg&, , i B(l h(r) —h(r") l

—2).
(r, r') denotes nn bonds on a square lattice: (r, r") denotes next-nearest-neighbor (nnn) bonds; 8(x) =1 when x =0
and vanishes otherwise. Energies are measured in units of —1/kHT. L )0 favors equal column heights of second
neighbors.
The steps follow the bonds of the dual lattice and form closed loops. To distinguish their up or down direction, we

place arrows along these loops, as in Fig. 1. At each intersection of loops the flux of arrows must be equal to zero. K is
the energy of a loop element and L favors an alternating arrow order at loop intersections.
To expose the order parameter of the DOF phase, we distinguish between loops and arrows. Associate an Ising spin

s(r) = ~ 1 to each column. Each Ising Bloch wall forms a closed loop and represents the presence of a step. Next con-
sider the body-centered solid-on-solid (BCSOS) model (the six-vertex model). This is a special SOS model with an ar-
row (a step) on every bond of its lattice. We rewrite our partition function as

Z&tsos=gb&, &&exp —,
' Kg&, , ) (s(r)s(r')+ l1 Zacsos(is(r)j, L). (2)
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FIG. 2. Phase diagram of the RSOS model. L and K are
proportional to 1/(kaT).

s(r) represents the parity of the column height at r. The
conventional BCSOS model has a rigid lattice. In (2)
the annealed Ising-Bloch-wall structure plays the role of
BCSOS lattice. The Ising Bloch walls are its bonds and
the wall intersections its vertices. This lattice has a
two-sublattice structure; the column heights are even on
one sublattice and odd on the other. K governs the
Ising-type order, i.e., the structure of the annealed
BCSOS lattice. L governs the BCSOS-type order. This
leads to the phase diagram shown in Fig. 2.
In the limit K —~ the Ising spins are antifer-

romagnetically (AF) ordered. Each bond contains an
Ising Bloch wall. The model reduces to the exact solv-
able BCSOS model on a square lattice. For exp(L) )2,
the surface is flat; the column heights alternate between

! two values. For exp(L) &2, the surface is rough. The
roughening transition is a KT transition.
For K&(0, the Ising spins remain AF ordered. The

Bloch walls still form a square array, but with missing
bonds (closed loops) at length scales smaller than the
Ising correlation length. Such imperfections wi11 not
change the universality class of the roughening transi-
tion.
For K=O, the Ising spins are disordered. The Bloch

walls form a disordered array. Besides many disconnect-
ed finite clusters, one infinitely large Bloch-wa11 cluster
remains, because long-range ferromagnetic Ising-spin
order remains absent. This backbone cluster sets the
roughness of the surface. The BCSOS model on the
backbone undergoes a conventional roughening transi-
tion. Its rough phase at small values of L represents the
conventional rough phase of the RSOS model. Its flat
phase at large values of L represents the DOF phase. In
the DOF phase, the surface contains a disordered array
of steps, but remains flat on average because the height
fluctuations are limited by the BCSOS order in the back-
bone.
For K»0, the Ising spins are ferromagnetically or-

dered. The BCSOS lattice has fallen apart into many
finite lattices. Therefore the arrows are disordered for
all finite L. The infinite cluster of ferromagnetically or-
dered Ising spins, where sites have the same height, has
taken over the role of backbone. Hence the surface is
flat. This represents the conventional RSOS flat phase.
Conventional-type renormalization arguments' can be

applied to (1) and predict that the roughening transition
lines R-L-M-B belong to the KT universality class.
The K &0 part of Fig. 2 describes the coupling be-
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s(r) represents the parity of the column height at r. The
conventional BCSOS model has a rigid lattice. In (2)
the annealed Ising-Bloch-wall structure plays the role of
BCSOS lattice. The Ising Bloch walls are its bonds and
the wall intersections its vertices. This lattice has a
two-sublattice structure; the column heights are even on
one sublattice and odd on the other. K governs the
Ising-type order, i.e., the structure of the annealed
BCSOS lattice. L governs the BCSOS-type order. This
leads to the phase diagram shown in Fig. 2.
In the limit K —~ the Ising spins are antifer-

romagnetically (AF) ordered. Each bond contains an
Ising Bloch wall. The model reduces to the exact solv-
able BCSOS model on a square lattice. For exp(L) )2,
the surface is flat; the column heights alternate between

! two values. For exp(L) &2, the surface is rough. The
roughening transition is a KT transition.
For K&(0, the Ising spins remain AF ordered. The

