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Overview 
•  Introduction	

• Model	–	Kondo	impurity	at	one	edge	

• Results:	Superconductivity	vs.	Kondo:	The	phase	diagram	

•  Some	details	on	calculations	

• Model	– two	Kondo	impurities	-	one	at	each	edge,		emergence	of		
boundary	SUSY		

• Conclusions	&	Outlook	
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impurity	



Kondo effect  in a metal  
• Magnetic	impurity	in	a	sea	of	gapless	fermions:	
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~s(0) =  †
a(0)~�ab b(0) Electrons	spin	density		

Kondo	impurity	coupled	to	
the	Fermi	sea		
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Kondo effect in a metal 
Magnetic	impurity	in	a	sea	of	gapless	fermions:		
	

•  For													spin	½		impurity	is	screened	
								-	Singlet	Ground	State	
							-	Many-body	screening	
	
•  Magnetic	susceptibility		and	resistivity	
				increase	as		T							0	
	
	
	
	
	
	
	
•  Non-perturbative	scale		

	
•  Impurity	D.O.S	

	

<latexit sha1_base64="5sCDq7HmTCSoLQjfqTcRhCXf7tU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilhx7G/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP2HXjeA=</latexit>!



Kondo effect in a BCS superconductor 
• Replace	the	metal	with	a	
superconductor		

• Competition	between	screening	and	
Cooper	pair	formation	

	
•  YSR	approach:	Mean	Field	theory	(BCS)
+	classical	spin	

Yu	(1965),	Shiba	(1968),	Rusinov	(1969)	



Classical spin in a BCS superconductor  (YSR) 
•  BCS	superconductor,	classical	spin	

•  Screening	is	done	by	a	localized	bound	
state	

•  BS	energy	is	function	of	phase		
	
	

•  Mediates	a	1st	order	QPT	

•  Impurity	quantum	fluctuations	-													
dress	phase	shift		

																																									
	

1st	Order	QCP	

Screened	GS	 Unscreened	GS	

Yu	(1965),	Shiba	(1968),	Rusinov	(1969)	

Yu-Shiba-Rusinov	state		
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2↵ = ⇡/2� JSwith	

Sakai	et.al.	J.Pys.Soc.Jpn.	(1993)	
	



Some applications: YSR states & topology  

• Helical	chain	of	impurities	on	a	SC	

•  YSR	states	hybridize,	form	a	band	
below	SC	gap	

• Realizes	a	topological	SC,	
Majorana	edge	modes		

Nadj-Perge,	et.al.		PRB	(2013),	Pientka,	et.al.	PRB	(2013),	Nadj-Perge,	et.al.	Science	(2014),		



Q: What about SC’s with strong fluctuations? 
	
	Ex: 1-d charge conserving superconductor 
coupled to a Kondo impurity 
 

In	BCS		superconductors		fluctuations	are	neglected	



The bulk: 1d charge conserving superconductor 

•  Strong e-e correlations 

•  Attractive spin exchange 
interaction for  

•  Spin-charge separation 

•  Gapped spinons  

•  Gapless holons 

•  QLR SC order parameter :  

 

    SSS:              ,  STS:  
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P.	R.	Pasnoori,	N.	Andrei,	and	P.	Azaria,	Phys.	Rev.	B	102,	214511	(2020)		
P.	R.	Pasnoori,	N.	Andrei,	and	P.	Azaria,	Phys.	Rev.	B	104,	134519	(2021)		
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OBC:	

PBC:	
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 We take the limit                 
 where the bulk is in the SSS phase. 
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1-D	superconductor		coupled	to	a	Kondo	spin	

	quantum	
spin	1/2	
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J

Bulk superconductor coupled to a quantum impurity 



• Competition	between	nonperturbative	effects	and	scales	

	
-	Bulk	fluctuations	affect		

• Need	nonperturbative	techniques	e.g.	bosonization,	semi-classical		
• Model	is	integrable	for	isotropic	couplings	(maybe	with	anisotropy)	

Competition :Kondo vs. SC 



Model is integrable for any g and J 
 

	
•  Three regimes depending on relative 

values of g and J  
•  Kondo 
•  YSR 
•  Unscreened 

(or					)		RG	invariant		
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Bulk	parameter	
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Results: Kondo effect in a 1-d superconductor 

•  YSR	regime	
•  YSR	intragap	bound	state	

•  Mediates	a	first	order	QPT	

•  Single	particle	screening,	no			

• Regime	has	semi-classical	
description	



Results: Kondo effect in a 1-d superconductor 

• Kondo	Regime	

•  No	YSR	bound	states	

•  Renormalized	Kondo	effect,	singlet	
ground	state	

•  Crossover	from	many-body	to	few	
body	screening		as	a	is	varied	



Results: Kondo effect in a 1-d superconductor 

• Unscreened	regime	

•  No	YSR	states	

•  Doublet	ground	state	

•  Residual	correlations	between	bulk	
&	impurity	



From Classical to Quantum description  

	
• Classical	impurity	&	semi-classical	bulk	

• Classical	impurity	&	quantum	bulk		

• Quantum	impurity	&	quantum	bulk	

Classical		

Quantum		



Classical impurity 

•  Take	the	limit																										constant	

	
• Bosonize	the	SC	

• Chiral	rotation	removes	impurity	but	changes	b.c.	

Classical		

Quantum		

Spin	part	 charge	part	



Semiclassical bulk (classical impurity) 

•  Take	the	limit	

	
SG	model:		Spectrum	has	kinks	and	anti-kinks	
	

• Ground	state/YSR	state: 	 	 	 	 	 		
		 	 				kink 	 													anti-kink	

	
•  Same	results	as	for	BCS	SC:	YSR	state	everywhere	

	
	

1st	Order	QCP	

Screened	GS	 Unscreened	GS	



	
• Classical	impurity	&	semiclassical	bulk	

• Classical	impurity	&	quantum	bulk		

• Quantum	impurity	&	quantum	bulk	

Classical		

Quantum		



Quantum bulk (classical impurity) 

•  Take	the	“opposite”	limit																	,	restore	bulk	fluctuations									

• Get	Dirac	equation	with	twisted	b.c.	

refermionize	

Classical		

Luther	&	Emery,	PRL	(1974)	



Quantum bulk (classical impurity) 

• Dirac	wave	function	with	twisted	b.c.		

