Kondo Effect and topological phases in 1-D superconductors

Natan Andrei Rutgers university

Parmesh Pasnoori Rutgers University

Patrick Azaria Sorbonne Universite'

Colin Rylands SISSA

Atomtronics@Benasque2022

Overview

- Introduction
- Model Kondo impurity at one edge
- Results: Superconductivity vs. Kondo: The phase diagram
- Some details on calculations
- Model two Kondo impurities one at each edge, emergence of boundary SUSY
- Conclusions & Outlook

Kondo effect in a metal

• Magnetic impurity in a sea of gapless fermions: $H_{
m metal} + H_{
m imp}$

Kondo effect in a metal

Magnetic impurity in a sea of gapless fermions:

- For J > 0 spin $\frac{1}{2}$ impurity is screened
 - Singlet Ground State
 - Many-body screening
- Magnetic susceptibility and resistivity increase as $T \rightarrow 0$

• Non-perturbative scale $T_K \approx D e^{-\pi/2J}$

• Impurity D.O.S
$$ho_{
m imp}(E) = rac{T_K}{\pi(E^2+T_K^2)}$$

Kondo effect in a BCS superconductor

 Replace the metal with a superconductor

$$H_{\rm metal} + H_{\rm pair} + H_{\rm imp}$$

$$H_{\text{pair}} = \Delta \int d\vec{x} \Psi_{\uparrow}^{\dagger}(\vec{x}) \Psi_{\downarrow}^{\dagger}(\vec{x}) + \text{h.c}$$

• Competition between screening and Cooper pair formation

Yu (1965), Shiba (1968), Rusinov (1969)

• YSR approach: Mean Field theory (BCS) + classical spin

Classical spin in a BCS superconductor (YSR)

• BCS superconductor, classical spin

1st Order QCP Yu (1965), Shiba (1968), Rusinov (1969)

$$H_{\rm imp} = JS_{\rm imp}^z s^z(0)$$

- Screening is done by a localized bound state
- BS energy is function of phase

$$\epsilon = -\Delta \sin(2\alpha(J))$$

with $2\alpha = \pi/2 - JS$

- Mediates a 1st order QPT
- Impurity quantum fluctuations dress phase shift

 $\alpha(J) \to \tilde{\alpha}(\Delta/T_K)$

Sakai et.al. J.Pys.Soc.Jpn. (1993)

Some applications: YSR states & topology

- Helical chain of impurities on a SC
- YSR states hybridize, form a band below SC gap

 Realizes a topological SC, Majorana edge modes

Nadj-Perge, et.al. PRB (2013), Pientka, et.al. PRB (2013), Nadj-Perge, et.al. Science (2014),

In BCS superconductors fluctuations are neglected

Q: What about SC's with strong fluctuations?

Ex: 1-d charge conserving superconductor coupled to a Kondo impurity

 $H = H_0 + H_{\rm int} + H_{\rm imp}$

The bulk: 1d charge conserving superconductor

PBC:

N. Andrei, J. Lowenstein (1979) G. Japaridze, A. Nersesyan, P. Wiegmann (1982)

OBC:

P. R. Pasnoori, N. Andrei, and P. Azaria, Phys. Rev. B 102, 214511 (2020) P. R. Pasnoori, N. Andrei, and P. Azaria, Phys. Rev. B 104, 134519 (2021)

- Strong e-e correlations
- Attractive spin exchange interaction for $\,g_{\parallel}>0\,$
- Spin-charge separation
- Gapped spinons
- Gapless holons
- QLR SC order parameter : $\langle \mathcal{O}_{\rm SC}(x)\mathcal{O}_{\rm SC}(0)\rangle\sim \frac{1}{|x|^{1/2}}$ SSS: $g_{\perp}>0$, STS: $g_{\perp}<0$

Bulk superconductor coupled to a quantum impurity

$$H = H_0 + H_{\rm int} + H_{\rm imp}$$

$$H_{\rm int} = -g \int_{-\frac{L}{2}}^{0} dx \,\psi_{Ra}^{\dagger} \psi_{Lc}^{\dagger} \left(\vec{\sigma}_{ab} \cdot \vec{\sigma}_{cd}\right) \psi_{Rb} \psi_{Ld}$$

$$H_{\rm imp} = -J\left(\vec{\sigma}_{ab}\cdot\vec{S}_{cd}\right)\psi^{\dagger}_{La}(0)\psi_{Rb}(0)$$

Open boundary conditions:

$$\psi_{Ra}^{\dagger}(0) = -\psi_{La}^{\dagger}(0) \quad \psi_{Ra}^{\dagger}(-L/2) = -\psi_{La}^{\dagger}(-L/2)$$

P. R. Pasnoori, N. Andrei, C. Rylands, and P. Azaria, (2021)

We take the limit $g_{\parallel} = g_{\perp} = g > 0$ where the bulk is in the SSS phase.

Kondo coupling *J* is taken to be positive which corresponds to antiferromagnetic interaction.

