Using Machine Learning for the Quantum
Design of a Matter-Wave Interferometer
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Atomtronics

outer coil

Electron systems two fundamental degrees of freedom
eCharge (flux of charge defines a current)

eSpin % (spintronics)

Atomtronics: analogy of semiconductor electronics in atomic systems
eNumber (flux of particles defines a current)
eSpin-N (hyperfine guantum numbers)

eBoson / fermion, atom / molecule, ...

eCoherence / Entanglement / Interference

eSuperfluidity



N-type doping
@ extra atoms free to move
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P-type doping
@ extra holes free to move
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V(x)

Particle-hole recombination



Atomtronics: Quantum2.0

Typically basic constituents; ,

* Pristine building blocks 7
(e.g., BECs, 2-level atoms)

* Simple potential surfaces

 One (or a few) electromagnetic modes

Quantum design of atomtronic circuits is complex;
e Large complex unitary 2™

* Multiple paths / interference

Use machine learning to aid design?
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» Supervised Learning: relation between the features/labels from labeled data
e Unsupervised Learning: underlying patterns from unlabeled data

* Reinforcement Learning: learn sequential decision making through trial and
error

* Supervised/Unsupervised Learning: teach by examples
* Reinforcement Learning: teach by experience

There are too many possible strategies so that it is impossible to do a
brute-force search

Human strategies are limited by our experience and imagination

Many quantum system tasks fit this paradigm: Theory, Experimental
Modelling, Data-driven




Example of
machine learning in

complex systems

Teaching robots to walk

e States: body position, terrain
e Actions: joint positions, angles

 Reward: 1if it takes one step
further

Learning to play chess, GO y “&'l

e States: board configurations
© ALPHAGDO

e Actions: where to place
the pieces

e Reward: 1 =win, O =loss



This is Google's DeepMind Al tecH
teaching itself how towalk




Reinforcement Learning Framework

* Agent: which  aaa The learning cycle
action? (e vt oupa
(’/1 Action
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Goal: find a

strategy that Wish to apply this framework to the

lmaXImlzes the quantum engineering of designer

ong-term platforms for carrying out specific tasks

rewards
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Tic-tac-toe
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Model free learning: the agent doesn’t know if it is playing tic-tac-toe,
chess, doing quantum design, or controlling an AMO experiment!
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Machine learning for interferometry
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Representation of the agent

Input Hidden Output
Reduced. — —_— Action Values
Representation i .
, e.g., lattice position
e.g., populations
Agent

o Agent implementation is not unique

o Simplestis Tabular-Q: table of quality values for actions

o Can also use simple hidden-layer neural network

o More complicated strategies: Deep reinforcement learning
(Double-deep Q networks = What we typically use)
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Design philosophy

Design components and cascade

Beam splitters

Mirrors (i.e., reflectors)
Free propagation
Relative accelerators

Cost / Reward based on:

Minimal detectable phase shift

Dynamic range

Total time taken

Quantum/Classical Fisher information:
Variation of output with control parameter
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Beam Splitter

Target State
Reduced Rep:
Momentum Prob
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Mirror
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Target Operator
Reduced Rep:
Unitary Diagonal

Umirror
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Real-space interferometer
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Response to acceleration signals

Each vertical slice: probability distribution of momentum for a certain value of
acceleration
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Fingerprint: no aliasing
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Probability Density
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Reinforcement learned gyroscope

1D beam-splitting protocol in x
* Free propagation for T
e 1D Reflecting protocol
* Free propagation for T
* Invert y motion
/ * Free propagation for T
e 1D Reflecting protocol

* Free propagation for T

» X « 1D recombination protocol

More difficult to model: two-dimensional environment
Separation ansatz for different dimensions; x, y, may work well

Yx,y) = alx)B(¥)
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End-to-end design with reinforcement learning

Why decompose into components?

(ii) T (i)

S— ¢ . D\/\

(i)

(ii)

Mach-Zehnder
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End-to-end design with reinforcement learning

Why decompose into components?
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Like a multimode fiber interferometer, but not sensitive to strain/temperatuzrle etc.
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Momentum
distribution versus
rotation of the gyro
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Summary

e Talked about machine
learning as a general
approach to design of
atomtronic circuits

 Example matter-wave
interferometer

e Access to non-intuitive
solutions /
components / devices

For more information; see for example:

“Using Machine Learning for the Quantum Design of a Matter-Wave
Interferometer”, Physical Review Research 3, 033279 (2021).