	
•  Energy																																							,						rapidity	parameter		

• Boundary	conditions	lead	to	equations	

•  Ground	state:	fill	all	negative	energy	modes	
•  Excitations:																							gapped	

Boundary	phase	shift	

Pole/zero:	
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Quantum bulk (classical impurity) 

• Pole	indicates	bound	state	-	YSR	

• Only	normalizable	for	
•  Energy	is	below	gap	

•  Include	in	GS	when	negative			

1st	Order	QCP	

Screened	GS	 Unscreened	GS	

YSR	region	shrinks	



	
• Classical	impurity	&	semiclassical	bulk	

• Classical	impurity	&	quantum	bulk		

• Quantum	impurity	&	quantum	bulk	

Classical		

Quantum		



The Quantum model 

•  The	model	
	
	

	
	
	
• Model	is	integrable	via	nested	Bethe	Ansatz	for	arbitrary						&	

Classical		

Quantum		
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Quantum model: Bethe states 
•  The	Bethe	states	–	divide	configuration	space	to	to	(N+1)	regions			

	
	
	
		with	the	wave	function		in	region	Q:	

	
•  Imposing	open	b.c.		-	the	amplitude																	satisfies:		

•  				The	monodromy	matrix	(from	one	edge	to	another	)		

•  											are	the	particle-particle	scattering	matrices	
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Quantum model: Bethe equations    
   - open boundary conditions 

The	energy:	

The	BA	equations:	
•  g	and	J	flow	under	RG	
	
•  d	is		RG	invariant	

Spin	charge	separation	
-	Gapless	holons			
-	gapful	spinons	
	

•  Model	integrable	for	
arbitrary	g	and	J	

bulk	parameter	
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Quantum model: Bethe equations – the bulk terms     

-	cutoff	

Bulk	scale,	the	gap	

bulk	

•  RG	invariants	and	scales	
Bulk	scale	

The	bulk	parameter	



Quantum model: Bethe equations –the impurity terms 

	
•  	RG	invariants	and	scales	
																																																																																								Impurity	scale	

	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 		

	
	 	 	 	 	 	 					 	 		

or	
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Note:	the	RG	invariant	can	be	real		
(denoted	a)	ore	imaginary	(denoted	d)	



Quantum model: Bethe equations 
	
	
	

• Bulk	solutions	are	strings	(complex	pair)		–	gapped	Spinons	
																																																																																			(for	all	values	of	RG	inv)	
• Boundary	spectrum:	Three	regimes		depending	on	 	 	 	

	 	 	 	 		

or	



Quantum model:  Solution in thermodynamic limit  

• Ground	state	has	all 								distributed	according	to	BAE	

	
	
	
•  Solve	for												by	Fourier	Transform		 	 	 	 	 						

bulk	 impurity	 boundary	

The	density:	
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Quantum model: Kondo Regime 

• Density	of	states				

	
	
	
• Defines	a	renormalized	Kondo	scale	

	
•  Smooth	crossover	from	many-body	to	single	particle	screening		

	 	 	 						

•  	The	total	spin																																																											many	body	singlet	
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Quantum model: YSR regime 

•  Ground	state	has	
					-	impurity	screened	
	
•  YSR	state		has	no		

•  	Ground	state	has	no				-
impurity		not	screened		

	
•  	YSR	state		has	

There exists three states with spin            , 
corresponding to impurity being screened and  
unscreened respectively.     

The impurity is screened by a bound state  
which is described by the close boundary string 

Energy of the bound state is below the gap: 
First order QPT at  



Quantum model: Unscreened regime 

•  For 		 		have	“wide”	boundary	string	

• Only	a	solution	in	presence	of	excitations	
•  Not	a	bound	state,	flips	spin	of	impurity	

• Ground	state	is	doubly	degenerate		

• No	YSR	states,	still	some	residual	scale		
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In	Sum:  Kondo	effect	in	a	1-d	superconductor			
																												Semi-classical	vs.	Quantum	
	

•  Two	phases	
•  	Screened		
•  	Unscreened	

	
Main	feature:	Quantum	fluctuations	destroy	YSR	over	
most	of	the	phase	diagram			
	

•  Three	regimes	
•  Kondo	
•  YSR	
•  Unscreened	

Quantum	
fluctuations	

Semi-classical	description	 Quantum	description	
screened	 unscreened	



Two impurities   

• Model integrable for arbitrary values of bulk and impurity coupling 
strengths: three free parameters.  

•  Two RG invariants corresponding to two impurities - 

JL	 JR	
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Two impurity model 
phase diagram: 
	
Several regimes depending on 
the coupling strengths of the 
two impurities 
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•  Symmetry	Protected	Topological		phase:	
Entanglement	of	the	edges	and	emergence	
of	boundary	SUSY		

	
•  Reduction	to	Majorana	modes	by	applying	

strong	magnetic	fields	at	the	edges	

•  At	the	point																						,	states	form	
irreps	of																																	SUSY	algebra	
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 YSR-YSR regime (green squares)  - work in progress   

	
Total of nine states exist:  

- Introduce fermionic operators                         creating bound states at the left and right edges. 

- This allows  us to define the operators:	
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YSR-YSR regime 
1

�
± 1

2 ,±
1
2

�
,

�
± 1

2 , 0
�
,

�
0,± 1

2

�
, (0, 0) Irreducible representation:         . b is the baryon  number 

and q is the spin. It may contain multiplets 

In this note we look at the irreducible representation of the 9 states obtained from
Bethe solution.

In this note I am not going to summarize the Bethe construction of the 9 states, but I will only describe the obtained

states and construct irreducible representations.

From the Bethe solution we have 9 states in the regime where both the impurities are in their respective YSR

regimes. In this regime, we can also specify the local spin quantum numbers. This is possible because we know

whether each impurity is screened or unscreened and also the spin of the unscreened impurity based on the boundary

Bethe roots describing each state.

1) There are four states in which both the impurities are unscreened.

2) There are four states in which one impurity is screened and the other is unscreened.

3) There is one state in which both the impurities are screened.

The algebra corresponding to these states is SPL(2, 1). There exists a baryon number b and total spin quantum

number q which can be used to specify a representation [b, q].