Model is integrable for arbitrary Values of *g* and *J*

Competition :Kondo vs. SC

 $H = H_0 + H_{\rm int} + H_{\rm imp}$

• Competition between nonperturbative effects and scales

$T_K \gg \Delta \quad T_K \approx \Delta \quad T_K \ll \Delta$

- Bulk fluctuations affect T_K
- Need nonperturbative techniques e.g. bosonization, semi-classical
- Model is integrable for isotropic couplings (maybe with anisotropy)

$$J_{\perp} = J_{\parallel} \quad g_{\perp} = g_{\parallel}$$

Model is integrable for any g and J

Results: Kondo effect in a 1-d superconductor

- YSR regime
 - YSR intragap bound state
 - Mediates a first order QPT
 - Single particle screening, no ${\cal T}_K$
- Regime has semi-classical description

Results: Kondo effect in a 1-d superconductor

- Kondo Regime
 - No YSR bound states
 - Renormalized Kondo effect, singlet ground state
 - Crossover from many-body to few body screening as *a* is varied

Results: Kondo effect in a 1-d superconductor

- Unscreened regime
 - No YSR states
 - Doublet ground state
 - Residual correlations between bulk & impurity

From Classical to Quantum description

• Classical impurity & semi-classical bulk

• Classical impurity & quantum bulk

• Quantum impurity & quantum bulk

Quantum

Classical impurity

• Take the limit $S \to \infty ~~JS$ constant

$$H_{\rm imp} = -JS \,\left(\psi_L^\dagger \sigma^z \psi_R\right)(0)$$

• Bosonize the SC

$$\begin{split} H_0 + H_{\rm int} &= \int dx \, \frac{1}{2} [(\partial_x \phi)^2 + (\partial_x \theta)^2] - \frac{m_0^2}{\beta^2} \cos(\beta \phi) + H_{\rm LL} \\ \\ \text{Spin part} \qquad \qquad \text{Charge part} \end{split}$$

 $\psi_{L(R),a} = \frac{e^{-i\sqrt{\pi}(\theta_a \pm \phi_a)}}{\sqrt{2\pi\delta}}$ $\frac{m_0^2}{\beta^2} \sim \frac{g_\perp}{(\pi\delta)^2}$

• Chiral rotation removes impurity but changes b.c.

$$\phi(-L/2) = \frac{2\pi}{\beta}n \ \phi(0) = \frac{2JS}{\beta}$$

Classical

Semiclassical bulk (classical impurity)

• Take the limit $\beta \to 0$

$$\int dx \, \frac{1}{2} [(\partial_x \phi)^2 + (\partial_x \theta)^2] - \frac{m_0^2}{\beta^2} \cos(\beta \phi)$$
$$\phi(-L/2) = \frac{2\pi}{\beta} n \ \phi(0) = \frac{2JS}{\beta}$$

SG model: Spectrum has kinks and anti-kinks

• Ground state/YSR state:

$$\begin{split} |\Psi_{+}\rangle & \text{kink} & |\Psi_{-}\rangle \text{ anti-kink} \\ E_{+} &= \frac{4m_{0}}{\beta^{2}} \left(1 - \sin(2\alpha_{0})\right) & E_{-} &= \frac{4m_{0}}{\beta^{2}} \left(1 + \sin(2\alpha_{0})\right) \\ & 2\alpha_{0} &= \pi/2 - JS \end{split}$$

 $|\Psi\rangle$ anti kink

Same results as for BCS SC: YSR state everywhere

Classical

Quantum

• Classical impurity & semiclassical bulk

• Classical impurity & quantum bulk

• Quantum impurity & quantum bulk

Quantum bulk (classical impurity)

• Take the "opposite" limit $\beta^2 = 4\pi$, restore bulk fluctuations

$$H = \int dx \frac{1}{2} [(\partial_x \phi)^2 + (\partial_x \theta)^2] - \frac{m_0^2}{\beta^2} \cos(\beta \phi)$$
$$-\int_{-L/2}^0 dx \ \Psi^{\dagger}(x) (i\sigma^z \partial_x + m\sigma^y) \Psi(x)$$

Classical

• Get Dirac equation with twisted b.c.

$$\Psi_R(-L/2) = \Psi_L(-L/2) \quad \Psi_R(0) = -e^{i4\alpha_0}\Psi_L(0)$$

Luther & Emery, PRL (1974)

Quantum bulk (classical impurity)

• Dirac wave function with twisted b.c.

$$\chi_{\lambda}(x) = A_{\lambda} \begin{pmatrix} -ie^{-\pi\lambda/2} \\ e^{\pi\lambda/2} \end{pmatrix} e^{im\sinh(\pi\lambda)x} + A_{-\lambda} \begin{pmatrix} -ie^{\pi\lambda/2} \\ e^{-\pi\lambda/2} \end{pmatrix} e^{-im\sinh(\pi\lambda)x}$$

- Energy $\epsilon(\lambda) = -m \cosh(\pi \lambda)$, λ rapidity parameter
- Boundary conditions lead to equations

$$e^{im\sinh(\pi\lambda)L} = \frac{\cosh\frac{\pi}{2}(\lambda - i(\frac{1}{2} - a))\cosh\frac{\pi}{2}(\lambda - \frac{i}{2})}{\cosh\frac{\pi}{2}(\lambda + i(\frac{1}{2} - a))\cosh\frac{\pi}{2}(\lambda + \frac{i}{2})}$$

- Ground state: fill all negative energy modes
- Excitations: $\lambda \rightarrow \lambda + i$ gapped

