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Atomtronics
Atomtronics is an emerging field  in quantum technology seeking to realize 
atomic circuits exploiting ultra-cold atoms manipulated in micro-magnetic or 
laser-generated micro-optical traps or circuits. 

•

Some goals 
• Enlarge the scope of cold atoms quantum simulators (currents). 

• Many-body physics (exotic quantum phases of matter: topological order..)

• Bridging mesoscopic and cold-atoms physics.

• Insights in foundational aspects of quantum science. 

• New quantum devices.

• Quantum sensing.

• Hybrid systems.

• ……..

Cold atom circuits: ‘Quantum many particles in ring-shaped potentials’, Amico, Osterloh, Cataliotti, PRL 2005. 
“Atomtronics:  Ultracold-atom analogs of electronic devices.”,  Seaman, Kramer, Anderson , Holland, PRA ( 2007).

‘Atomtronics: from basic research in many-body physics to applications for quantum technologies, Amico, Anderson, Boshier, Brantut, Minguzzi, Kwek, von Klitzing, arXiv:2107.08561 

‘Roadmap on Atomtronics: state of the art and perspectives’, Amico, Boshier, Birkl, Kwek, Miniatura, Minguzzi et al, AVS Quantum Science 2021, arXiv:2008.04439.

‘Roadmap on quantum optical systems’, Amico, Boshier ‘Atomtronics’ J.Optics 2016

New J. Phys. Focus on ‘Atomtronics enabled quantum technology’ 2015, Amico, Birkl, Boshier, Kwek Eds.  



Bosons with repulsive interaction

G. Campbell, W. Phillips, C. Clark and co-workers@NIST,  (2013–2015)

K. Wright et al,  PRL 2013

Angular momentum quantized to integer values



Outline

• Bosons with attractive interaction


• Fermions with repulsive interaction


• Fermions with attractive interaction



Energy bands in mesoscopic rings: 

Leggett Theorem
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DEPHASING AND NON-DEPHASING COLLISIONS IN 
NANOSTRUCTURES 

A. J. Leggett 

Department of Physics and Astronomy 
University of Minnesota, 116 Church St., S.E. 
Minneapolis, MN 55455 

and 

Departrnent of Physics* 
Uni versity of Illinois 
Urbana, Illinois 61801 

INTRODUCTION 

When I was originally asked to give two lectures at this workshop, one on this subject 
and one on "charge quantization" effects, I felt that there was at best a tenuous link between the 
two topics. Now I feel that there is a fundamental connection, and that it is absolutely essential 
to understand what we mean by "dephasing" before we can assess many of the results obtained 
in the last few years on charge quantization and related effects. 

As you know, one of the major advances in mesoscopic physics in the last decade has 
been the realization that the observation of single-electron interference effects in mesoscopic 
systems is much less difficult than had naively been thought. To see why there had been 
thought to be a major problem, Iet us make a few order-of-magnitude estimates. Suppose for 
example that we are thinking of trying to observe an effect analogous to the superconducting 
Meissner effect in a small ring, that is, a nontrivial dependence of the free energy on flux 
through the ring. The effect only arises because the electron wave function must satisfy the 
"single-valuedness boundary condition" \}'(0) = \}'(27t) (where the argument of \}' = l\}'le1<Jl is 
the angle travelled around the ring); in particular, the phase of the wave function must change 
by exactly 2mt as we travel once around: 

<p(27t) = <p(O) + 2n7t . (I) 

Now if a small magnetic flux is applied through the ring, the expression for the electric current 
contains a term which depends on the corresponding vector potential: 
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clear that the energy Ievels are (a) periodic in <I> with period <Po (note that this does not excludc 
the possibility of periodicity with a period which is an integral function of <Po) (b) even 
functions of <I> (provided the potential terms in the Hamiltonian satisfy the condition of time-
reversal invariance). It is also clear that for the special values of flux <I>= n<I>o/2, n integral, the 
wave function "'' is real (or, in the case of degeneracy, can be chosentobe so). The simplest 
structure of the energy levels which satisfy these conditions is the familiar "band" structure 
shown in Fig. 2: more generally, we could in principle have extra maxima or minima between 
the ones which are required by the above condition, e.g. the arrangement of fig. 3 is not 
excluded a priori. It is convenient to visualize this in the spirit of the well-known weak-
coupling model of band structure in solids, although it should be emphasized that the role of 
the independentvariable <I>, here an externally controlled c-number, is conceptually completely 
different from that in the crystalline problern (where it is k, the crystal momentum, which is a 
dynamical variable). For completely free particles (V(e) = 0) we should have the trivial band 
structure4 shown in fig. 4 : At the points <I> = (n + l/2)<I>o two bands are exactly degenerate 
and can be split by an arbitrarily small potential V(O) into even and odd combinations: note that 
the matrix element doing the Splitting is simply the lowest nontrivial Fourier component 