Each representation [b, q] may contain four multiplets |b, q, q3i, |b+ 1
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2 , q �
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2 , q3i, |b, q � 1, q3i,

where q3 = �q...q, is the spin Sz
. It is also explained in Rittenberg how di↵erent representations corresponding to

di↵erent values of b, q may or may not have certain multiplets.

There exists two odd operators V±,W±, and two even operators Q±, Q3. The operator V± increases the baryon

number by
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2 and simultaneously increases/decreases the spin Sz

by
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2 . The operator W± decreases the baryon number

by
1
2 and simultaneously increase/decrease the spin Sz

by
1
2 . The operator Q± does not change the baryon number

but only increases/decreases the spin Sz
by 1 and Q3 is just measures the Sz

. The relations (3.20 in Rittenberg)

describe how these operators acting on each state generate other states in di↵erent multiplets.

At each edge, the total spin can be either Sz
= ± 1

2 or S = 0. The representation is [
1
2 ,

1
2 ]. It can only contain the

multiplets | 12 ,
1
2 ,mi, |1, 0, 0i. Using (3.20) we obtain the following relations
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with the constraint ↵1�1 = 1 and the operators acting on the other states yielding zeros.

														is the spin  

In this note we look at the irreducible representation of the 9 states obtained from
Bethe solution.

In this note I am not going to summarize the Bethe construction of the 9 states, but I will only describe the obtained

states and construct irreducible representations.

From the Bethe solution we have 9 states in the regime where both the impurities are in their respective YSR

regimes. In this regime, we can also specify the local spin quantum numbers. This is possible because we know

whether each impurity is screened or unscreened and also the spin of the unscreened impurity based on the boundary

Bethe roots describing each state.

1) There are four states in which both the impurities are unscreened.

2) There are four states in which one impurity is screened and the other is unscreened.

3) There is one state in which both the impurities are screened.

The algebra corresponding to these states is SPL(2, 1). There exists a baryon number b and total spin quantum

number q which can be used to specify a representation [b, q].

Each representation [b, q] may contain four multiplets |b, q, q3i, |b+ 1
2 , q �

1
2 , q3i, |b� 1

2 , q �
1
2 , q3i, |b, q � 1, q3i,

where q3 = �q...q, is the spin Sz
. It is also explained in Rittenberg how di↵erent representations corresponding to

di↵erent values of b, q may or may not have certain multiplets.

There exists two odd operators V±,W±, and two even operators Q±, Q3. The operator V± increases the baryon

number by
1
2 and simultaneously increases/decreases the spin Sz

by
1
2 . The operator W± decreases the baryon number

by
1
2 and simultaneously increase/decrease the spin Sz

by
1
2 . The operator Q± does not change the baryon number

but only increases/decreases the spin Sz
by 1 and Q3 is just measures the Sz

. The relations (3.20 in Rittenberg)

describe how these operators acting on each state generate other states in di↵erent multiplets.

At each edge, the total spin can be either Sz
= ± 1

2 or S = 0. The representation is [
1
2 ,

1
2 ]. It can only contain the

multiplets | 12 ,
1
2 ,mi, |1, 0, 0i. Using (3.20) we obtain the following relations
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with the constraint ↵ 1
2
� 1

2
= 1 and the operators acting on the other states yielding zeros.

The irreducible representation of [
1
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1
2 ] ⌦ [

1
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1
2 ] is [1, 1] � [

3
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2 ]. [1, 1] contains the multiplets |1, 1,mi, | 32 ,

1
2 ,mi.

[
3
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1
2 ] contains the multiplets | 32 ,

1
2 ,mi, |2, 0, 0i, |1, 0, 0i.

Using (3.20) we obtain the following relations for [1, 1]
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with the constraint ↵1�1 = 1 and the operators acting on the other states yielding zeros.

In this note we look at the irreducible representation of the 9 states obtained from
Bethe solution.

In this note I am not going to summarize the Bethe construction of the 9 states, but I will only describe the obtained

states and construct irreducible representations.

From the Bethe solution we have 9 states in the regime where both the impurities are in their respective YSR

regimes. In this regime, we can also specify the local spin quantum numbers. This is possible because we know

whether each impurity is screened or unscreened and also the spin of the unscreened impurity based on the boundary

Bethe roots describing each state.

1) There are four states in which both the impurities are unscreened.

2) There are four states in which one impurity is screened and the other is unscreened.

3) There is one state in which both the impurities are screened.

The algebra corresponding to these states is SPL(2, 1). There exists a baryon number b and total spin quantum

number q which can be used to specify a representation [b, q].

Each representation [b, q] may contain four multiplets |b, q, q3i, |b+ 1
2 , q �

1
2 , q3i, |b� 1

2 , q �
1
2 , q3i, |b, q � 1, q3i,

where q3 = �q...q, is the spin Sz
. It is also explained in Rittenberg how di↵erent representations corresponding to

di↵erent values of b, q may or may not have certain multiplets.

There exists two odd operators V±,W±, and two even operators Q±, Q3. The operator V± increases the baryon

number by
1
2 and simultaneously increases/decreases the spin Sz

by
1
2 . The operator W± decreases the baryon number

by
1
2 and simultaneously increase/decrease the spin Sz

by
1
2 . The operator Q± does not change the baryon number

but only increases/decreases the spin Sz
by 1 and Q3 is just measures the Sz

. The relations (3.20 in Rittenberg)

describe how these operators acting on each state generate other states in di↵erent multiplets.

At each edge, the total spin can be either Sz
= ± 1

2 or S = 0. The representation is [
1
2 ,

1
2 ]. It can only contain the

multiplets | 12 ,
1
2 ,mi, |1, 0, 0i. Using (3.20) we obtain the following relations
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with the constraint ↵ 1
2
� 1

2
= 1 and the operators acting on the other states yielding zeros.

The irreducible representation of [
1
2 ,

1
2 ] ⌦ [

1
2 ,

1
2 ] is [1, 1] � [

3
2 ,

1
2 ]. [1, 1] contains the multiplets |1, 1,mi, | 32 ,

1
2 ,mi.

[
3
2 ,

1
2 ] contains the multiplets | 32 ,

1
2 ,mi, |2, 0, 0i, |1, 0, 0i.

Using (3.20) we obtain the following relations for [1, 1]
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with the constraint ↵1�1 = 1 and the operators acting on the other states yielding zeros.