Boundary phase shift

$$A_{\lambda}/A_{-\lambda} = -\frac{\cosh \frac{\pi}{2}(\lambda - i(\frac{1}{2} - a))}{\cosh \frac{\pi}{2}(\lambda + i(\frac{1}{2} - a))}$$

$$a = 2\alpha_0/\pi$$

Pole/zero:
$$\lambda_{
m bs}=\pm i(a-1/2)$$

Quantum bulk (classical impurity)

Pole indicates bound state - YSR

$$\chi_{\rm b.s}(x) = \xi_a^{-1/2} \begin{pmatrix} -e^{-i\pi a/2} \\ e^{i\pi a/2} \end{pmatrix} e^{x/\xi_a}$$

$$\xi_a = (-m\cos\left(\pi a\right))^{-1}$$

- Only normalizable for $\frac{1}{2} < a < \frac{3}{2}$
- Energy is below gap

 $\epsilon = -m\sin\left(\pi a\right)$

• Include in GS when negative

Classical

Quantum

• Classical impurity & semiclassical bulk

• Classical impurity & quantum bulk

• Quantum impurity & quantum bulk

Classical

Quantum

The Quantum model

• The model

$$H = \int_{-\frac{L}{2}}^{0} dx \, i(\psi_{La}^{\dagger} \partial_x \psi_{La} - \psi_{Ra}^{\dagger} \partial_x \psi_{Ra}) - 2g\psi_{Ra}^{\dagger} \psi_{Lc}^{\dagger} \left[\vec{\sigma}_{ab} \cdot \vec{\sigma}_{cd}\right] \psi_{Rb} \psi_{Ld}$$
$$-J \left[\vec{S}_{\alpha\beta} \cdot \vec{\sigma}_{ab}\right] \psi_{La}^{\dagger}(0) \psi_{Rb}(0)$$

- Model is integrable via nested Bethe Ansatz for arbitrary g &J

Pasnoori, Rylands & Andrei, PRR (2020)

Quantum model: Bethe states

• The Bethe states – divide configuration space to to (N+1) regions

$$|\{k_{j}\}\rangle = \sum_{\substack{\{a_{j}\},\{\sigma_{j}\}\\Q}} \int \mathrm{d}\vec{x} \, F_{\{a\}}^{\{\sigma\}}(\vec{x}) \prod_{j=1}^{N} \psi_{\sigma_{j},a_{j}}^{\dagger}(x_{j}) \, |0\rangle \otimes |a_{0}\rangle$$

with the wave function in region Q:

$$F_{\{a\}}^{\{\sigma\}}(\vec{x}) = \theta(x_Q) A_{\{a\}}^{\{\sigma\}}[Q] e^{i\sum_{j=1}^{N} \sigma_j k_j x_j}$$

• Imposing open b.c. - the amplitude $A_{\{a\}}^{\{\sigma\}}[Q]$ satisfies:

$$e^{-ik_j L} A_{\{a\}}[\mathbb{1}] = \operatorname{Tr} \left[\mathcal{T}(0)\right]_{\{a\}}^{\{b\}} A_{\{b\}}[\mathbb{1}]$$

- The monodromy matrix (from one edge to another) $\mathcal{T}(0) = R_{1\tau}(\lambda + b)...R_{N\tau}(\lambda + b)R_{0\tau}(\lambda + d)R_{0\tau}(\lambda - d)R_{N\tau}(\lambda - b)...R_{1\tau}(\lambda - b)$
- $R_{ij}(\lambda)$ are the particle-particle scattering matrices

Quantum model: Bethe equations

- open boundary conditions

The BA equations:

$$e^{-ik_jL} = \prod_{\alpha=1}^M \left(\frac{\lambda_\alpha + b + i/2}{\lambda_\alpha + b - i/2}\right) \left(\frac{\lambda_\alpha - b - i/2}{\lambda_\alpha - b + i/2}\right)$$
$$\left(\frac{\lambda_\alpha - b + i/2}{\lambda_\alpha - b - i/2}\right)^N \left(\frac{\lambda_\alpha + b + i/2}{\lambda_\alpha + b - i/2}\right)^N \left(\frac{\lambda_\alpha - d + i/2}{\lambda_\alpha - d - i/2}\right) \left(\frac{\lambda_\alpha + d + i/2}{\lambda_\alpha + d - i/2}\right)$$
$$= \prod_{\alpha\neq\beta}^M \left(\frac{\lambda_\alpha - \lambda_\beta + i}{\lambda_\alpha - \lambda_\beta - i}\right) \left(\frac{\lambda_\alpha + \lambda_\beta + i}{\lambda_\alpha + \lambda_\beta - i}\right)$$

- Model integrable for arbitrary *g* and *J*
- g and J flow under RG
- *d* is RG invariant

$$d = \sqrt{b^2 - \frac{b(1 - 3J^2/4)}{J} - 1}$$

 $b = (1 - g^2/4)/2g$

bulk parameter

The energy: $E = \sum_{j=1}^{N} k_j$ Spir

- Spin charge separation - Gapless holons
- gapful spinons

Quantum model: Bethe equations – the bulk terms

$$e^{-ik_jL} = \prod_{\alpha=1}^{M} \left(\frac{\lambda_{\alpha} + b + i/2}{\lambda_{\alpha} + b - i/2} \right) \left(\frac{\lambda_{\alpha} - b - i/2}{\lambda_{\alpha} - b + i/2} \right)$$