Bloch walls still form a square array, but with missing
bonds (closed loops) at length scales smaller than the
Ising correlation length. Such imperfections wi11 not
change the universality class of the roughening transi-
tion.
For K=O, the Ising spins are disordered. The Bloch

walls form a disordered array. Besides many disconnect-
ed finite clusters, one infinitely large Bloch-wa11 cluster
remains, because long-range ferromagnetic Ising-spin
order remains absent. This backbone cluster sets the
roughness of the surface. The BCSOS model on the
backbone undergoes a conventional roughening transi-
tion. Its rough phase at small values of L represents the
conventional rough phase of the RSOS model. Its flat
phase at large values of L represents the DOF phase. In
the DOF phase, the surface contains a disordered array
of steps, but remains flat on average because the height
fluctuations are limited by the BCSOS order in the back-
bone.
For K»0, the Ising spins are ferromagnetically or-

dered. The BCSOS lattice has fallen apart into many
finite lattices. Therefore the arrows are disordered for
all finite L. The infinite cluster of ferromagnetically or-
dered Ising spins, where sites have the same height, has
taken over the role of backbone. Hence the surface is
flat. This represents the conventional RSOS flat phase.
Conventional-type renormalization arguments' can be

applied to (1) and predict that the roughening transition
lines R-L-M-B belong to the KT universality class.
The K &0 part of Fig. 2 describes the coupling be-
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I y „&=&2looo. . . &
2M" y Iol lool. . . &,

with

M=2, 4, 6, permuatlons (5.6a)

I fvBs &—
M=2, 4, 6, .

2M" g Iol lool. . . &,
perm uatlons

(5.7a)

&2lol lool. . . & = Iot Soot. . . &+ I01100S. . . &,
(5.6b)

where 1 (0) denotes an occupied (empty) site, i.e.,
S„'=+1 (S„'=0). The first summation is over occupation
numbers, M =2, 4, 6, . . . , N. The occupation number
must be even because the spins of the particles have per-
fect AF order, and we assume periodic boundary condi-
tions. The second summation is over all possible
configurations of the M occupied sites. Each configura-
tion represents two different spin states because the AF
spins order is twofold degenerate [see Eq. (5.6b)]. Each
particle (S~=+I) has a fugacity &2. This originates
from the &2 normalization of the g & in Eq. (5.1). The

n n

vacuum, M =0, has an anomalous weight 2, because then
. a (+,—) is located at each site, and it is possible to link
them in two ways.
Equation (5.6) applies to even chain lengths. For even

values of N all the e tensors become symmetric under the
spin rotation discussed above, but for odd chain lengths
one tensor remains antisymmetric. For odd values of N
the VBS state can be written as

advantage. It shows most clearly that the VBS state has
the properties of a noninteracting lattice gas. This ex-
plains the extremely short correlation length in the VBS
state. For example, the norm of the VBS state is identical
to the partition function of a noninteracting lattice gas
with fugacity z =2,

M=2, 4, 6, .

N
2M i (3N+3)M

(5.8a)

for even chain lengths N, and

& fvBsl PvBs & X
M=2, 4, 6,

N
2M & (3NM (5.8b)

for odd chain lengths N.

C. Order parameters and mass gaps

The preceeding property makes it very easy to calcu-
late all the correlation functions associated with the order
and disorder of the DOF phase defined in the preceding
sections. ANeck et a/. have already calculated most of
these correlation functions. In our lattice-gas formula-
tion the calculation becomes completely trivial. For sim-
plicity we present the calculation for even chain lengths
only.
Define the following sums,

with

&2101lool. . . & =101' i, ollol'. . . & —Iog polloi. . . & .
(5.7b)

Z0(N) =
M=0, 2,4,

N
2

(5.9)

The vacuum contribution has disappeared because its two
terms now have opposite signs, and cancel. Also the two
spin states in Eq. (5.7b) have opposite signs. The location
of the remaining antisymmetric e is denoted by II. Its lo-
cation is gauge invariant, but must be selected to specify
a sign convention: the sign is + (—) when the first S'WO
to the right of II is S'= 1 (S'=—1).
It is easy to check by substitution that Eq. (5.6) is

indeed an eigenstate of Eq. (5.5). The proof and formula-
tion by AIIIeck et al. using Eq. (5.3), and also by Arovas
et al. " (they use the Schwinger boson formalism), are
mathematically more elegant, but Eq. (5.6) has another

sur f'ac e

Z1(N) =
M=1, 3, 5,

N
2 M e

Using the binomial expansion,

P(a, b )=(a +b )
M=0, 1,2, 3, . . . , N

N
Mb N—M M

(5.10)
these sums can be evaluated trivially:

Z (N0)=[P(2, 1)+P(—2, 1)]/2=[3 +(—1)N]/2
(5.1 1)

Z, (N)=[P(2, 1)—P(—2, 1)]/2=[3 —(—1) ]/2 .
In the VBS state the expectation values for finding a par-
ticle or a vacancy are equal to

0 1 -] sp)n
(+ +) (- +) (- -) (+ -) (+ -) (+ +) (- -) valence

bonds

2Z, (N 1)—
&ol(s„')'Io& =

0 (5.12)

FIG. 15. Typical (side view) configuration in the DOF phase
for the RSOS model, as seen from, respectively, the crystal sur-
face, spin-1, and VBS perspective.

Zo(N —1)
&Ol[1—(s„')']Io&=

0

=1
3

The probability of finding particles with parallel spins
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ously along the preroughening line between the values
P=1.46+0.06 at point P in Fig. 2 (where E =1.84
+0.01) and P= ~ at the multicritical point L. The
preroughening transition is followed at higher tempera-
tures by a conventional roughening transition. There the
line-shape changes into the power law Eq. (2.10a), with
the usual universal value Kg =—,'m at Tz.
It is difficult to predict which experimental systems ex-

hibit preroughening. The multicritical point L, where
the DOF phase becomes stable, is located in Fig. 2 at
L2/K =1.23+0.04. In general one might expect that the
interactions of an experimental system can be cast ap-
proximately into a Hamiltonian of the form

FIG. 12. Diagonal lattice setup used in the transfer matrix.
The dashed lines connect column height variables that belong to
the same time slice.

H= g V(~r r'~)[h(r—)—h(r')] (2.12)

E and L2 in Eq. (2.1) are related to V(r ) as K =V(1) and
L2 =4V(&2). L& is equal to zero in Fig. 2, but equal to
L, = ,'L2 = V—(&2)in Eq. (2.12). L, renormalizes the step
energy K; roughly as K,z-—K+2L&. So in systems like
Eq. (2.12) a DOF phase can be expected if L2/K, (r—l.23,
i.e., if V(&2)/V(1) =0.8. In other words, we expect the
onset of a DOF phase if the combined strength of all the
further than nearest-neighbor interactions (within the in-
teraction range) is approximately equal to the nearest-
neighbor strength. It is not clear to us whether this is
satisfied in He. It might be satisfied in metals, because
the observation of nonzero roughening temperatures in
higher-order vicinal metal surfaces, like Ni(llm) and
Cu(1 1m ), for I=3,5,7, . . . , ' implies that the steps in-
teract over large distances.

III. EQUIVALENCE BETWEEN SOS MODELS
AND SPIN QUANTUM CHAINS

A. Transfer matrix of the RSOS model

In this section we derive in detail the equivalence be-
tween the RSOS model and the spin-1 chain using the
transfer matrix formalism. We choose the transfer ma-
trix of the RSOS model in the diagonal direction as indi-
cated in Fig. 12 by the dashed lines. The column heights
h,' represent the heights h„one unit of "time" later. The
transfer matrix has the form

T= + T, (n)Tz(n)TJ(n) + T, (n)TI((n)TI(n)
71 Qddn even

where

rJ =exp( —L',"),
r2 =exp( L2" ),—
q=exp( —Q)—1 .

(3.3)

The operators h„and p„obey the conventional scalar
commutation relation [h„,p ]=i5„,but with as a con-
straint that the eigenvalues of h„are integers, and ac-
cordingly the spectrum ofp„ is periodic, 0 &p„&2m. The
P(k, 1 ) are projection operators that enforce the step-one
constraint: P(k, l)=1 if ~k —l~ (1 and P(k, l)=0 other-
wise.
Next, introduce the spin-1 algebra,

S„'=h„+,—h„,
S„—S„+ J =2P(h„+J,h„)P(h„,h„J)e

(3.4)