V 1 = f V(8) ei8 d8 . 

\J\,L\,1\; 
<11-

t E (9) 

Fig. 2 Sehemarie diagram of energy "bands" in a rnesoscopic ring. 

<11-

Fig. 3 A possible energy-band structure. 

(24) 

Supp?se we have N spinless fermians on the ring. Then, assuming that the 
groundstate ts nondegenerate and the bands therefore correspond qualitatively to the form 
shown in fig. 2, we see that the total energy as a function of <I> is likely tobe dominated by the 
behavior of the last filled "band," lower bands tending to cancel one another out. Thus for N 

4 Note that for given <I> the various bands correspond to different winding numbcrs (in 'I', not 'I''). 
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Periodicity of persistent current is fixed by the 
effective magnetic flux. It does not depend on 
the interaction/local disorder.

Center of mass and relative coordinate decouple

‘Bloch theorem’:

1

hLzi
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Bosons with attractive interaction

 i~ t +
~2
2m

 xx � V (v, t) � g| |2 = 0
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NLSE: Bright solitons

 (x, t) ⇠ sech(
x� vt


) exp


i
mv

~ z � i

2~
�
mv2 � ~22/2

�
t

�
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S. Gardiner group (2012), experiment with ultra-cold Rubidium85
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Quantum many-body effects
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Atomtronic quantum sensors

Quantum advantage of quantum bright solitons-based interferometers for 
the measurement of rotation
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Left: Rabi oscillation for the creation of

entangled states of different angular

momentum states. Right: Qquadratic

fluctuations (Fisher information) of

current states

Shot noise Vs Heisenberg limit for the 
measurement of rotation

Fractionalization of angular momentum :response to small 
changes of rotation. Flux quantum depends on the 
interaction.  
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Angular momentum fractionalisation 
for attractive  bosons 

P. Naldesi, J. Polo-Gomez, V. Dunjko, M. Olshanii, H. Perrin,  L. Amico and A. Minguzzi, SciPost 2022

Attracting bosons in ring lattices pierced by synthetic 
gauge field

H =
X

l

Unl(nl � 1)� t(ei�a†l al+1 + h.c)
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FIG. 2. Fractionalisation of angular momentum in a Bose gas with attractive interactions. Average angular
momentum per particle (main) and ground-state energy (inset) for bosons on a lattice ring as a function of artificial gauge field,
from numerical exact diagonalization calculations: a) at varying particle number, for chosen values of interaction strength as
indicated on the figure, b) for various values of interaction strength at fixed N = 4. Panel c) shows the corresponding predictions
from the mean-field Gross-Pitaevskii equation for zero and finite attractive interactions indicated by the dimensionless parameter

g0 = mgL/~2. The angular momentum per particle is obtained as ~` = Meff

M

✓
~Ip
⌦0

+ ⌦
@2EGS

@⌦2

����
⌦=0

◆
, with Meff being the

e↵ective mass of the bound state in the lattice.

