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Electron systems two fundamental degrees of freedom

•Charge (flux of charge defines a current)

•Spin ½ (spintronics)

Atomtronics: analogy of semiconductor electronics in atomic systems

•Number (flux of particles defines a current)

•Spin-N (hyperfine quantum numbers)

•Boson / fermion, atom / molecule, …

•Coherence / Entanglement / Interference

•Superfluidity

Atomtronics
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N-type doping
extra atoms free to move

P-type doping
extra holes free to move
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V(x)

4
Particle-hole recombination



Atomtronics: Quantum2.0

Typically basic constituents;
• Pristine building blocks 

(e.g., BECs, 2-level atoms)
• Simple potential surfaces
• One (or a few) electromagnetic  modes

Quantum design of atomtronic circuits is complex;
• Large complex unitary 2!
• Multiple paths / interference

Use machine learning to aid design?
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Types of Machine Learning

• Supervised Learning: relation between the features/labels from labeled data
• Unsupervised Learning: underlying patterns from unlabeled data
• Reinforcement Learning: learn sequential decision making through trial and 

error

• Supervised/Unsupervised Learning: teach by examples
• Reinforcement Learning: teach by experience

• There are too many possible strategies so that it is impossible to do a 
brute-force search

• Human strategies are limited by our experience and imagination
• Many quantum system tasks fit this paradigm: Theory, Experimental 

Modelling, Data-driven
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Example of 
machine learning in 
complex systems

Teaching robots to walk
• States: body position, terrain
• Actions: joint positions, angles
• Reward: 1 if it takes one step 

further

Learning to play chess, GO
• States: board configurations
• Actions: where to place          

the pieces
• Reward: 1 = win, 0 = loss
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Reinforcement Learning Framework

• Agent: which 
action?

• Environment: 
respond to the 
action, return 
the next state 
and reward

• Goal: find a 
strategy that 
maximizes the
long-term 
rewards

Wish to apply this framework to the 
quantum engineering of designer 
platforms for carrying out specific tasks

The learning cycle
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Tic-tac-toe

Model free learning: the agent doesn’t know if it is playing tic-tac-toe, 
chess, doing quantum design, or controlling an AMO experiment!

Win
Loss
Draw
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Machine learning for interferometry

Mach-Zehnder Bragg Interferometer Shaken Lattice
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Representation of the agent
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Reduced 
Representation

e.g., populations

Action Values
e.g., lattice position

o Agent implementation is not unique
o Simplest is Tabular-Q: table of quality values for actions
o Can also use simple hidden-layer neural network
o More complicated strategies: Deep reinforcement learning 

(Double-deep Q networks = What we typically use)

Agent
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Design philosophy

Design components and cascade
• Beam splitters
• Mirrors (i.e., reflectors)
• Free propagation
• Relative accelerators

Cost / Reward based on: 
• Minimal detectable phase shift
• Dynamic range
• Total time taken
• Quantum/Classical Fisher information: 

Variation of output with control parameter 
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Beam Splitter

Target State
Reduced Rep: 

Momentum Prob
𝚿𝒊 → |𝚿𝒇⟩
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Mirror

Target Operator
Reduced Rep: 

Unitary Diagonal
𝑼𝐦𝐢𝐫𝐫𝐨𝐫
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Real-space interferometer
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Each vertical slice: probability distribution of momentum for a certain value of 
acceleration

Response to acceleration signals

Fingerprint: no aliasing

≈ 𝟏𝟎!𝟗 m𝐬!𝟐
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Parameter Estimation

SLI
Bragg
CR bound

Repeated measurements
Bayesian Inference

Sensitivity
Standard deviation
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Reinforcement learned gyroscope

More difficult to model: two-dimensional environment
Separation ansatz for different dimensions; x, y, may work well

𝝍 𝒙, 𝒚 = 𝜶 𝒙 𝜷(𝒚)

• 1D beam-splitting protocol in 𝑥

• Free propagation for 𝑇

• 1D Reflecting protocol

• Free propagation for 𝑇

• Invert 𝑦 motion

• Free propagation for 𝑇

• 1D Reflecting protocol

• Free propagation for 𝑇

• 1D recombination protocol
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End-to-end design with reinforcement learning
Why decompose into components?

Mach-Zehnder
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End-to-end design with reinforcement learning
Why decompose into components?

Like a multimode fiber interferometer, but not sensitive to strain/temperature etc.
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Momentum 
distribution versus 
rotation of the gyro

Fisher information relative 
to Bragg interferometer Learned control-phase behavior22



Summary
• Talked about machine 

learning as a general 
approach to design of 
atomtronic circuits

• Example matter-wave 
interferometer

• Access to non-intuitive 
solutions / 
components / devices

For more information; see for example: 

“Using Machine Learning for the Quantum Design of a Matter-Wave 
Interferometer”, Physical Review Research 3, 033279 (2021).
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