$$\begin{split} \left(\frac{\lambda_{\alpha}-b+i/2}{\lambda_{\alpha}-b-i/2}\right)^{N} \left(\frac{\lambda_{\alpha}+b+i/2}{\lambda_{\alpha}+b-i/2}\right)^{N} \left(\frac{\lambda_{\alpha}-d+i/2}{\lambda_{\alpha}-d-i/2}\right) \left(\frac{\lambda_{\alpha}+d+i/2}{\lambda_{\alpha}+d-i/2}\right) \\ \text{bulk} \qquad \qquad = \prod_{\alpha\neq\beta}^{M} \left(\frac{\lambda_{\alpha}-\lambda_{\beta}+i}{\lambda_{\alpha}-\lambda_{\beta}-i}\right) \left(\frac{\lambda_{\alpha}+\lambda_{\beta}+i}{\lambda_{\alpha}+\lambda_{\beta}-i}\right) \end{split}$$

• RG invariants and scales

The bulk parameter

$$b = (1 - g^2/4)/2g$$

Bulk scale

 $\Delta = D e^{-\pi b} \quad {\rm Bulk} \\ D = N/L \ - {\rm cutoff}$ Bulk scale, the gap

Quantum model: Bethe equations –the impurity terms

$$e^{-ik_{j}L} = \prod_{\alpha=1}^{M} \left(\frac{\lambda_{\alpha} + b + i/2}{\lambda_{\alpha} + b - i/2} \right) \left(\frac{\lambda_{\alpha} - b - i/2}{\lambda_{\alpha} - b + i/2} \right)$$
$$\left(\frac{\lambda_{\alpha} - b + i/2}{\lambda_{\alpha} - b - i/2} \right)^{N} \left(\frac{\lambda_{\alpha} + b + i/2}{\lambda_{\alpha} + b - i/2} \right)^{N} \left(\frac{\lambda_{\alpha} - d + i/2}{\lambda_{\alpha} - d - i/2} \right) \left(\frac{\lambda_{\alpha} + d + i/2}{\lambda_{\alpha} + d - i/2} \right)$$
$$= \prod_{\alpha \neq \beta}^{M} \left(\frac{\lambda_{\alpha} - \lambda_{\beta} + i}{\lambda_{\alpha} - \lambda_{\beta} - i} \right) \left(\frac{\lambda_{\alpha} + \lambda_{\beta} + i}{\lambda_{\alpha} + \lambda_{\beta} - i} \right)$$

• RG invariants and scales

$$d = \sqrt{b^2 - \frac{b(1 - 3J^2/4)}{J} - 1}$$

Note: the RG invariant can be real (denoted *a*) ore imaginary (denoted *d*)

Impurity scale

$$\Delta e^{\pi d}$$
 or $\Delta e^{\pi a}$

$$d \in \mathbb{R}$$
 $d = ia$

Quantum model: Bethe equations

$$e^{-ik_jL} = \prod_{\alpha=1}^{M} \left(\frac{\lambda_{\alpha} + b + i/2}{\lambda_{\alpha} + b - i/2} \right) \left(\frac{\lambda_{\alpha} - b - i/2}{\lambda_{\alpha} - b + i/2} \right)$$
$$\left(\frac{\lambda_{\alpha} - b + i/2}{\lambda_{\alpha} - b - i/2} \right)^N \left(\frac{\lambda_{\alpha} + b + i/2}{\lambda_{\alpha} + b - i/2} \right)^N \left(\frac{\lambda_{\alpha} - d + i/2}{\lambda_{\alpha} - d - i/2} \right) \left(\frac{\lambda_{\alpha} + d + i/2}{\lambda_{\alpha} + d - i/2} \right)$$
$$\frac{M}{\Delta} \left(\lambda_{\alpha} - \lambda_{\alpha} + i \right) \left(\lambda_{\alpha} + \lambda_{\alpha} + i \right)$$

$$\begin{pmatrix} \frac{\lambda_{\alpha} + b + i/2}{\lambda_{\alpha} - b - i/2} \end{pmatrix} \begin{pmatrix} \frac{\lambda_{\alpha} + b + i/2}{\lambda_{\alpha} + b - i/2} \end{pmatrix} \begin{pmatrix} \frac{\lambda_{\alpha} - a + i/2}{\lambda_{\alpha} - d - i/2} \end{pmatrix} \begin{pmatrix} \frac{\lambda_{\alpha} + a + i/2}{\lambda_{\alpha} + d - i/2} \end{pmatrix}$$
$$= \prod_{\alpha \neq \beta}^{M} \begin{pmatrix} \frac{\lambda_{\alpha} - \lambda_{\beta} + i}{\lambda_{\alpha} - \lambda_{\beta} - i} \end{pmatrix} \begin{pmatrix} \frac{\lambda_{\alpha} + \lambda_{\beta} + i}{\lambda_{\alpha} + \lambda_{\beta} - i} \end{pmatrix}$$