any finite interaction). As an e↵ect, the internal struc-
ture of the many-body bound state is a↵ected by the
interplay between interaction and artificial gauge field ⌦
(since PCM depends on ⌦, and the internal structure de-
pends on PCM ). Here, we find that the periodicity of
the persistent current for lattice rings does depend on
interaction. We remark that such a ’non-perfect’ frac-
tionalization (see Fig. 2(b)) is observed for solitons that
are properly formed in the system (i.e. when the system
size is larger than the correlation length of the density-
density correlations). Fig. 2 shows our numerical results
(confirmed by exactly solving the BHM in the 2-particle
sector–see Methods) for the ground-state energy, persis-
tent currents and angular momentum: also in the lattice
nonintegrable case the 1/N periodicity in ⌦/⌦0 of the
persistent currents emerges, as well as fractionalization
of angular momentum. Indeed, these features, though,
are a↵ected by the interplay between system size and in-
teraction strength. The 1/N periodicity is found when
interactions are su�ciently large: In these conditions, the
’size of the many-body bound state’, defined as the typi-
cal decay length of the density-density correlations [5], is
smaller than the size of the system. Upon decreasing the
interactions, the many-body bound state spreads more
and more over the sites making the solitonic nature of
the state less and less pronounced (see Methods). We
remark that all the observed features are purely quantum
many-body e↵ects tracing back to specific quantum cor-
relations: Indeed, mean-field Gross-Pitaevskii equation
(corresponding to a non-entangled ground state) provides

persistent currents displaying no fractionalization, inde-
pendently on the strength of the interaction (see Fig. 2,
c).

Remarkably, the afore discussed angular momen-
tum fractionalization and persistent current periodic-
ity emerge in the time-of-flight (TOF) distributions of
the atoms after releasing the trap confinement and
switching o↵ interactions. We obtain it from n(k) =
|w(k)|2

P
j,l e

ik·(xj�xl)ha
†

jali, where xj indicate the po-
sition of the lattice sites in the plane of the ring and
w(k) is the Fourier transform of the Wannier function
of the lattice [32]. Instead of the characteristic wide `-
dependent minimum (’hole’) arising for zero or repulsive
interactions [26, 27], we find no clear hole at k = 0 for
the attractive case –Fig. 3. Such a feature is due to the
reduction of coherence implied by the solitonic many-
body bound state. Despite the seemingly featureless mo-
mentum distribution, we find that fractional steps of the
mean-square radius of the distribution for ⌦/⌦0 = `/N

[33]. This e↵ect provides the univocal signature of 1/N

fractionalization of angular momentum in the presence
of a many-body bound state.

We finally demonstrate how the scenario above can
be harnessed to construct entangled states of di↵erent
current states with quantum advantage for atom inter-
ferometry. Indeed, our Hamiltonians Eqs.(1), (3) com-
mute with the total angular momentum. Therefore, to

Exact results (Lieb-Lieneger).



8[Braunstein and Caves, 1994; Helstrom, 1967]

for pure states:

Quantum solitons atomtronic interference device
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F [Lz] = h |L2
z|i � h |Lz|i 2
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State preparation: Quench at Ω=1/2

Atomtronic quantum sensors

Quantum advantage of quantum bright solitons-based interferometers for 
the measurement of rotation
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FIG. 3. Time of flight expansion of the Bose gas after
releasing the atoms from the ring trap. a-b-c Density
plot of the TOF expansion for di↵erent values of the artificial
gauge field in a system of N = 4 particles and L = 11 lat-
tice sites. d Renormalized width �TOF/�TOF(⌦ = 0) of the
time of flight density distribution, n(k), for di↵erent num-
ber of particles, and interactions U/J = �0.6, U/J = �1
and U/J = �3 respectively. For the sake of graphical clar-
ity, each curve is o↵set by 0.05. Note how the TOF density
distribution width abruptly changes with the increase of the
strength of the artificial gauge field, and how the sensitivity
proportionally increases with the number of particles. In all
the calculations we have approximated the Wannier functions
with Gaussians functions with width � = a/

p
2⇡ with a the

lattice spacing.

entangle states with di↵erent angular momentum, the
rotational invariance of the system needs to be broken.
In the following, we propose a specific protocol leading
to the creation of such a state: The ring is interrupted
by a localized barrier of strenght �0, and the artificial
gauge field is quenched from ⌦ = 0 to ⌦ = ⌦0/2. Re-
markably, this procedure dynamically entangles the an-
gular momentum state at ⌦ = 0, ie Lz = 0, with the
one at ⌦ = ⌦0, ie Lz = N (see again Fig. 2), yield-
ing | iNOON = 1

p
2

(|Lz = 0i + |Lz = Ni) when the cur-

rent reaches the half of its maximum value. We note
that such entangled states are superposition of current
states, which are dual to the “NOON” states defined
in the particle-number Fock basis [34]. The response
of such a state to an external rotation is | (�)i =

e
i�L̂z/~ | iNOON , and the quantum Fisher information

[35, 36] FQ = 4
�
h 

0(�)| 0(�)i � | h 
0(�)| (�)i |2

�
, being

| 
0(�)i = @ | (�)i /@�. For our state we find FQ ⇠ N

2,
ie it reaches the Heisenberg limit - see Fig. 4. The corre-
sponding sensitivity ��, therefore, is

