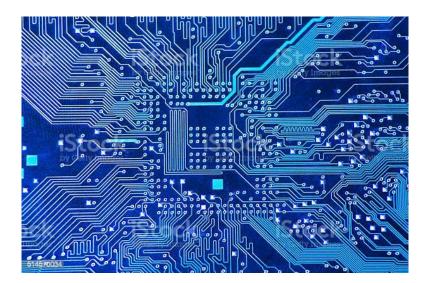
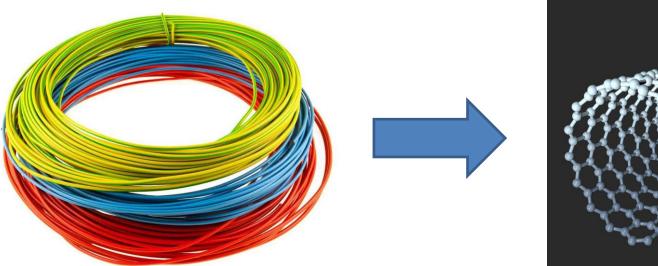
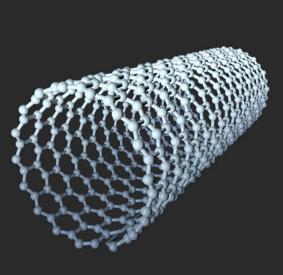
Ultracold fermions in quantum wires

Frédéric Chevy

Quantum wave-guides in atomtronics

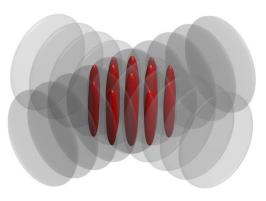






Cold atoms in 1D





Bosons

J. Schmiedmayer (Vienna), I. Bouchoule (IOGS), D. Weiss (PennState), H.C. Nagerl (Innsbruck)...

• Fermions

T. Esslinger (ETH), R. Hulet (Rice)...

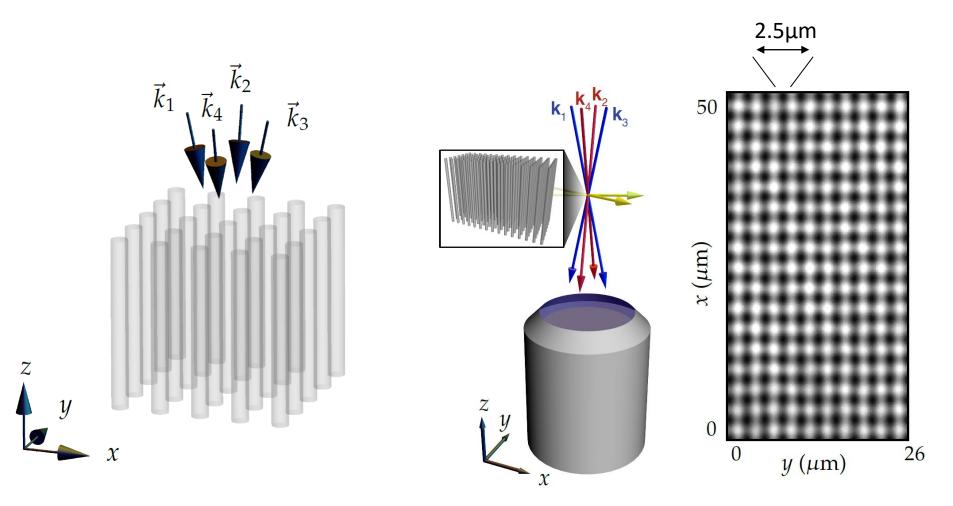
I. Bloch (Munich), M. Greiner (Harvard) – lattice.

THERMOMETRY OF A 1D FERMI GAS

C. De Daniloff, M. Tharrault, C. Enesa, T. Reimann, J. Struck, C. Salomon De Daniloff et al., PRL **127**, 113602 (2021)

FERMI GASES IN OPTICAL LATTICES

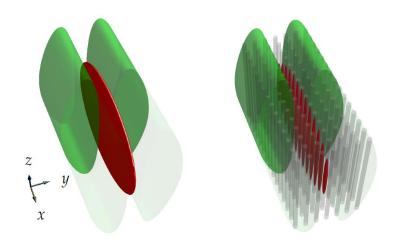
1D Fermi gas@ENS

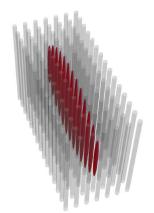


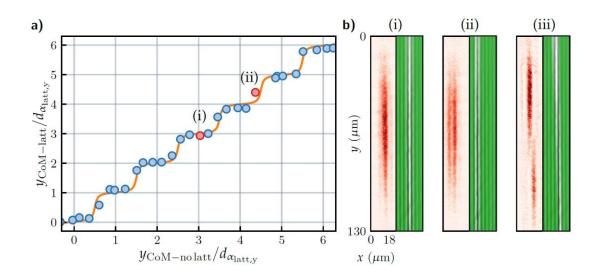
Loading a single layer

Goal: load a single layer of tube in order to get rid of line of signt integration.