Odd operators:                increase and decrease the 
baryon number by    resp.    operators increase and 
decrease spin       by   .  

In this note we look at the irreducible representation of the 9 states obtained from
Bethe solution.

In this note I am not going to summarize the Bethe construction of the 9 states, but I will only describe the obtained

states and construct irreducible representations.

From the Bethe solution we have 9 states in the regime where both the impurities are in their respective YSR

regimes. In this regime, we can also specify the local spin quantum numbers. This is possible because we know

whether each impurity is screened or unscreened and also the spin of the unscreened impurity based on the boundary

Bethe roots describing each state.

1) There are four states in which both the impurities are unscreened.

2) There are four states in which one impurity is screened and the other is unscreened.

3) There is one state in which both the impurities are screened.

The algebra corresponding to these states is SPL(2, 1). There exists a baryon number b and total spin quantum

number q which can be used to specify a representation [b, q].

Each representation [b, q] may contain four multiplets |b, q, q3i, |b+ 1
2 , q �

1
2 , q3i, |b� 1

2 , q �
1
2 , q3i, |b, q � 1, q3i,

where q3 = �q...q, is the spin Sz
. It is also explained in Rittenberg how di↵erent representations corresponding to

di↵erent values of b, q may or may not have certain multiplets.

There exists two odd operators V±,W±, and two even operators Q±, Q3. The operator V± increases the baryon

number by
1
2 and simultaneously increases/decreases the spin Sz

by
1
2 . The operator W± decreases the baryon number

by
1
2 and simultaneously increase/decrease the spin Sz

by
1
2 . The operator Q± does not change the baryon number

but only increases/decreases the spin Sz
by 1 and Q3 is just measures the Sz

. The relations (3.20 in Rittenberg)

describe how these operators acting on each state generate other states in di↵erent multiplets.

At each edge, the total spin can be either Sz
= ± 1

2 or S = 0. The representation is [
1
2 ,

1
2 ]. It can only contain the

multiplets | 12 ,
1
2 ,mi, |1, 0, 0i. Using (3.20) we obtain the following relations

Q+|
1

2
,
1

2
,�1

2
i = |1

2
,
1

2
,
1

2
i, Q�|

1

2
,
1

2
,
1

2
i = |1

2
,
1

2
,�1

2
i (1)

V+|
1

2
,
1

2
,�1

2
i = ↵ 1

2
|1, 0, 0i, V�|

1

2
,
1

2
,
1

2
i = �↵ 1

2
|1, 0, 0i, W+|1, 0, 0i = � 1

2
|1
2
,
1

2
,
1

2
i W�|1, 0, 0i = � 1

2
|1
2
,
1

2
,�1

2
i (2)

with the constraint ↵ 1
2
� 1

2
= 1 and the operators acting on the other states yielding zeros.

The irreducible representation of [
1
2 ,

1
2 ] ⌦ [

1
2 ,

1
2 ] is [1, 1] � [

3
2 ,

1
2 ]. [1, 1] contains the multiplets |1, 1,mi, | 32 ,

1
2 ,mi.

[
3
2 ,

1
2 ] contains the multiplets | 32 ,

1
2 ,mi, |2, 0, 0i, |1, 0, 0i.

Using (3.20) we obtain the following relations for [1, 1]
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with the constraint ↵1�1 = 1 and the operators acting on the other states yielding zeros.

In this note we look at the irreducible representation of the 9 states obtained from
Bethe solution.

In this note I am not going to summarize the Bethe construction of the 9 states, but I will only describe the obtained

states and construct irreducible representations.

From the Bethe solution we have 9 states in the regime where both the impurities are in their respective YSR

regimes. In this regime, we can also specify the local spin quantum numbers. This is possible because we know

whether each impurity is screened or unscreened and also the spin of the unscreened impurity based on the boundary

Bethe roots describing each state.

1) There are four states in which both the impurities are unscreened.

2) There are four states in which one impurity is screened and the other is unscreened.

3) There is one state in which both the impurities are screened.

The algebra corresponding to these states is SPL(2, 1). There exists a baryon number b and total spin quantum

number q which can be used to specify a representation [b, q].

Each representation [b, q] may contain four multiplets |b, q, q3i, |b+ 1
2 , q �

1
2 , q3i, |b� 1

2 , q �
1
2 , q3i, |b, q � 1, q3i,

where q3 = �q...q, is the spin Sz
. It is also explained in Rittenberg how di↵erent representations corresponding to

di↵erent values of b, q may or may not have certain multiplets.

There exists two odd operators V±,W±, and two even operators Q±, Q3. The operator V± increases the baryon

number by
1
2 and simultaneously increases/decreases the spin Sz

by
1
2 . The operator W± decreases the baryon number

by
1
2 and simultaneously increase/decrease the spin Sz

by
1
2 . The operator Q± does not change the baryon number

but only increases/decreases the spin Sz
by 1 and Q3 is just measures the Sz

. The relations (3.20 in Rittenberg)

describe how these operators acting on each state generate other states in di↵erent multiplets.

At each edge, the total spin can be either Sz
= ± 1

2 or S = 0. The representation is [
1
2 ,

1
2 ]. It can only contain the

multiplets | 12 ,
1
2 ,mi, |1, 0, 0i. Using (3.20) we obtain the following relations
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with the constraint ↵ 1
2
� 1

2
= 1 and the operators acting on the other states yielding zeros.

The irreducible representation of [
1
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1
2 ] ⌦ [

1
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1
2 ] is [1, 1] � [

3
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1
2 ]. [1, 1] contains the multiplets |1, 1,mi, | 32 ,

1
2 ,mi.

[
3
2 ,

1
2 ] contains the multiplets | 32 ,

1
2 ,mi, |2, 0, 0i, |1, 0, 0i.

Using (3.20) we obtain the following relations for [1, 1]
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with the constraint ↵1�1 = 1 and the operators acting on the other states yielding zeros.

Even operators:               are the usual spin operators.  

In this note we look at the irreducible representation of the 9 states obtained from
Bethe solution.

In this note I am not going to summarize the Bethe construction of the 9 states, but I will only describe the obtained

states and construct irreducible representations.

From the Bethe solution we have 9 states in the regime where both the impurities are in their respective YSR

regimes. In this regime, we can also specify the local spin quantum numbers. This is possible because we know

whether each impurity is screened or unscreened and also the spin of the unscreened impurity based on the boundary

Bethe roots describing each state.