�� �
1

(FQ)1/2
=

1

N
, (4)

This shows that entangled states of quantum solitons with
di↵erent angular momenta lead to a quantum advantage

of the sensitivity.
Summarizing, we have demonstrated that attracting

bosons on a ring display fractionalization of angular mo-
mentum. On the fundamental level, such feature repre-
sents a remarkable extension of well known predictions
due to Byers-Yang-Onsager-Leggett [24, 28, 29]: The
many-body bound-state nature of the ground state of at-
tractive bosons implies fractional angular momenta per
particle; interactions do not change the fractionalization
on a continuous ring but they do a↵ect it in the generic
(lattice) system in which also the relative coordinate of
the particles are sensitive to ⌦. Such features are due
to the entanglement in the ground state: the e↵ect van-
ishes in the Gross-Pitaevskii limit in which the many-
body wave function describes a factorized state. The
1/N fractionalization can be observed experimentally by
studying the system’s momentum distribution; the ob-
servation of such e↵ect would provide the evidence of the
formation of many-body quantum solitons beyond the
Gross-Pitaevskii mean-field regime.
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FIG. 4. Creation of entangled states of angular mo-
mentum with quantum solitons. a Exact many-body
dynamics of the current (in units of the hopping constant
J) following a quench from ⌦/⌦0 = 0 to ⌦/⌦0 = 1/2. Here
we set L = 28, N = 3, U/J = �0.51 and �0/J = 0.015.
At one quarter of oscillation period, the superposition | i=
1p
2
(|Lz=0i+ |Lz=Ni) is formed, with a fidelity very close

to 1. No fine tuning of parameter is required. b Scaling of the
quantum Fisher information with particle numbers, showing
that it reaches the Heinsenberg limit FQ / N2. The system
parameters are described in the supplementary material.

We note that, because of the formation of quantum
solitons, an enhanced control on N in the experiments
is expected; in the lattice such value is protected by
a finite gap[5]. The fractionalization of the angular
momentum can define protocols to measure the number
of particles in cold atoms experiments. Our results yield
a N -factor enhancement in the sensitivity of attracting
bosons to an external field. We have provided a protocol
to prepare a superposition of current states, explicitely
exploiting the strong correlations, and we demonstrated
that this state has a quantum Fisher information scaling
as N

2, thus allowing to reach the Heisenberg limit in

�⌦ � 1p
F [Lz]
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3

difference at the gradient discontinuity is ��I = 2⇡w, the
persistent current state with winding number w is excited,
characterized by a velocity of v = w~/mr and an angular
momentum per superfluid pair of L/N = w~.

To measure the winding number, we extend to fermionic
superfluids the interferometric technique previously demon-
strated for weakly-interacting BECs [43–45]. Similarly to
the self-heterodyne detection in optics, we exploit a central
disk condensate as local oscillator to provide a phase refer-
ence [Fig. 2(a)], and measure the fringe pattern arising af-
ter interfering it with the ring during a time-of-flight (TOF)
expansion. In the strongly interacting regime, the resulting
interference is detected after having tuned a to adiabatically
transfer the superfluid into a molecular BEC. When the su-
perfluid ring is prepared at rest (see Appendix A for the de-
tailed procedure), the interferogram displays fringes arranged
as concentric rings [Fig. 2(d)], revealing an azimuthally uni-
form phase difference between the two condensates. On the
other hand, when a state at finite w is excited in the ring,
the interferogram changes into a spiral pattern of the fringes
[Fig. 2(e,f)], reflecting the linear trend of the phase around
the ring. In particular, the spiral direction indicates the sign
of the winding number w, while the number of arms yields
its magnitude [43]. The high resolution of the obtained inter-
ferograms allows to extract local information on the relative
phase � between the ring and the disk condensates [44]. By
switching from cartesian to polar coordinates [Fig. 2(g-i), bot-
tom] and performing a sinusoidal fit on each azimuthal slice
of the interferogram [46], we obtain a � � ✓ curve [Fig. 2(g-
i), top] whose slope measures the winding number. The lo-
cal imaging of the superfluid-ring phase provides an unparal-
leled resource for future investigations, especially with tightly
confined rings. For example, one could investigate the evo-
lution of the local phase and its fluctuations around the ring
when perturbations are added [43, 45], when multiple rings
are coupled together [47–49], or look for phase dislocations
that are expected to characterize the interferograms acquired
in the strongly interacting regime [50].