Compression using a TEM(0,1) green laser beam.

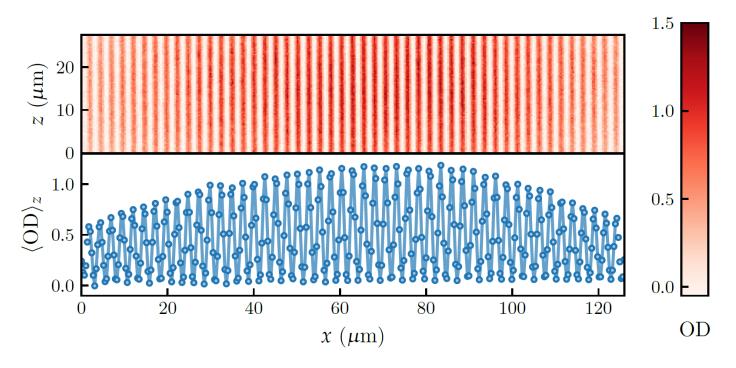






Imaging an array of one dimensional ⁴⁰K atoms

Initial condition before loading: $N \approx 2 \times 10^4$, $T/T_F \approx 0.15$



Optical resolution $\approx 1 \mu m$

Approximately harmonic confinement in all three directions $\omega_z = 2\pi \times 100 \text{ Hz}$

 $\omega_{\perp} = 2\pi \times 20 \text{ kHz}$

THE IDEAL FERMI GAS

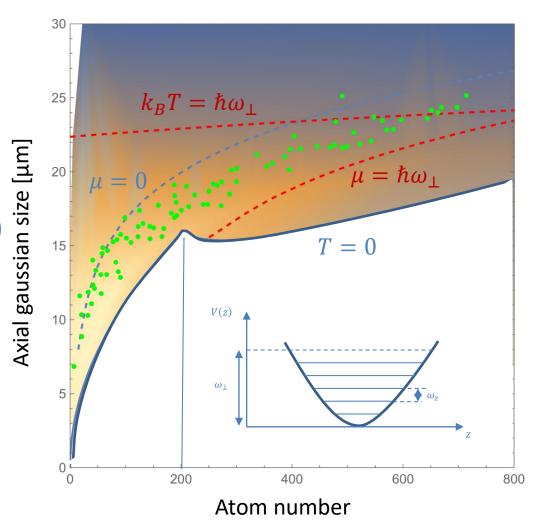
Global thermodynamics

In a box, thermodynamic quantity: (T, N, V)

In a harmonic potential: $(T, N, \langle z^2 \rangle)$

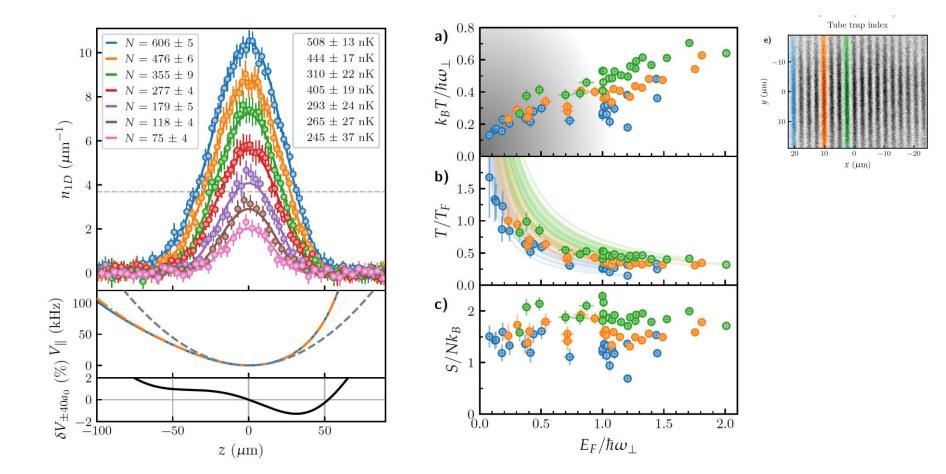
$$\Omega = \frac{\left(k_{\beta}T\right)^{2}}{\hbar\omega_{z}} \sum_{n=0}^{\infty} (n+1)Li_{2}\left(-\zeta e^{-\beta\hbar\omega_{\perp}n}\right)$$
$$N = -\frac{\partial\Omega}{\partial\mu}$$
$$\left\langle z^{2}\right\rangle = \frac{2}{mN} \frac{\partial\Omega}{\partial\omega_{z}^{2}}$$