+(2L(x) JL(x) )(SzSz )2I

T,(n)= Il+ —,'rJ[1+q5(~S„'+S„' J ~

—1)]
(3.&)

with S„"=—,'(S„++S„), S~=(1/2i)(S„+—S„), and
[S„",S~ ]=iS„'5 „. S„'=0 represents the absence and
S„'=+1 (—1) the presence of an up (down) step, at the
bond between sites n and n + 1 in Fig. 12. In terms of the
spin-1 operators the transfer matrix reads

T~( n )=exp I
—K[(S„' J ) +(S„') ]I,

T (n)=expI L',"'[(S' ) +—(S') ] ,'L'"'S'S'——

with

T~(n )=expI —K[5(~h„+J—h„~—1)
+5( ~h„J—h„I—1)]I,

TI (n ) =exp[ —L' 5( Ih„+ J
—h„,I —1)

L2"'5( ~h„+,—h„—, ~

—2)],
T, (n ) =P(h„+„h„)P(h„,h„,)

X I I+2rJ[1+q5(~h„+J—h„J~—1)]
Xcos(p„)+2r2cos( 2p„)],

(3.1)

(3.2)

X (S„S„J+S„S„J)
+ —,

J r2[(S„+S„:J ) +(S„S„,) ]I .

B. The spin-1 quantum Hamiltonian

The logarithm of the transfer matrix H =—ln( T ),
defines the one-dimensional quantum problem associated
with the RSOS model. The ground-state energy of H is
proportional to the free energy. The quantum Auctua-
tions play the role of the thermodynamic fluctuations.
The reduced Hamiltonian H~ is obtained by ignoring
that the factors in the right-hand side in Eq. (3.1) do not
commute,

Transfer matrix to the diagonal 

direction has a good correspondence

with the quantum spin chain.

Step height of the DOF phase can be

regarded as Sz of each spin located

between faces.

See details (Rommelse and den Nijis, 1989)
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We show that disordered Hat phases in crystal surfaces are equivalent to valence-bond-type
phases in integer and half-integer spin quantum chains. In the quantum spin representation the
disordered Aat phase represents a Quid-type phase with long-range antiferromagnetic spin order.
This order is stabilized dynamically by the hopping of the particles and short-range spin-exchange
interactions. The mass of Neel solitons is finite. Numerical finite-size-scaling results confirm this.
We identify the order parameter of the valence-bond phase. The Haldane conjecture suggests a fun-
damental difference between half-integer and integer antiferromagnetic Heisenberg spin chains. We
find that disordered Aat phases are realized in both cases, have exactly the same type of long-range
antiferromagnetic spin order, and are stabilized by exactly the same mechanism. They differ only in
the mathematical formulation of broken symmetry in the spin representation. We suggest experi-
mental methods of observing disordered Aat phases in crystal surfaces.

I. INTRODUCTION

Spin quantum chains have been a focus of research for
many years. In 1983 Haldane' predicted that, contrary
to the spin- —, chain, the spin-1 chain is not massless at its
isotropic Heisenberg antiferromagnetic (HAF) point but
is in a phase with a finite-mass gap, different from the
Neel phase with long-range antiferromagnetic (AF) or-
der. More generally, he predicted that all AF isotropic
Heisenberg chains with integer spin s are massive. Half-
integer chains are expected to be massless at their HAF
point. This prediction is based on a mapping of the spin
chains in the limit of large s onto the nonlinear o. model.
Subsequently, numerous numerical calculations have

checked this mass gap for the s =1 case. Although con-
troversial at first, it is now commonly agreed that the nu-
merical evidence supports the conjecture. Last year
AfAeck et al., followed by others, suggested that the
ground state has a valence-bond solid (VBS) character.
They showed that at a special point in the phase diagram
of the spin-1 chain, not too far from the HAF point, the
exact ground state can be written as a VBS state. This re-
sult has triggered general interest in quantum spin chains
because VBS states have a Jastrow wave-function struc-
ture and therefore striking similarities with the Laughlin
wave function used to explain the fractional quantum
Hall effect. Moreover, VBS states are proposed to ex-
plain high- T, superconductivity.
In this paper we show that the disordered fiat (DOF)

phase which we discovered earlier in the context of the
statistical mechanics of two-dimensional (2D) surface-
roughening transitions is equivalent to these VBS-type
phases in 1D quantum chains. The virtue of this
equivalence is that it provides simple physical insight into
the nature of the ground state in VBS phases, the mecha-

nism that stabilizes them, and it allows us to identify the
correlation functions, order parameters, and particle and
soliton masses (interface free energies) that distinguish
this phase from the other phases.
We will interpret spin-s chains for integer spin s as di-