IV. PERSISTENT CURRENTS ACROSS THE BEC-BCS
CROSSOVER

By imprinting the superfluid phase and reading out the
winding number via the interferograms, we gain accurate con-
trol over the circulation state of the rings, which we tune by
acting on the imprinting parameters. In Fig. 3(a) we report
the measured average winding number hwi, over several ex-
perimental realization of the same imprinting procedure, in
the three interaction regimes as a function of ��I . In all su-
perfluids, hwi shows a step-like trend, consistently with pre-
vious observations with bosonic ring superfluids [17, 20] and
with Gross-Pitaevskii equation (GPE) numerical simulations
at zero temperature of our imprinting protocol (dashed line)
[46]. Both numerical and experimental BEC data show that
��I = 2⇡w is needed to deterministically excite the circu-
lation state of winding number w, but also that a lower im-
printed phase is enough to populate it (see Appendix B for fur-

20 μm

(a)

DMD image(c)

w 10 15 20
r ( m)

0

1

U
0
(r

,
) 

(a
.u

.)
0 20

1

(b)
ℏ ΔφI

2 1 0 1 2
L/N (h)

En
er

gy

w = 0

w = 1

w = -1

(d)

(e)

(f)

0 2

0

2

0

2

0

2

(g)

(h)

(i)

FIG. 2: Excitation and detection of the circulation state. (a) In situ
image of the BEC superfluid in the trap configuration we employ to
interferometrically probe the ring winding number. (b) Energy land-
scape of the ring superfluid as a function of the total angular momen-
tum per pair L/N . The imprinting of an optical phase ��I operates
the transition into one of the metastable persistent current states at
winding number w. (c) DMD-made pattern employed for the phase
imprinting and corresponding light shift U0. In the top panel U0(✓)
is averaged along the radial direction in the ring, in the bottom one
U0(r) is averaged over 0.07 rad across ✓ = 0, ⇡/2, ⇡, 3⇡/2 for de-
creasing line intensity, respectively. The sharp opposite gradient at
✓ ' 2⇡ has a dimension of �✓ = 0.15 rad. (d-f) Interferograms of
the BEC superfluid, obtained from a single absorption image after a
TOF expansion of 1.2 ms without phase imprinting (d) and with a
phase imprinting of ��I ' 2⇡ in the clockwise (e) and anticlock-
wise (f) direction. (g-i) Fit of the local relative phase � extracted
from the interferograms. After changing the image into polar coor-
dinates (bottom panel), a sinusoidal fit of each azimuthal slice of the
interferogram is performed to extract � (blue dots on top panels).
A linear fit (red solid lines) provides a measurement of the winding
number as the slope of the � � ✓ curve. The fitted slopes provides
w = 0.01(2), w = 1.00(9) and w = �0.99(9) for the (g), (h) and
(i) panel, respectively.

ther details). The switching point between w = 0 and w = 1
is observed to happen for a slightly larger imprinted phase in
the BEC experimental data respect to GPE results. This is
likely due to the collective sound-like excitations which un-
avoidably affect the superfluid as a consequence of the im-
printing pulse, and seem to have a more pronounced effect in
experiments with respect to simulations, possibly due to finite
temperature. In fact, we observe that immediately after an
imprinting pulse of any duration the density of the superfluid
is depleted at the location of the optical gradient discontinu-
ity [46]. We ascribe such a density depletion to the steep,
yet not infinitely sharp, light gradient in the opposite direc-
tion [Fig. 2(c)], due to the finite resolution of ⇠ 1µm of our
imaging system. The small extension of this sharp gradient
negligibly affects the capability of the imprinting procedure
to populate persistent current states at finite circulation, but
introduces density excitations which decay over a time scale
of a few ms into sound waves or vortices [46]. The vortices
nucleated after the imprinting are observed to survive on top
of the macroscopic current for a few hundreds of ms, without
perturbing the generated persistent current state, consistently