1) There are four states in which both the impurities are unscreened.

2) There are four states in which one impurity is screened and the other is unscreened.

3) There is one state in which both the impurities are screened.

The algebra corresponding to these states is SPL(2, 1). There exists a baryon number b and total spin quantum

number q which can be used to specify a representation [b, q].

Each representation [b, q] may contain four multiplets |b, q, q3i, |b+ 1
2 , q �

1
2 , q3i, |b� 1

2 , q �
1
2 , q3i, |b, q � 1, q3i,

where q3 = �q...q, is the spin Sz
. It is also explained in Rittenberg how di↵erent representations corresponding to

di↵erent values of b, q may or may not have certain multiplets.

There exists two odd operators V±,W±, and two even operators Q±, Q3. The operator V± increases the baryon

number by
1
2 and simultaneously increases/decreases the spin Sz

by
1
2 . The operator W± decreases the baryon number

by
1
2 and simultaneously increase/decrease the spin Sz

by
1
2 . The operator Q± does not change the baryon number

but only increases/decreases the spin Sz
by 1 and Q3 is just measures the Sz

. The relations (3.20 in Rittenberg)

describe how these operators acting on each state generate other states in di↵erent multiplets.

At each edge, the total spin can be either Sz
= ± 1

2 or S = 0. The representation is [
1
2 ,

1
2 ]. It can only contain the

multiplets | 12 ,
1
2 ,mi, |1, 0, 0i. Using (3.20) we obtain the following relations
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with the constraint ↵ 1
2
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= 1 and the operators acting on the other states yielding zeros.

The irreducible representation of [
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with the constraint ↵1�1 = 1 and the operators acting on the other states yielding zeros.

In this note we look at the irreducible representation of the 9 states obtained from
Bethe solution.

In this note I am not going to summarize the Bethe construction of the 9 states, but I will only describe the obtained
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regimes. In this regime, we can also specify the local spin quantum numbers. This is possible because we know
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3) There is one state in which both the impurities are screened.

The algebra corresponding to these states is SPL(2, 1). There exists a baryon number b and total spin quantum
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where q3 = �q...q, is the spin Sz
. It is also explained in Rittenberg how di↵erent representations corresponding to

di↵erent values of b, q may or may not have certain multiplets.
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by 1 and Q3 is just measures the Sz
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describe how these operators acting on each state generate other states in di↵erent multiplets.

At each edge, the total spin can be either Sz
= ± 1
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with the constraint ↵1�1 = 1 and the operators acting on the other states yielding zeros.
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with the constraint ↵1�1 = 1 and the operators acting on the other states yielding zeros.

In this note we look at the irreducible representation of the 9 states obtained from
Bethe solution.

In this note I am not going to summarize the Bethe construction of the 9 states, but I will only describe the obtained

states and construct irreducible representations.

From the Bethe solution we have 9 states in the regime where both the impurities are in their respective YSR

regimes. In this regime, we can also specify the local spin quantum numbers. This is possible because we know

whether each impurity is screened or unscreened and also the spin of the unscreened impurity based on the boundary

Bethe roots describing each state.

1) There are four states in which both the impurities are unscreened.

2) There are four states in which one impurity is screened and the other is unscreened.

3) There is one state in which both the impurities are screened.

The algebra corresponding to these states is SPL(2, 1). There exists a baryon number b and total spin quantum

number q which can be used to specify a representation [b, q].

Each representation [b, q] may contain four multiplets |b, q, q3i, |b+ 1
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2 , q3i, |b� 1

2 , q �
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where q3 = �q...q, is the spin Sz
. It is also explained in Rittenberg how di↵erent representations corresponding to

di↵erent values of b, q may or may not have certain multiplets.

There exists two odd operators V±,W±, and two even operators Q±, Q3. The operator V± increases the baryon

number by
1
2 and simultaneously increases/decreases the spin Sz

by
1
2 . The operator W± decreases the baryon number

by
1
2 and simultaneously increase/decrease the spin Sz

by
1
2 . The operator Q± does not change the baryon number

but only increases/decreases the spin Sz
by 1 and Q3 is just measures the Sz

. The relations (3.20 in Rittenberg)

describe how these operators acting on each state generate other states in di↵erent multiplets.

At each edge, the total spin can be either Sz
= ± 1

2 or S = 0. The representation is [
1
2 ,

1
2 ]. It can only contain the

multiplets | 12 ,
1
2 ,mi, |1, 0, 0i. Using (3.20) we obtain the following relations
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with the constraint ↵1�1 = 1 and the operators acting on the other states yielding zeros.
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Nine states in the YSR-YSR regime: 
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At each edge we have the following states: 
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Irreducible representations:  
Total fermionic parity is even or odd corresponding to 
total baryon number being integer or half odd integer 
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Both impurities screened: 

Both impurities unscreened: 

One impurity is screened and the other is unscreened: 



Reduce edge symmetry:                                                            
- Apply a magnetic field to the impurities at the edge 	

•  Obtain	SC		(in	the	SSS	-	Spin	Singlet	SC	phase)	with	magnetic	fields	at	the	edges	

•  	Fractionalized																			edge	modes	will	appear	
						-	The	SSS		SC	with	twisted	BC	at	the	edge																				
	
		
											is	dual		to		the	SC	in	the		STS	(Spin		Triplet	SC)		phase		

	
																																																																	SSS	–Hamiltonian													STS	-	Hamiltonian	
•  The		STS	Hamiltonian	is	topological,	with	fractionalized	spin	edge	modes									and		Majorana	
Algebra																												Keselman,	Berg		‘15	–’18,						Pasnoori,	Andrei,	Azaria	‘20			
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The Hilbert space breaks into four towers. Each labelled  
by local fermionic parity quantum numbers 

Local fractional spin quantum numbers exist: 

7

nice and consistent picture emerges in which, phases Aj

and Bj can be understood in terms of e↵ective boundary
Hamiltonians constructed from bound-states localized at
the ends of the system. In the Aj phases the bound
state structure is exhausted by fractional spin-1/4 at the
two edges exactly as at the topological fixed point. In
the Bj phases the spin states at the ends remain un-
fractionalized, i.e. they are spin-1/2 localized at either
the left or right edge.