luted spin-(s ——,') chains. The site is empty, the S„'=0
state, or occupied by a spin-(s ——,') particle, with the
states S„'=+1,+2, . . .+s representing the spin of the
particle.
These particles form a solid, fluid, or dilute gas with or

without long-range AF spin order in various regions of
the phase diagram. We will show that they form a fluid
with long-range antiferromagnetic (AF) spin order in the
VBS phase. This interpretation elucidates the properties
of the spin-s chain and VBS phases considerably because
it is close to the statistical mechanical crystal surface rep-
resentation of the model ~ The steps in crystal surface
configurations are the world lines of these spin-(s ——,

' )
particles.
VBS phases are not disordered; they have long-range

AF spin order, similar to the Neel phase (the solid phase
with AF spin order), but the positional disorder of the
particles in the DOF phase makes it more dificult to
identify the order. We define the order parameter of the
VBS phase in Sec. IV, show that Neel solitons have a
finite mass in the DOF phase, and calculate this soliton
mass numerically by finite-size scaling.
In Sec. II we review the properties of the DOF phase

in crystal surfaces and the mechanism that stabilizes it.
We give a simple, but general, entropy argument, fol-
lowed by a more detailed argument that uses a decompo-
sition of the restricted solid-on-solid (RSOS) model into
an Ising model and a six-vertex model. The latter eluci-
dates the structure of the RSOS model phase diagram.
We introduce order parameters, correlation functions,

40 4709 1989 The American Physical Society



Noriko Akutsu, J. Phys. Condens. Matter 23, 485004 (2011) (arXiv:1104.3393)

~ 4 nm~20 nm~ 100 nm~ 1 µm

Equilibrium 
crystal shape
(ECS)

Vicinal surface A step STM image

Thermodynamics Terrace-step-kink
(TSK) picture

Solid-on-solid  (SOS) models
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“Non-universal equilibrium crystal shape results from sticky steps”

Figures from arXiv:1104.3393 
and 1903.09929 by N.Akutsu

Arxiv: 
1903.09929 1711.05015  1510.00899 
1204.5574  1104.3393  cond-mat/0107021 
cond-mat/0104559  cond-mat/0012162 
cond-mat/0011210  cond-mat/9903448

(Series of studies by Noriko Akutsu)

Numerical analyses by MPS
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Phys. Rev. E 94, 022134 (2016); arXiv:1512.09059

Phys. Rev. E 96, 062112 (2017); arXiv:1709.01275


arXiv:1612.07611 

Polyhedral Models

Tomotoshi Nishino (Kobe Univ.), Hiroshi Ueda (RIKEN), Seiji Yunoki (RIKEN)

Koichi Okunishi (Niigata Univ.), Roman Krcmar (SAS), Andrej Gendiar (SAS) 

— application of CTMRG to 

Statistical Mechanical Models —

*** not much is known for classical Heisenberg model on 2D Lattice ***

… numerical calculation tend to “observe” phase transition (!!!)

>>> how about the discrete Analogues?



Regular Polyhedron Models: 

q=4: Tetrahedron Model, corresponds to q=4 Potts Model

H  =  - J  Σij  Vi ・ Vj

Each site vector can point one of the 
vertices the regular polyhedron.

q=6: Octahedron Model (weak first order)
q=8: Cube Model, equivalent to 3-set of Ising Model
q=12: Icosahedron Model (2nd order)
q=20: Dodecahedron Model (2nd order)

Variants:

If one considers semi-regular polyhedrons, or truncated polyhedrons, one can 
further define discrete Heisenberg models. Also those cases where each site 
vector can point centers of faces or edges can be considered. By such 
generalizations, q= 18,24,36,48,60,72,90,120,150,180 can be considered.

* Do these models show KT transition?  (…no, when there is no anisotropy)

* Is there any model that shows multiple phase transitions?  (… no, in reality)

* We conjecture that some of these variants show multiple phase transitions.

MC — Surungan, Okabe, arXiv:1709.03720



previous studies

Tetrahedron

2nd Order

［Surungan&Okabe, 2012］

↓
1st Order


[Roman,et al., 2016]

2nd Order

[Patrascioiu, et al., 2001]


[Surungan&kabe, 2012]


KT?

[Patrascioiu, et al., 1991]


↓
2nd Order


［Surungan&Okabe, 2012］

MC
MC

MC

MC
MC

CTMRG

is there any high precision 
numerical study by TN?