- **Bulk** solutions are strings (complex pair) gapped Spinons $\epsilon(\lambda) = \Delta \cosh(\pi \lambda)$ (for all values of RG inv)
- **Boundary** spectrum: Three regimes depending on

$$d \in \mathbb{R}$$
 or $a < \frac{1}{2}$

$$\frac{1}{2} < a < \frac{3}{2}$$

$$a > \frac{3}{2}$$

Quantum model: Solution in thermodynamic limit

• Ground state has all $\lambda \in \mathbb{R}$ distributed according to BAE

$$\sum_{\sigma=\pm} N\varphi_1(\lambda + \sigma b) + \varphi_1(\lambda + \sigma d) + \varphi_1(\lambda) + \varphi_2(\lambda) = \rho(\lambda) + \int_{-\infty}^{\infty} d\mu \,\varphi_2(\lambda - \mu)\rho(\mu)$$

bulk impurity boundary
$$\varphi_n(x) = \frac{1}{\pi} \frac{n/2}{(n/2)^2 + x^2}$$

The density: $\rho(\lambda) = \rho_{\text{bulk}}(\lambda) + \rho_{\text{imp}}(\lambda) + \rho_{\text{bdry}}(\lambda)$

• Solve for $\rho(\lambda)$ by Fourier Transform

Quantum model: Kondo Regime $d \in \mathbb{R}$ $a < \frac{1}{2}$

- The total spin $S_z = N 2 \int d\lambda \rho(\lambda) = 0 \longrightarrow \text{many body singlet}$
- Density of states $\rho(E) = \left| \frac{\rho(\lambda)}{p'(\lambda)} \right|$

$$\rho_{\text{bulk}}(E) = \frac{L}{2} \frac{E}{\pi\sqrt{E^2 - \Delta^2}}$$
$$\frac{L}{2} \frac{\rho_{\text{imp}}(E)}{\rho_{\text{bulk}}(E)} = \frac{\Delta \cosh \pi d}{(E^2 + \Delta^2 \sinh^2 \pi d)}$$

• Defines a renormalized Kondo scale

$$T_K = \Delta \sqrt{1 + \cosh^2 \pi d} \quad \underset{J \gg g}{\longrightarrow} D e^{-\pi/2J}$$

Smooth crossover from many-body to single particle screening

 $\Delta = T_K$ when a = 1/2

Quantum model: YSR regime

$$\frac{1}{2} < a < \frac{3}{2}$$

There exists three states with spin $S^z = 0$, $S^z = \pm 1/2$ corresponding to impurity being screened and unscreened respectively.

The impurity is screened by a bound state which is described by the close boundary string $\lambda_{\rm bs}=\pm i(a-1/2)$

Energy of the bound state is below the gap: $\epsilon = -\Delta \sin (\pi a)$

First order QPT at a=1

a < 1

- Ground state has $\ \lambda_{
m bs} \ S^z = 0$ - impurity screened

- YSR state has no
$$\lambda_{
m bs}~S^z=\pm 1/2$$

a > 1

- Ground state has no $\lambda_{\rm bs}$ $S^z=\pm 1/2$ impurity not screened

 $\lambda_{
m bs}$

 $S^z = 0$

YSR state has

ta hac r

Quantum model: Unscreened regime

• For $a > \frac{3}{2}$ have "wide" boundary string

$$\lambda_{\rm bs} = \pm i(a - 1/2)$$

- Only a solution in presence of excitations
 - Not a bound state, flips spin of impurity
- Ground state is doubly degenerate

$$|\mathrm{GS}\rangle \equiv \{|+1/2\rangle, |-1/2\rangle\}$$

• No YSR states, still some residual scale $\Delta e^{\pi a}$

In Sum: Kondo effect in a 1-d superconductor Semi-classical vs. Quantum

Two impurities

- Model integrable for arbitrary values of bulk and impurity coupling strengths: three free parameters.
- Two RG invariants corresponding to two impurities a_L, a_R

Two impurity model phase diagram:

Several regimes depending on the coupling strengths of the two impurities

- Symmetry Protected Topological phase: Entanglement of the edges and emergence of boundary SUSY
- Reduction to Majorana modes by applying strong magnetic fields at the edges
- At the point $a_R = a_L = 1$, states form irreps of $spl(2,1) \otimes spl(2,1)$ SUSY algebra