1. Fractionalized Region A

As mentioned above, the presence of mid-gap states
has the consequence that the system is capable of ab-
sorbing added fermions at its edge with an energy cost
smaller than the single particle gap. Consider for defi-
niteness the A1 phase, with mL > 0 and mR > 0, and
ground-state |�1/2i. Consider first adding to the system
a fermion of spin " at the left and/or the right boundary
by acting with the bare fermion operators  †

"(x ' �L/2)

and/or  †
"(x ' +L/2) on the ground-state. In the large

L limit we expect the following overlaps

 †
"(x ' +

L

2
)|�

1

2
i ! |0i✏0

L
,

 †
"(x ' �

L

2
)|�
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i ! |0i✏0

R
,

 †
"(x ' �

L

2
) †

"(x ' +
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2
)|�

1

2
i ! |+

1

2
i. (17)

These processes would cost, in the L ! 1 limit, the
energies mR < m, mL < m and mL + mR < 2m re-
spectively. One may, similarly, further consider adding
or removing a fermion with spin # or remove a fermion
with a spin " at either edges by acting on the states (14)
with the operators  †

#(x ' ±L/2) and  "#(x ' ±L/2).
Up to the charging energy, which is zero in the thermo-
dynamical limit, one may then easily convince ourselves
that all these processes can be reproduced by introducing
fermion operators a†

L,R, such that  †
"(x ' ±L/2) ⇠ a†

L,R
and  †

#(x ' ±L/2) ⇠ aL,R, which act on the states (14)
as

a†
L,R|�

1

2
i ⌘ |0i✏0

R,L
, a†

La†
R|�

1

2
i ⌘ |+

1

2
i, (18)

with aL,R|� 1/2i = 0. The operators a†
L,R (aL,R) create

(destroy) a spin 1/2 at the left and right boundaries at
the cost of the mid-gap energies mL,R. From the Bethe
Ansatz perspective, acting with aL,R on the state |+1/2i
is equivalent to adding the boundary strings �✏

0
L

and

�✏
0
R

to the Sz = +1/2 state. Hence the fermion oper-

ators aL,R actually correspond to genuine bound-states
modes. One may repeat the same arguments for any of
the Aj phases with the same conclusions apart from the
fact that the mid-gap energies mL,R may now also be

negative. One may write down the e↵ective low-energy
Hamiltonian and spin operator acting on the states (14)
in terms of the boundary bound-state modes

hB � E� 1
2

= mLa†
LaL + mRa†

RaR

Sz =
1

2
(a†

LaL + a†
RaR � 1). (19)

The above Hamiltonian describes all Aj phases in the

region �1 < ✏
0

L,R < 1 in which the mid-gaps range in
the interval �m < mL,R < m. It reproduces all possible
ground-states and mid-gap states (14) in all the Aj=1,...,4

phases (see table (II)) as well as the boundary phase tran-
sition lines between them which are given by mL,R = 0.
We shall now further assume that the operators aL,R

commute, in the thermodynamical limit, with the Hamil-
tonian (1), i.e: [aL,R, H] = 0. This statement implies
that the four states (14) generate four orthogonal tow-
ers of excited states that span the whole Hilbert space.
A fact which is consistent with the Bethe Ansatz results.
These four towers are labelled by local, i.e. left and right,
fermionic parity quantum numbers (PL,PR) = (±1,±1)
where

PL,R ⌘ �z
L,R = 2a†

L,RaL,R � 1. (20)

With these definitions, the total fermion parity P =
(�1)N = �PLPR. We list below in the Table IV
the fermion parities of the four towers of states gener-
ated upon the four states (14). The above considera-

TABLE IV: Local vs total fermionic parities of the low-energy
states.

States |� 1
2 i |0i

✏
0
L

|0i
✏
0
R

|� 1
2 i

(PL,PR) (+1,+1) (�1,+1) (+1,�1) (�1,�1)

P = �PLPR �1 +1 +1 �1

tions stems from the fractionalization of the Z2 group
(2) between the two edges, i.e: Z2 = Z2,L ⌦ Z2,R
where Z2,L,R = {1, �x

L,R}. The generators �x
L,R are de-

fined so that they reverse the local fermion parity PL,R
of the states (14) and express in terms of the bound-
states modes as �x

L,R = (a†
L,R + aL,R). Together with

�y
L,R = �i(a†

L,R � aL,R), �x
L,R, �y

L,R are the four Ma-
jorana modes, localized at the ends of the system, as-
sociated with the low-energy excitations. Away from
the topological fixed point, i.e. when ✏

0

L,R 6= 0, they

are gapped excitations and it is only when ✏
0

L,R ! 0

that they become the ZEM of the topological SSS-\OBC
phase. As we shall now see, the above fractionaliza-
tion of the Z2 symmetry implies the existence of frac-
tional spin-1/4 localized at the two ends of the system.
Indeed, in a system where the total number of parti-
cles N and the total spin Sz are both conserved the to-
tal fermion parity P = e�i2⇡Sz

. We may therefore de-
fine fractional spin- 14 operators Sz

L,R = 1
4�z

L,R such that

7

nice and consistent picture emerges in which, phases Aj

and Bj can be understood in terms of e↵ective boundary
Hamiltonians constructed from bound-states localized at
the ends of the system. In the Aj phases the bound
state structure is exhausted by fractional spin-1/4 at the
two edges exactly as at the topological fixed point. In
the Bj phases the spin states at the ends remain un-
fractionalized, i.e. they are spin-1/2 localized at either
the left or right edge.