Cube: Ising x 3

  (Exactly Solved)

Octahedron Icosahedron
Dodecahedron

… a vanguard for TN study

arXiv:hep-lat/0008024


arXiv:1709.03720
 arXiv:1709.03720


Probably 

1st order

in any 

dimension



Octahedron Model (q=6)
CTMRG — Krcmar, Gendiar, Nishino, arXiv:1512.09059

0.90838 0.90840 0.90842 0.90844T

-2.07355

-2.07354

-2.07353

-2.07352

-2.07351

-2.07350

f 0
Fixed BC
Free BC

t = 0
T = 0.908413

Latent Heat: Q = 0.073

Free energy per site f(T) is calculated by CTMRG under fixed or free 
boundary conditions at the border of the system.

No singularity exists in f(T), 

two lines cross at T = 0.908413.

Discussion: What kind of perturbation makes the model critical?

This model is characteristic 
in the point that interaction 
energy is either 1, 0, or -1.



previous studies

Tetrahedron

2nd Order

［Surungan&Okabe, 2012］

↓
1st Order


[Roman,et al., 2016]

2nd Order

[Patrascioiu, et al., 2001]


[Surungan&kabe, 2012]


KT?

[Patrascioiu, et al., 1991]


↓
2nd Order


［Surungan&Okabe, 2012］

MC
MC

MC

MC
MC

CTMRG

is there any high precision 
numerical study by TN?

Cube: Ising x 3

  (Exactly Solved)

Octahedron Icosahedron
Dodecahedron

… a vanguard for TN study

arXiv:hep-lat/0008024


arXiv:1709.03720
 arXiv:1709.03720




✓ Symmetry axis 
    Centers of edges (two-fold) 
    Centers of faces (three-fold)  
    Two opposite vertices (five-fold)

What kind of symmetry breaking happens at Tc ?

Is there multiple phase transitions?

Any possibility of KT transition?

Icosahedron Model: 

Numerical Analysis by CTMRG under m = 500

dimension of CTM: 6000
calculations were done on K-computer by Ueda.

… there would be some trick to reduce the 
site degrees of freedom in advance …

arXiv:1709.01275



prob. of directions under fixed B.C.

5-fold rotational symmetry is preserved in low temperature

arXiv:1709.01275



Spontaneous Magnetization

strong m-dependence exists
arXiv:1709.01275



Finite-  scaling𝑚
✓ Finite size scaling [Fisher and Barber, 1972, 1983]  

    + Finite-  scaling at criticality𝑚
Nishino, Okunishi and Kikuchi, PLA (1996)

Tagliacozzo, Oliveira, Iblisdir, and Latorre, PRB (2008)

Pollmann, Mukerjee, Turner, and Moore, PRL (2009)

Pirvu, Vidal, Verstraete, and Tagliacozzo, PRB (2012)

: Intrinsic length scale of the system𝑏

HU	et	al.,	PRE	(2017)



✓ 𝑏 ∼ 𝜉(𝑚, 𝑡)

 and : 1st and 2nd eigenvalues of ™𝜁1 𝜁2

HU	et	al.,	PRE	(2017)
✓ Correlation length

✓ Scaling hypothesis

We use the scaling library developed by Harada.

arXiv:1102.4149



Finite-  scaling for 𝑚 𝜉 ✓ Bayesian scaling  
[Harada, PRE, 2011]

✓ 0.5550  

1.617  
0.898

𝑇c =
𝜈 =
𝜅 =

arXiv:1102.4149



Finite-  scaling𝑚 ✓  𝛽 = 0.129

0.5550  

1.617  
0.898

𝑇c =

𝜈 =
𝜅 =

arXiv:1709.01275



Entanglement Entropy

Vidal, Latorre, Rico, and Kitaev, PRL, 2003

Calabrese and Cardy, J. Stat. Mech., 2004

: non-universal constant

: central charge

𝑎
𝑐



✓ One parameter 

 


✓ Empirical relation  
 
 

  

 
This work:  

 

𝑐 = 1.894

𝜅 =
6

𝑐( 12/𝑐 + 1)
6

𝑐( 12/𝑐 + 1)
− 𝜅 = 0.003

0.5550  

1.617  
0.898

𝑇c =

𝜈 =
𝜅 =

[ Pollmann, Mukerjee, Turner, and Moore, PRL, 2009 ]

Entanglement Entropy



Icosahedron model

Tc ¥nu ¥kappa ¥beta c

0.5550(1) 1.62(2) 0.89(2) 0.12(1) 1.90(2)

Phys. Rev. E 96, 062112 (2017)

✓ there is a phase transition of 2nd order


✓ Ordered phase has five-fold rotational symmetry 

arXiv:1709.01275



Tetrahedron

2nd Order

［Surungan&Okabe, 2012］

↓
1st Order


[Roman,et al., 2016]

2nd Order

[Patrascioiu, et al., 2001]


[Surungan&kabe, 2012]


KT?