	(K - US)	$(YSR - US)_2$		$(YSR - US)_1$		(US - US)
$\frac{3}{2}$	$(0,\pmrac{1}{2})$ g.s	$(0,\pmrac{1}{2})$ g.s	$\substack{(\pm\frac{1}{2},\pm\frac{1}{2})\\\epsilon_L}$	$\substack{(\pm\frac{1}{2},\pm\frac{1}{2})\\g.s}$	$\begin{array}{c} (0,\pm\frac{1}{2}) \\ \epsilon_L \end{array}$	$\begin{array}{c}(\pm\frac{1}{2},\pm\frac{1}{2})\\g.s\end{array}$
	$(K - YSR)_2$	$(YSR - YSR)_2$		$(YSR - YSR)_1$		$(US - YSR)_1$
	$(0,\pmrac{1}{2})$ g.s	$(0,0)$ ϵ_R	$(\pm \frac{1}{2}, \pm \frac{1}{2})$ ϵ_L	$(0,\pm\frac{1}{2})\\\epsilon_L$	(0,0) $\epsilon_L + \epsilon_R$	$(\pm \frac{1}{2}, 0)$ ϵ_R
1	(0,0) ϵ_R	$(\pm \frac{1}{2}, 0)$ $\epsilon_L + \epsilon_R$	$(0,\pmrac{1}{2})$ $g.s$	$(\pm rac{1}{2},\pm rac{1}{2})$ g.s	$(\pm \frac{1}{2}, 0)$ ϵ_R	$\begin{array}{c} (\pm \frac{1}{2}, \pm \frac{1}{2}) \\ g.s \end{array}$
	$(K - YSR)_1$	$(YSR - YSR)_3$		$(YSR - YSR)_4$		$(US - YSR)_2$
	$(0,\pmrac{1}{2})$ ϵ_R	$(0,\pm\frac{1}{2})\\\epsilon_R$	$egin{array}{c} (0,0) \ g.s \end{array}$	$(\pm \frac{1}{2}, 0)$ g.s	$(\pm \frac{1}{2}, \pm \frac{1}{2})$ ϵ_R	$(\pm \frac{1}{2}, 0)$ g.s
$\frac{1}{2}$	$egin{array}{c} (0,0) \ g.s \end{array}$	$\begin{array}{l}(\pm\frac{1}{2},\pm\frac{1}{2})\\ \epsilon_L+\epsilon_R\end{array}$	$(\pm \frac{1}{2}, 0)$ ϵ_L	$(0,\pm\frac{1}{2})$ $\epsilon_L + \epsilon_R$	(0,0) ϵ_L	$(\pm \frac{1}{2}, \pm \frac{1}{2})$ ϵ_R
	(K-K)	$(YSR - K)_1$		$(YSR - K)_2$		(US-K)
	$egin{array}{c} (0,0) \ g.s \end{array}$	$egin{array}{c} (0,0) \ g.s \end{array}$	$(\pm \frac{1}{2}, 0) \\ \epsilon_L$	(0,0) ϵ_L	$(\pm rac{1}{2}, 0)$ g.s	$(\pm \frac{1}{2}, 0)$ g.s
	$\frac{1}{2}$		1		$\frac{3}{2}$	

 a_R

YSR-YSR regime (green squares) - work in progress

• For $rac{1}{2} < a < rac{3}{2}$ have extra "close" boundary string solution $\lambda_{
m bs} = \pm i(a-1/2)$

$$a < 1$$

Ground state has $\lambda_{
m bs} \ S^z = 0$
YSR state has no $\lambda_{
m bs} \ S^z = \pm 1/2$
SR state has no $\lambda_{
m bs} \ S^z = \pm 1/2$
SR state has $\lambda_{
m bs} \ S^z = 0$

Total of nine states exist: $(\pm \frac{1}{2}, \pm \frac{1}{2}), (\pm \frac{1}{2}, 0), (0, \pm \frac{1}{2}), (0, 0)$

- Introduce fermionic operators $c_{Lm}^{\dagger}, c_{Rm}^{\dagger}$ creating bound states at the left and right edges.

- This allows us to define the operators:

$$X_{\alpha,0\uparrow} = (1 - n_{\alpha,\downarrow})c_{\alpha,\uparrow}, \quad X_{\alpha,0\downarrow} = (1 - n_{\alpha,\uparrow})c_{\alpha,\downarrow}, \quad \alpha = L, R$$

$$S_{\alpha}^{+} = S_{\alpha}^{x} + iS_{\alpha}^{y} = X_{\alpha,\uparrow\downarrow}, \quad S_{\alpha}^{-} = S_{\alpha}^{x} - iS_{\alpha}^{y} = X_{\alpha,\downarrow\uparrow}$$

$$S^{z} = \frac{1}{2} \left(X^{\uparrow\uparrow} - X^{\downarrow\downarrow} \right), \quad S_{\alpha}^{0} = \frac{1}{2} \left(1 + X^{00} \right)$$
with
$$S_{\alpha}^{a} = \sum_{m,n} c_{\alpha m}^{\dagger} \sigma_{mn}^{a} c_{\alpha n}, \quad a = x, y, z, 0 \quad \alpha = L, R$$

YSR-YSR regime

Nine states in the YSR-YSR regime: $(\pm \frac{1}{2}, \pm \frac{1}{2}), (\pm \frac{1}{2}, 0), (0, \pm \frac{1}{2}), (0, 0)$

At each edge we have the following states:

|1,0,0
angle : impurity is screened

 $|\frac{1}{2},\frac{1}{2},\pm\frac{1}{2}\rangle$: impurity is unscreened

Irreducible representations:

Total fermionic parity is even or odd corresponding to total baryon number being integer or half odd integer

Both impurities screened: $|2,0,0\rangle = -|1,0,0\rangle \otimes |1,0,0\rangle$

Both impurities unscreened: $|1,1,\pm1\rangle = |\frac{1}{2},\frac{1}{2},\pm\frac{1}{2}\rangle \otimes |\frac{1}{2},\frac{1}{2},\pm\frac{1}{2}\rangle$

 $|1,1,0\rangle, |1,0,0\rangle = \frac{1}{\sqrt{2}} \left(|\frac{1}{2},\frac{1}{2},\frac{1}{2}\rangle \otimes |\frac{1}{2},\frac{1}{2},-\frac{1}{2}\rangle \pm |\frac{1}{2},\frac{1}{2},-\frac{1}{2}\rangle \otimes |\frac{1}{2},\frac{1}{2},\frac{1}{2}\rangle \right)$

One impurity is screened and the other is unscreened:

$$|\frac{3}{2}, \frac{1}{2}, \pm\frac{1}{2}\rangle_{\pm} = \frac{1}{\sqrt{2}} \left(|1, 0, 0\rangle \otimes |\frac{1}{2}, \frac{1}{2}, \pm\frac{1}{2}\rangle \pm |\frac{1}{2}, \frac{1}{2}, \pm\frac{1}{2}\rangle \otimes |1, 0, 0\rangle \right)$$

Irreducible representation: [b, q]. b is the baryon number and q is the spin. It may contain multiplets

 $|b,q,q_3\rangle, |b+\frac{1}{2},q-\frac{1}{2},q_3\rangle |b-\frac{1}{2},q-\frac{1}{2},q_3\rangle, |b,q-1,q_3\rangle$

 $q_3 = -q...q$ is the spin S^z

Odd operators: V_{\pm}, W_{\pm} increase and decrease the baryon number by $\frac{1}{2}$ resp. \pm operators increase and decrease spin S^z by $\frac{1}{2}$.