4

with previous observation in stirred bosonic superfluids [20].
In the strongly interacting regime, we observe that, despite

the step-like trend being preserved with a comparable size of
the plateaus at non-zero hwi, a larger ��I is required to ex-
cite the w = 1 state. We quantitatively estimate such a shift
by fitting the first step of the hwi���I curves with a sigmoid
function, to extract the imprinted phase jump ��⇤

I necessary
to populate the w = 1 state with 50% probability. As reported
in the inset of Fig. 3(a) in dark blue circles, ��⇤

I is observed to
monotonically increase with decreasing 1/kFa. By monitor-
ing the short time dynamics after the imprinting of ��I = 2⇡
in the strongly interacting superfluid at 1/kFa ' 0.9, we ob-
serve that the linear phase is actually imprinted, confirming
the effectiveness of the protocol, but quickly decays out in
a few ms [46]. An imprinted phase of ��I = 2⇡ is thus
not able to populate the state at w = 1, and the imprinted
angular momentum is dissipated into other excitations, prob-
ably those induced by the sharp light gradient, which appear
to have a more dramatic effect in strongly interacting super-
fluids. To confirm it, we test the imprinting protocol in the
BEC and UFG superfluids after modifying the DMD image
by inserting a repulsive optical barrier in correspondence of
the gradient discontinuity [40]. In this case, we observe the
hwi ���I curves in the two interaction regimes to provide a
��⇤

I almost comparable with the one expected by GPE simu-
lations (light blue triangles in Fig. 3(a) inset). Removing the
sharp light gradient allows to drastically reduce the unwanted
density excitations produced by the imprinting, yet it provides
noisier hwi ���I curves and washes out the step-like trend,
probably because of the interaction of the moving superfluid
with the barrier during the imprinting time [40]. For this rea-
son, we choose the simplest gradient imprinting procedure,
which is best suited to deterministically excite non-zero cir-
culation states even in the strongly interacting regime.

With the phase imprinting protocol, we populate the
metastable state at w = 1 with a reproducibility > 99% in
both BEC and unitary regimes, whereas we obtain a few-
percent smaller value in the BCS case. Higher-w states can
then be excited by increasing the imprinting pulse duration.
However, in all the superfluid regimes, we observe that for
increasing tI the probability to populate a well defined w de-
creases, while the measured average winding number satu-
rates at about hwi ' 6, in agreement with GPE numerical
simulations [46]. For increasing imprinting time, the more
dramatic density excitations that go along with the imprinting
favor the emission of vortices from the inner ring radius, re-
moving circulation quanta from the current and setting thus
the limit for the highest w we can populate. To access even
higher w states, we keep tI . 500µs and rather increase
the number of imprinting pulses. Figure 3(b) demonstrates
the scalability of our imprinting protocol, i.e., the addition of
consecutive pulses of a given imprinting time (different col-
ors) produces a linear increment on the measured hwi. Even
though the multiple phase imprinting protocol becomes inef-
fective for more than 4-5 pulses, this method still surpasses the
single-pulse one allowing us to access up to w = 8 in UFG
and BEC superfluids, and w = 6 in the BCS regime [Fig. 3(c-
g)]. The whole imprinting procedure takes up to 30ms when
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FIG. 3: Persistent currents with on-demand circulation in the BEC-
BCS crossover. (a) Average winding number hwi, measured over 20
interferograms acquired after the imprinting of a phase jump ��I

for the three interaction regimes (see legend). The interferograms
are acquired 60 ms after the end of the imprinting pulse. All datasets
are obtained by varying the imprinting time at constant U0 in each
regime. The green dashed line represents GPE numerical simulations
of our imprinting protocol, performed under the same experimental
conditions of the BEC superfluid. Inset: imprinted phase jump ��⇤

I

(see text) as a function of the interaction strength for simple gradi-
ent imprinting (dark blue circles) and modified by adding a barrier at
the discontinuity (light blue triangles). The gray dashed line marks
��⇤