[Patrascioiu, et al., 1991]


↓
2nd Order


［Surungan&Okabe, 2012］

MC
MC

MC

MC
MC

CTMRG

is there any high precision 
numerical study by TN?

Cube: Ising x 3

  (Exactly Solved)

Octahedron Icosahedron
Dodecahedron

… a vanguard for TN study

arXiv:hep-lat/0008024


arXiv:1709.03720

arXiv:1709.03720


Next Target

20 site degrees 
of freedom



Tetrahedron

2nd Order

［Surungan&Okabe, 2012］

↓
1st Order


[Roman,et al., 2016]

2nd Order

[Patrascioiu, et al., 2001]


[Surungan&kabe, 2012]


KT?

[Patrascioiu, et al., 1991]


↓
2nd Order


［Surungan&Okabe, 2012］

MC
MC

MC

MC
MC

CTMRG

is there any high precision 
numerical study by TN?

Octahedron Icosahedron
Dodecahedron

… a vanguard for TN study

arXiv:hep-lat/0008024


arXiv:1709.03720

arXiv:1709.03720


… preliminary 
(but extensive) 
calculation 
suggests that 
there is only a 
phase transition 



!" = 0.441	
) = 3.12		
, = 0.860

Finite m scaling 
(probably) supports 
the absence of 
massless area

matrix size 16000

arXiv:2004.08669



Tetrahedron

2nd Order

［Surungan&Okabe, 2012］

↓
1st Order


[Roman,et al., 2016]

2nd Order

[Patrascioiu, et al., 2001]


[Surungan&kabe, 2012]


KT?

[Patrascioiu, et al., 1991]


↓
2nd Order


［Surungan&Okabe, 2012］

MC
MC

MC

MC

MC

CTMRG

is there any high precision 
numerical study by TN?

Octahedron Icosahedron
Dodecahedron

… a vanguard for TN study

arXiv:hep-lat/0008024


arXiv:1709.03720

arXiv:1709.03720


an extensive

calculation 
suggests that 
there is only a 
phase transition 

arXiv:2004.08669
CTMRG



Future studies

Dodecahedron

Current Target

24 state

30 state

90 state

These models might show 

multiple phase transitions,

since there are inequivalent

directions.



Truncated Tetrahedron Model (q=12)
CTMRG — Krcmar, Gendiar, Nishino, arXiv:1512.09059

FIG. 1. Truncated tetrahedron (shown in the middle,
parametrized by t = 0.5) is depicted as the interpolation between the
octahedron (on the left for t = 0) and the tetrahedron (on the right
for t = 1).

a Generalization to  

each site vector points to one of the vertices.

t = 0

octahedron

t = 1

tetrahedron

1st

Ferro

Z2
D3

disorder q=4 Potts

Ising q=3 Potts

1st
* This model shows 

multiple phase transitions.

* This kind of generalization 
can be considered for 
other polyhedron modles.



Akiyama et al, arXiv:1911.12978


Higher Dimension (inner space)

Tetrahedron
>>> n-symplex (in n+1 dim.)

Cube
    >>> Hyper Cube

Octahedron
    >>> 16-cell, 32, 64, …

n-state Potts Model

n-set of Ising Model

Characteristic 4-polytopes

24-cell

120-cell

600-cell

Weak First Order? in 4D??

(possible to fill 4D space 
only by this polytope.)

numerical 
challenges



It is possible to treat the case that each site vector can point arbitrary 
lattice point in N-dimensional space. (= 2D lattice embedded to N-dim. 
space.)

Further Generalizations:

How can one apply tensor network method to spherical model?

(it is not straight forward to apply TN for exactly solved models.)

What is the role of TN in higher dimensional lattice? (>>> day 3 in TNSAA7)

What is the effect of perturbation/deformation with polyhedral symmetry 
to the continuous O(3) model?
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