Even operators: Q_{\pm}, Q_3 are the usual spin operators.

Irrep of $[\frac{1}{2}, \frac{1}{2}] \otimes [\frac{1}{2}, \frac{1}{2}]$ is $[1, 1] \oplus [\frac{3}{2}, \frac{1}{2}]$

 $\begin{array}{c} [\frac{1}{2},\frac{1}{2}] \text{ contains the multiplets } |1,0,0\rangle, \ |\frac{1}{2},\frac{1}{2},m\rangle \\ [1,1] \text{ contains the multiplets } |1,1,m\rangle, |\frac{3}{2},\frac{1}{2},m\rangle \\ [\frac{3}{2},\frac{1}{2}] \text{ contains the multiplets } |\frac{3}{2},\frac{1}{2},m\rangle, |2,0,0\rangle, |1,0,0\rangle \end{array}$

The two irreps correspond to space parity +1, -1 resp.

Reduce edge symmetry:

- Apply a magnetic field to the impurities at the edge
- Obtain SC (in the SSS Spin Singlet SC phase) with magnetic fields at the edges $\mathcal{H}_{int} = -\psi_R^{\dagger} \psi_L^{\dagger} \left[g_{\perp} (\sigma^x \otimes \sigma^x + \sigma^y \otimes \sigma^y) + g_{\parallel} \sigma^z \otimes \sigma^z \right] \psi_L \psi_R$
- Fractionalized $S^z = 1/4$ edge modes will appear
 - The SSS SC with twisted BC at the edge $~B\sim\sigma^z$

$$\Psi_{Ra}(+L/2) = -B_{ab}\Psi_{Lb}(+L/2)$$

$$\Psi_{Ra}(-L/2) = -\Psi_{Lb}(-L/2)$$

is dual to the SC in the STS (Spin Triplet SC) phase $\hat{\psi}_L = \psi_L, \ \hat{\psi}_R = i\sigma^z \psi_R \quad H(\psi, g_{\parallel}, g_{\perp}) = H(\hat{\psi}, g_{\parallel}, -g_{\perp})$ SSS - Hamiltonian STS - Hamiltonian

 The STS Hamiltonian is topological, with fractionalized spin edge modes and Majorana Algebra Keselman, Berg '15 –'18, Pasnoori, Andrei, Azaria '20

Breaking the symmetries at the edges

The Hilbert space breaks into four towers. Each labelled by local fermionic parity quantum numbers $\mathcal{P}_{\mathcal{L},\mathcal{R}} \equiv \sigma_{\mathcal{L},\mathcal{R}}^z = 2a_{\mathcal{L},\mathcal{R}}^{\dagger}a_{\mathcal{L},\mathcal{R}} - 1.$

 $\begin{array}{c|c} \text{States} & |-\frac{1}{2}\rangle & |0\rangle_{\epsilon_{\mathcal{L}}'} & |0\rangle_{\epsilon_{\mathcal{R}}'} & |-\frac{1}{2}\rangle \\ \hline (\mathcal{P}_{\mathcal{L}}, \mathcal{P}_{\mathcal{R}}) & (+1, +1) & (-1, +1) & (+1, -1) & (-1, -1) \\ \mathcal{P} = -\mathcal{P}_{\mathcal{L}}\mathcal{P}_{\mathcal{R}} & -1 & +1 & +1 & -1 \end{array}$

Local fractional spin quantum numbers exist: $S_{\mathcal{L},\mathcal{R}}^z = \frac{1}{4}\sigma_{\mathcal{L},\mathcal{R}}^z$

$$\begin{aligned} \pm \frac{1}{2} \rangle &= |\pm 1/4\rangle_{\mathcal{L}} \otimes |\pm 1/4\rangle_{\mathcal{R}}, \\ |0\rangle_{\epsilon_{\mathcal{L}}'} &= |-1/4\rangle_{\mathcal{L}} \otimes |+1/4\rangle_{\mathcal{R}}, \\ |0\rangle_{\epsilon_{\mathcal{L}}'} &= |+1/4\rangle_{\mathcal{L}} \otimes |-1/4\rangle_{\mathcal{R}}. \end{aligned}$$