I = ⇡, as expected from GPE numerical simulation. (b) Average
circulation of a unitary superfluid measured after a variable number
Np of identical imprinting pulses of wi = 1 (blue), 2 (purple), 3
(red) separated of 10 ms each from the following. The solid lines
represent the linear scaling of hwi = wi ⇥ Np. (c) Average cir-
culation hwF i measured after a long time evolution of the initially
imprinted state hw0i for the three interaction regimes [same notation
as in (a)]. In particular, hw0i is measured 60ms after the imprinting
pulse and hwF i after 1.5 s for hw0i  3, after 1 s for 3 < hw0i  6
and after 0.5 s for hw0i > 6 in the BEC and UFG regimes. For
BCS superfluids, hwF i is measured after 1 s and 0.5 s for hw0i  3
and hw0i > 3, respectively. (d-g) Interferograms of high circulation
states (see legend), acquired for a BCS (d, e) and UFG (f, g) super-
fluids 60ms after the last imprinting pulse. Each image consist of the
average of two independent experimental acquisitions.

we employ 3 pulses to access w � 5, demonstrating the mul-
tiple imprinting technique as a route to access high circula-
tion states much more rapidly with respect to stirring protocols
[20]. By monitoring the time evolution of the interferograms
in all superfluid regimes at long time after the last imprint-
ing pulse, we verify that the imprinted circulation produces a

‘Imprinting persistent currents in tunable fermionic rings’ 
‘Persistent Currents in Rings of Ultracold Fermionic Atoms’ 



SU(N) ring circuits.
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“Thermodynamics of a deeply degenerate SU(N)-symmetric gas”, 
Sonderhouse et al., Nature Physics (2020) 

Unlike indistinguishable fermions, SU(N) fermions can have N particles per level.

HSU(N) = − t
L

∑
j=1

N

∑
α=1

(eı 2πϕ
L c†

j,αcj+1,α + h . c.) +
Uα,β

2

L

∑
j

nj(nj − 1)

  local number operatornj = ∑
α

c†
j,αcj,α

“Persistent currents of SU(N) fermions”, W. J. Chetcuti, T. Haug, L.-C Kwek and L. Amico, arXiv:2011.00916 (2020) 
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SU(N) fermions with repulsive interactions
“Persistent currents of SU(N) fermions”, W. J. Chetcuti, T. Haug, L.-C Kwek and L. Amico, arXiv:2011.00916 (2020), SciPost 2022

Effective flux quantum is fractionalized: The period is given by 
ϕ0

Np

Reduction of the effective flux quantum indicates a  
form of ‘attraction from repulsion’: spin (colour) degrees of freedom 
are the responsible for such phenomenon. 

Bosons




SU(N) fermions with attractive interactions
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Substituting the ideal strings into the Bethe ansatz equations (9) to (11), we obtain the following three equations.

kjLr = 2⇡Ij � 2
n2X

↵=1

arctan

✓
kj � ⇤↵

c

◆
� 2

n3X

a=1

arctan

✓
kj � �a

2c

◆
+ � (15)

2⇤↵Lr = 2⇡J↵ � 2
n1X

j=1

arctan

✓
⇤↵ � kj

c

◆
� 2

n2X

�=1
� 6=↵

arctan

✓
⇤↵ � ⇤�

2c

◆
� 2

n3X

a=1

arctan

✓
⇤↵ � �a

c

◆
(16)

� 2
n3X

a=1

arctan

✓
⇤↵ � �a

3c

◆
+ 2�

3�aLr = 2⇡Ka � 2
n1X

j=1

arctan

✓
�a � kj

2c

◆
� 2

n2X

↵=1

arctan

✓
�a � ⇤↵

c

◆
� 2

n2X

↵=1

arctan

✓
�a � ⇤↵

3c

◆
(17)

� 2
n3X

b=1
b 6=a

arctan

✓
�a � �b

2c

◆
� 2

n3X

b=1
b 6=a

arctan

✓
�a � �b

4c

◆
+ 3�

for j = 1, . . . , n1, ↵ = 1, . . . , n2 and a = 1, . . . , n3 with Ij , J↵ and Ka being the quantum numbers associated to the
charge, first and second spin rapidities respectively. These are called Takahashi’s equations for SU(3) fermions with
attractive delta interaction. The total energy is given by

E =
n1X

j=1

k2j +
n2X

↵=1

(2⇤2
↵ � 2c2) +

n3X

a=1

(3�2
a � 8c2) (18)

and it is clear that for any value of the interaction c, the energy of a trion will always be lower than that of a CSF,
which in turn is lower than that of an unpaired particle. Consequently, this implies that in the ideal string limit, one
will have trions whenever possible. As a result, in order to form an unpaired particle or a CSF in the continuous
limit for Lr|c|�1, the SU(3) symmetry needs to be broken.