(Trapping spring constant = pressure)

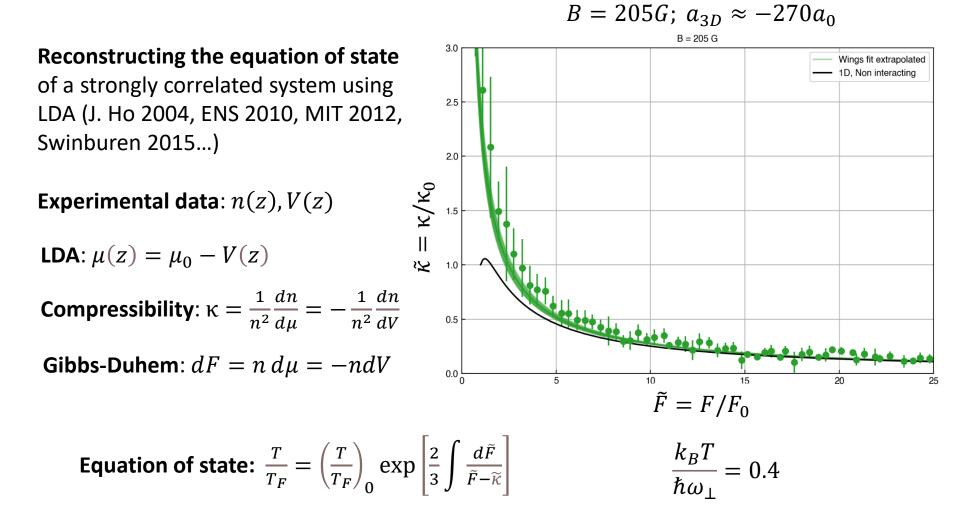


Local density approximation

For an arbitrary potential V(z): $n_{1D}(z) = -\frac{1}{\lambda_{th}} \sum_{n=0}^{\infty} Li_{1/2} \left(-\zeta e^{-\beta V(z)}\right)$



Ramping up interaction



WHEN IS 1D REALLY 1D?

G. Orso, L. Barasic. Work in progress

1D, quasi-1D and universality

$$H = \sum_{i} \frac{\boldsymbol{p}_{i}^{2}}{2m} + \frac{m\omega_{\perp}^{2}}{2}\rho^{2} + \sum_{i,j} V(\boldsymbol{r}_{i} - \boldsymbol{r}_{j})$$

Characterized by a two dimensionless numbers $1/k_F a_{3D}$, $E_F/\hbar \omega_{\perp}$

Yang-Gaudin's Hamiltonian
$$H_{YG} = \sum_{i} \frac{p_i^2}{2m} + g_{1D} \sum_{i,j} \delta(z_i - z_j)$$

Characterized by a single dimensionless parameter $\gamma = \frac{m}{\hbar^2} \frac{g_{1D}}{n}$

Is it sufficient to have $k_B T \ll \hbar \omega_{\perp}$ and $E_F \ll \hbar \omega_{\perp}$ to be able to describe the system using Yang-Gaudin's Hamiltonian?

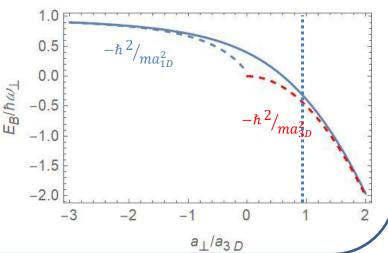
The 2-body problem in a quantum wire

In 1D (2-body Yang-Gaudin): g_{1D} =- \hbar^2/ma_{1D}

- Scattering amplitude: $f = 1/(1 + ika_{1D})$,.
- There is a bound state of energy $-\hbar^2/ma_{1D}^2$ when a_{1D} is positive (g_{1D} <0).

In a quantum wire (Olshanii, PRL 1998):

- Low energy scattering $f = \frac{1}{1+ika_{1D}}$, $a_{1D} = -\frac{a_{\perp}^2}{2a_{3D}}\left(1 A\frac{a_{3D}}{a_{\perp}}\right)$ (confinement induced resonance).
- There is *always* a bound state: Breakdown of 2-body universality relating the energy of the bound state and the low-energy scattering amplitude in the strongly attractive regime.