1. Fractionalized Region A

As mentioned above, the presence of mid-gap states
has the consequence that the system is capable of ab-
sorbing added fermions at its edge with an energy cost
smaller than the single particle gap. Consider for defi-
niteness the A1 phase, with mL > 0 and mR > 0, and
ground-state |�1/2i. Consider first adding to the system
a fermion of spin " at the left and/or the right boundary
by acting with the bare fermion operators  †

"(x ' �L/2)

and/or  †
"(x ' +L/2) on the ground-state. In the large

L limit we expect the following overlaps

 †
"(x ' +

L

2
)|�

1

2
i ! |0i✏0

L
,

 †
"(x ' �

L

2
)|�

1

2
i ! |0i✏0

R
,

 †
"(x ' �

L

2
) †

"(x ' +
L

2
)|�

1

2
i ! |+

1

2
i. (17)

These processes would cost, in the L ! 1 limit, the
energies mR < m, mL < m and mL + mR < 2m re-
spectively. One may, similarly, further consider adding
or removing a fermion with spin # or remove a fermion
with a spin " at either edges by acting on the states (14)
with the operators  †

#(x ' ±L/2) and  "#(x ' ±L/2).
Up to the charging energy, which is zero in the thermo-
dynamical limit, one may then easily convince ourselves
that all these processes can be reproduced by introducing
fermion operators a†

L,R, such that  †
"(x ' ±L/2) ⇠ a†

L,R
and  †

#(x ' ±L/2) ⇠ aL,R, which act on the states (14)
as

a†
L,R|�

1

2
i ⌘ |0i✏0

R,L
, a†

La†
R|�

1

2
i ⌘ |+

1

2
i, (18)

with aL,R|� 1/2i = 0. The operators a†
L,R (aL,R) create

(destroy) a spin 1/2 at the left and right boundaries at
the cost of the mid-gap energies mL,R. From the Bethe
Ansatz perspective, acting with aL,R on the state |+1/2i
is equivalent to adding the boundary strings �✏

0
L

and

�✏
0
R

to the Sz = +1/2 state. Hence the fermion oper-

ators aL,R actually correspond to genuine bound-states
modes. One may repeat the same arguments for any of
the Aj phases with the same conclusions apart from the
fact that the mid-gap energies mL,R may now also be

negative. One may write down the e↵ective low-energy
Hamiltonian and spin operator acting on the states (14)
in terms of the boundary bound-state modes

hB � E� 1
2

= mLa†
LaL + mRa†

RaR

Sz =
1

2
(a†

LaL + a†
RaR � 1). (19)

The above Hamiltonian describes all Aj phases in the

region �1 < ✏
0

L,R < 1 in which the mid-gaps range in
the interval �m < mL,R < m. It reproduces all possible
ground-states and mid-gap states (14) in all the Aj=1,...,4

phases (see table (II)) as well as the boundary phase tran-
sition lines between them which are given by mL,R = 0.
We shall now further assume that the operators aL,R

commute, in the thermodynamical limit, with the Hamil-
tonian (1), i.e: [aL,R, H] = 0. This statement implies
that the four states (14) generate four orthogonal tow-
ers of excited states that span the whole Hilbert space.
A fact which is consistent with the Bethe Ansatz results.
These four towers are labelled by local, i.e. left and right,
fermionic parity quantum numbers (PL,PR) = (±1,±1)
where

PL,R ⌘ �z
L,R = 2a†

L,RaL,R � 1. (20)

With these definitions, the total fermion parity P =
(�1)N = �PLPR. We list below in the Table IV
the fermion parities of the four towers of states gener-
ated upon the four states (14). The above considera-

TABLE IV: Local vs total fermionic parities of the low-energy
states.

States |� 1
2 i |0i

✏
0
L

|0i
✏
0
R

|� 1
2 i

(PL,PR) (+1,+1) (�1,+1) (+1,�1) (�1,�1)

P = �PLPR �1 +1 +1 �1

tions stems from the fractionalization of the Z2 group
(2) between the two edges, i.e: Z2 = Z2,L ⌦ Z2,R
where Z2,L,R = {1, �x

L,R}. The generators �x
L,R are de-

fined so that they reverse the local fermion parity PL,R
of the states (14) and express in terms of the bound-
states modes as �x

L,R = (a†
L,R + aL,R). Together with

�y
L,R = �i(a†

L,R � aL,R), �x
L,R, �y

L,R are the four Ma-
jorana modes, localized at the ends of the system, as-
sociated with the low-energy excitations. Away from
the topological fixed point, i.e. when ✏

0

L,R 6= 0, they

are gapped excitations and it is only when ✏
0

L,R ! 0

that they become the ZEM of the topological SSS-\OBC
phase. As we shall now see, the above fractionaliza-
tion of the Z2 symmetry implies the existence of frac-
tional spin-1/4 localized at the two ends of the system.
Indeed, in a system where the total number of parti-
cles N and the total spin Sz are both conserved the to-
tal fermion parity P = e�i2⇡Sz

. We may therefore de-
fine fractional spin- 14 operators Sz

L,R = 1
4�z

L,R such that

8

PL,R ⌘ �iei2⇡S
z
L,R and Sz = Sz

L + Sz
R. These opera-

tors act on spin- 14 states localized at the two edges, i.e:
Sz
L,R| ± 1/4iL,R = ±1/4| ± 1/4iL,R, each of which span

a representation of the fractionalized Z2,L,R groups. We
have the correspondence

| ±
1

2
i = | ± 1/4iL ⌦ | ± 1/4iR,

|0i✏0
R

= |� 1/4iL ⌦ |+ 1/4iR,

|0i✏0
L

= |+ 1/4iL ⌦ |� 1/4iR. (21)

In this basis, we can write the low-energy e↵ective Hamil-
tonian acting on the boundary states (19) in the phase
Aj as

hB � E� 1
2

=
1

2
(mL + mR) + hLSz

L + hRSz
R, (22)

where hL,R = 2mL,R are e↵ective magnetic fields acting
on the localized spin-1/4 operators. Both descriptions
(19) and (22) are equivalent and valid in the regime where
�m < mL,R < m. When |✏0L| ! 1 or |✏0R| ! 1, |mL| !
m or |mR| ! m, some of the bound-states cease to exist
and as described in the previous section, when one of
the |✏L,R| > 1 one enters other phases who’s low-energy
descriptions completely change.

2. Un-Fractionalized Region B

In the B phases, i.e when |✏
0

L| < 1 and |✏
0

R| > 1 or
|✏

0

L| > 1 and |✏
0

R| < 1, there still exists one mid-gap state
with energy mL or mR, respectively. The construction
of the low-energy Hamiltonian in these cases proceeds
similarly as for the A phases though the interpretation
of the bound-state modes di↵ers radically. As we shall
see, neither the Z2 group nor the spin fractionalize in
these cases.

Consider first the case where |✏
0

L| < 1 and |✏
0

R| > 1 that
is to say the (B1, B2) and (B5, B6) phases (see Table (II)).
As described in (IVB2) the ground-states in the B1 and
B5 phases are |± 1

2 i and have total spins ± 1
2 respectively.