(a) (b)

(c) (d)

FIG. 6. The top row (a) and (b) show how the Bethe ansatz energies E(�/�0) need to be characterized by the quantum
numbers (X =

P
a Ka) in order to have the actual ground-state for increasing flux �/�0. The bottom row (c) and (d) depicts

the corresponding persistent current I(�/�0) for a system consisting solely of trions with Np = 3, 9 respectively.. All the
presented results were obtained with the Takahashi equations of the Gaudin-Yang-Sutherland model for Lr = 60 and |c| = 2.

In the limit of |c| ! 1, the Bethe ansatz equations for n1 = n2 = 0 read as

�a =
2⇡

Lr

✓
1

3
Ka + �

◆
(19)
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FIG. 7. Results obtained from solving the Bethe ansatz equations in the product form for Np = 3 and N = 3. Two interactions
are considered: (a) |c| = 0.155 where the N -times fractionalization is almost reached (b) |c| = 0.45 where it just starts
fractionalizing. The size in the Bethe equations is fixed to Lr = 20 for all curves. (c) The complex part of the rapidities
against interaction. As the interaction increases, the complex part of the rapidities goes to the ideal string limit as outlined in
Equations (12). Note that the real part of the rapidities is always zero for all kj ;⇤↵;�� for this case. Results were obtained
using the prodcut form of the Bethe ansatz equations of the Gaudin-Yang-Sutherland model.

enough. Nonetheless, even at interactions of |c| ⇡ 0.5, we already observe some of the N -times periodicity of the
energy (here seen through the crossing points between the parabolas, now occurring near 1/2N). However, by looking
at the rapidities Fig. 7 (c), we can confirm that, for the three particle case considered here, a trion appears for any
negative interactions. Particularly, both kj and ⇤↵ have a complex character for any c < 0.

Correlations

In this section, we study the three-body correlation function defined as:

Ti,j,k = hc†i,Ac
†

j,Ac
†

k,Cck,Ccj,Bci,Ai , (22)

where i, j, k denote the lattice sites and A,B,C are the colours and c†j↵ denoting the typical fermionic creation operator
for colour ↵ at site j. Similar correlations function have been studied in [15, 23, 26]. Through this correlation function,
we analyse its decay for both trions and CSF to understand the nature of the bound states in our lattice system.
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FIG. 8. (a) Three-body correlation function, Ti,j,L/2, and its decay (b) for L = 30 and Np = 3 with a trion configuration for
|UAB | = |UAC | = |UBC | = 0.5. All results were obtained with exact diagonalization for � = 0.

Particularly, three-body correlations will display an exponential decay in {i, j, k} whenever a three-body bound state
exists. This should be contrasted with the results of such a correlator, Ti,j,L/2, for a CSF, which only displays an
exponential decay on j, as the bound states are of a lower degree, i.e., formed by a bound state consisting of two
particles. Here, we show two examples of such a correlator by fixing one of the axis, Ti,j,L/2, in Fig. 8 (a) and Fig. 9
(a). In addition, we also calculate, in their corresponding panels (b), their decay for di↵erent values of the interaction
U . This decay shows us that the correlation length associated to the bound state decays exponentially for a trionic
state, which means that the localization of the e↵ective molecules increases. On the other hand, the CSF shows no

Effective flux quantum is fractionalized: The period is given by 
ϕ0

N

See Wayne Chetcuti’s talk



Conclusions

• For attracting bosons, the persistent current is periodic with 1/#particles reflecting the 
formation of ‘quantum bright solitons’. 


• For SU(N) repulsive fermions, the persistent current is quantized with 1/#particles reflecting 
the attraction from repulsion induced by spin correlations 


•For attractive  SU(N) repulsive fermions, is quantized with 1/#components 

Persistent current can diagnostic basic features of many-body systems.

Read-out of angular momentum in fermionic rings: See Juan Polo’s talk