Transverse radius

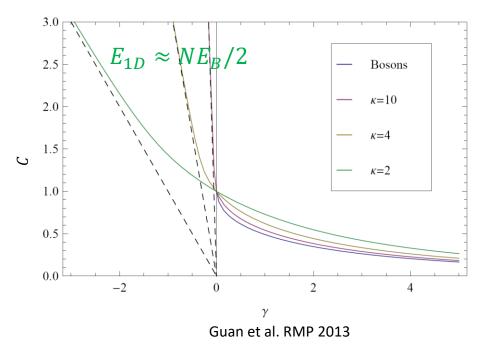
A many-body system is 1D if its transverse degrees of freedom are frozen and the transverse wavefunction is that on the ground state of the confining potential $\Rightarrow E = N\hbar\omega_{\perp} + E_{1D}$

$$\langle R_{\perp}^2 \rangle = \frac{2}{N} \frac{\partial E}{\partial m \omega_{\perp}^2} = a_{\perp}^2 \left(1 + \frac{\pi}{2\gamma} \frac{C}{2} \frac{da_{1D}^{-3}}{da_{\perp}^{-3}} \right) \qquad \gamma = -\frac{1}{na_{1D}}$$

 $C = \frac{m}{N\hbar^2 k_F} \frac{dE_{1D}}{d1/a_{1D}}$ =dimensionless Tan's contact for the 1D system.

Repulsive system: C bounded, 1D can be achieved at low density.

Attractive system: C is not bounded. At unitarity the correction is density independent. It's impossible to freeze the transverse motion even at low T and low E_F



Beyond Yang-Gaudin?

Perturbative expansion for a weakly interacting 1D gas:

$$E_{1D} = \frac{NE_F}{3} \left[1 + \frac{6\gamma}{\pi^2} - \frac{\gamma^2}{\pi^2} + \cdots \right]$$

In a quantum wire:

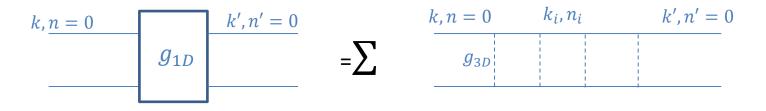
$$E = E_{1D} \left(1 - 4 \frac{\gamma^2}{\pi^3} \zeta(\frac{3}{2}) \left(\frac{E_F}{\hbar\omega_\perp} \right)^{\frac{3}{2}} - 4Li_2 \left(\frac{1}{4} \right) \frac{\gamma^2}{\pi^2} \left(\frac{E_F}{\hbar\omega_\perp} \right)^2 + \cdots \right)$$

Finite range correction

Three-body effective interaction (Mazets et al. 2008, Pricoupenko 2019)

Origin of the three-body interactions

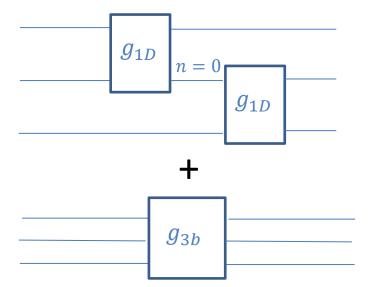
Olshanii revisited

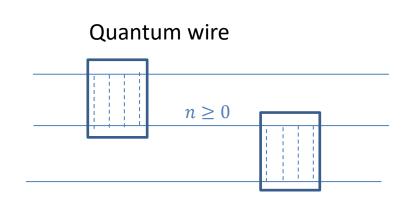


Ξ

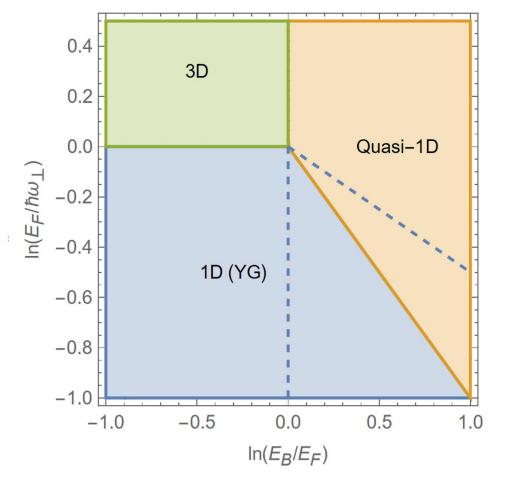
Three body scattering

True 1D





Conclusion and outlook



Open question:

- Is there an effective 1D hamiltonian describing a quasi-1D system for arbitrary interaction?
- How do additional terms in the Hamiltonian affect the dynamical properties of the system (integrability, dissipation...)

Thanks for your attention!

Traffic Jam without Bottleneck

Experimental evidence for the physical mechanism of forming a jam

Yuki Sugiyama, Minoru Fukui, Macoto Kikuchi, Katsuya Hasebe, Akihiro Nakayama, Katsuhiro Nishinari Shin-ichi Tadaki and Satoshi Yukawa



e Mathematical Society of Traffic