Fractionalization of the \mathbb{Z}_2 symmetry group and Majorana ZEM: $\mathbb{Z}_2 = \mathbb{Z}_{2,\mathcal{L}} \otimes \mathbb{Z}_{2,\mathcal{R}} \qquad \mathbb{Z}_{2,\mathcal{L},\mathcal{R}} = \{1, \sigma_{\mathcal{L},\mathcal{R}}^x\}$ $\sigma_{\mathcal{L},\mathcal{R}}^y = -i(a_{\mathcal{L},\mathcal{R}}^{\dagger} - a_{\mathcal{L},\mathcal{R}}) \qquad \sigma_{\mathcal{L},\mathcal{R}}^x = (a_{\mathcal{L},\mathcal{R}}^{\dagger} + a_{\mathcal{L},\mathcal{R}})$ $\{\sigma_r^{\mu}, \sigma_{r'}^{\nu}\} = 2\delta_{rr'}\delta^{\mu\nu}, \quad (\mu, \nu) = (x, y), \quad (r, r') = (\mathcal{L}, \mathcal{R})$

A. Keselman and E. Berg, Phys. Rev. B 91, 235309 (2015).

Majorana ZEM

 Hilbert space breaks into four towers labelled by local fermionic parity quantum numbers:

$$(\mathcal{P}_{\mathcal{L}}, \mathcal{P}_{\mathcal{R}}) = (\pm 1, \pm 1) \qquad \mathcal{P}_{\mathcal{L}, \mathcal{R}} \equiv \sigma^{z}_{\mathcal{L}, \mathcal{R}} = 2a^{\dagger}_{\mathcal{L}, \mathcal{R}}a_{\mathcal{L}, \mathcal{R}} - 1.$$
$$\mathcal{P} = (-1)^{N} = -\mathcal{P}_{\mathcal{L}}\mathcal{P}_{\mathcal{R}}$$

• Conservation of total fermionic parity and existence of local fermionic parities leads to entanglement of the edges

$$|+,\pm\rangle = \sqrt{1/2} \left(\; |+\rangle_L \otimes |-\rangle_R \; \pm \; |+\rangle_L \otimes |-\rangle_R \; \right)$$

$$\left|-,\pm\right\rangle = \sqrt{1/2} \left(\ \left|+\right\rangle_L \otimes \left|+\right\rangle_R \ \pm \ \left|-\right\rangle_L \otimes \left|-\right\rangle_R \right)$$

- Majorana operators change the local fermionic parities and hence map states corresponding to different towers :
- Reduce the magnetic field, the impurity spin fluctuates interplay Majorana and Kondo spin?

 $\begin{aligned} \sigma_{\mathcal{L},\mathcal{R}}^{x} &= (a_{\mathcal{L},\mathcal{R}}^{\dagger} + a_{\mathcal{L},\mathcal{R}}) & \lambda_{L} = \sigma_{L}^{z}, \quad \lambda_{R} = -i\sigma_{L}^{y}\sigma_{R}^{x} \\ \sigma_{\mathcal{L},\mathcal{R}}^{y} &= -i(a_{\mathcal{L},\mathcal{R}}^{\dagger} - a_{\mathcal{L},\mathcal{R}}) & \eta_{L} = \sigma_{L}^{z}\sigma_{R}^{x}, \quad \eta_{R} = \sigma_{R}^{y} \\ \{\sigma_{r}^{\mu}, \sigma_{r'}^{\nu}\} &= 2\delta_{rr'}\delta^{\mu\nu}, \quad (\mu, \nu) = (x, y), \quad (r, r') = (\mathcal{L}, \mathcal{R}) \\ [\lambda_{r}, \eta_{r'}] &= 0, \quad \{\lambda_{r}, \lambda_{r'}\} = \{\eta_{r}, \eta_{r'}\} = 2\delta_{rr'} \end{aligned}$

Reduce Symmetry:

- Apply a magnetic field to the impurities at the edges

- Break the SU(2) symmetry at the edges by applying strong magnetic fields to the magnetic impurities
- Effective boundary Hamiltonian : using $a_{\mathcal{L},\mathcal{R}}^{\dagger} \sim \psi^{\dagger}(x \simeq \pm L/2)$

$$h_B - E_{0,0} = m_{\mathcal{L}} a_{\mathcal{L}}^{\dagger} a_{\mathcal{L}} + m_{\mathcal{R}} a_{\mathcal{R}}^{\dagger} a_{\mathcal{R}}$$
$$S^z = \frac{1}{2} (a_{\mathcal{L}}^{\dagger} a_{\mathcal{L}} + a_{\mathcal{R}}^{\dagger} a_{\mathcal{R}} - 1).$$

• Bound state operators commute with the Hamiltonian $[a_{\mathcal{L},\mathcal{R}},H]=0$

Two impurity model

- Quantum fluctuations at the edges lead to SPT phase: entanglement between the two edges
- Preserving SU(2) symmetry at the edges leads to enhancement of the symmetry at the boundaries: SUSY
- Breaking the SU(2) symmetry by applying strong magnetic fields reduces SUSY algebra to Clifford algebra: Majorana modes

Conclusions & Outlook

- YSR states are destroyed by quantum fluctuations
- Facilitate 1st order QPT semiclassical description
- Nature of the Kondo cloud
- Unscreened dynamical scale
- Massive Thirring shrinking of YSR region
- Multiple impurities, Quench dynamics, other SCs

- Quantum fluctuations at the edges lead to SPT phase: entanglement between the two edges
- Preserving SU(2) symmetry at the edges leads to enhancement of the symmetry at the boundaries: SUSY
- Breaking the SU(2) symmetry by applying strong magnetic fields reduces SUSY algebra to Clifford algebra: Majorana modes