In the Bethe Ansatz approach, they are obtained starting
from the reference states with either all spin down or up
and contain no boundary strings nor holes.

In the B1 (mL > 0) or B5 (mL < 0) phases one may
add a fermion with spin " or spin # which costs mid-gap
energy |mL| < m. Because of the gap in the bulk, it is
energetically more favorable to add the fermions at one of
the edges. Since the energy cost depends only on the left
twist ✏

0

L we may reasonably assume that the added, " and
#, fermions are localized at the left edge. We are therefore
led to expect the following overlaps:  †

"(x ' �
L
2 )|�

1
2 i !

|0i,  †
#(x ' �

L
2 )| +

1
2 i ! |0i. One may then assume

that there exists fermion operators a†
"(#),L that create a

bound-states corresponding to an accumulation of a spin

±
1
2 localized at the left edge: a†

"(#),L|(⌥) 12 i = |0i. With
this definitions we may write the Hamiltonian and spin
operator for the (B1, B2) phases as

h",L = E� 1
2
+ mL a†

",La",L,

Sz =
1

2
(a†

",La",L � 1), (23)

and those for the (B5, B6) phases

h#,L = E+ 1
2
� mL a†

#,La#,L,

Sz =
1

2
(1� a†

#,La#,L). (24)
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! �Sz and h#,L ! h",L with a†
#,L !

a†
",L, mL ! �mL.
Notice that, in the above description, it is assumed that
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|⌥

1
2 i, the spin is delocalized in the bulk. In this descrip-
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1
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1
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1

2
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#,La#,L, (25)
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0

",L = E0 + mL a†
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1

2
a†
",La",L. (26)
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that there exist a bound-state localized at the left bound-
ary corresponding to either the accumulation of a spin
±

1
2 at the left edge.

The case where |✏
0

L| < 1 and |✏
0

R| > 1 is simply ob-
tained by exchanging the left and right edges L ! R.
The Hamiltonians and spin operators for the (B3, B4)
and (B7, B8) phases take the forms of Eqs.(23,24), or al-
ternatively Eqs.(25,26), upon changing a†

#,",L ! a†
#,",R.

2

P = (�1)N = �PLPR

�
x
L,R = (a†L,R + aL,R)

�
y
L,R = �i(a†L,R � aL,R)

�
x
L,R,�

y
L,R

{�µ
r ,�

⌫
r0} = 2�rr0�

µ⌫
, (µ, ⌫) = (x, y), (r, r0) = (L,R)
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nice and consistent picture emerges in which, phases Aj

and Bj can be understood in terms of e↵ective boundary
Hamiltonians constructed from bound-states localized at
the ends of the system. In the Aj phases the bound
state structure is exhausted by fractional spin-1/4 at the
two edges exactly as at the topological fixed point. In
the Bj phases the spin states at the ends remain un-
fractionalized, i.e. they are spin-1/2 localized at either
the left or right edge.

1. Fractionalized Region A

As mentioned above, the presence of mid-gap states
has the consequence that the system is capable of ab-
sorbing added fermions at its edge with an energy cost
smaller than the single particle gap. Consider for defi-
niteness the A1 phase, with mL > 0 and mR > 0, and
ground-state |�1/2i. Consider first adding to the system
a fermion of spin " at the left and/or the right boundary
by acting with the bare fermion operators  †

"(x ' �L/2)

and/or  †
"(x ' +L/2) on the ground-state. In the large

L limit we expect the following overlaps

 †
"(x ' +

L

2
)|�

1

2
i ! |0i✏0

L
,

 †
"(x ' �

L

2
)|�

1

2
i ! |0i✏0

R
,

 †
"(x ' �

L

2
) †

"(x ' +
L

2
)|�

1

2
i ! |+

1

2
i. (17)

These processes would cost, in the L ! 1 limit, the
energies mR < m, mL < m and mL + mR < 2m re-
spectively. One may, similarly, further consider adding
or removing a fermion with spin # or remove a fermion
with a spin " at either edges by acting on the states (14)
with the operators  †

#(x ' ±L/2) and  "#(x ' ±L/2).
Up to the charging energy, which is zero in the thermo-
dynamical limit, one may then easily convince ourselves
that all these processes can be reproduced by introducing
fermion operators a†

L,R, such that  †
"(x ' ±L/2) ⇠ a†

L,R
and  †

#(x ' ±L/2) ⇠ aL,R, which act on the states (14)
as

a†
L,R|�

1

2
i ⌘ |0i✏0

R,L
, a†

La†
R|�

1

2
i ⌘ |+

1

2
i, (18)

with aL,R|� 1/2i = 0. The operators a†
L,R (aL,R) create

(destroy) a spin 1/2 at the left and right boundaries at
the cost of the mid-gap energies mL,R. From the Bethe
Ansatz perspective, acting with aL,R on the state |+1/2i
is equivalent to adding the boundary strings �✏

0
L

and

�✏
0
R

to the Sz = +1/2 state. Hence the fermion oper-

ators aL,R actually correspond to genuine bound-states
modes. One may repeat the same arguments for any of
the Aj phases with the same conclusions apart from the
fact that the mid-gap energies mL,R may now also be

negative. One may write down the e↵ective low-energy
Hamiltonian and spin operator acting on the states (14)
in terms of the boundary bound-state modes

hB � E� 1
2

= mLa†
LaL + mRa†

RaR

Sz =
1

2
(a†

LaL + a†
RaR � 1). (19)

The above Hamiltonian describes all Aj phases in the

region �1 < ✏
0

L,R < 1 in which the mid-gaps range in
the interval �m < mL,R < m. It reproduces all possible
ground-states and mid-gap states (14) in all the Aj=1,...,4

phases (see table (II)) as well as the boundary phase tran-
sition lines between them which are given by mL,R = 0.
We shall now further assume that the operators aL,R

commute, in the thermodynamical limit, with the Hamil-
tonian (1), i.e: [aL,R, H] = 0. This statement implies
that the four states (14) generate four orthogonal tow-
ers of excited states that span the whole Hilbert space.
A fact which is consistent with the Bethe Ansatz results.
These four towers are labelled by local, i.e. left and right,
fermionic parity quantum numbers (PL,PR) = (±1,±1)
where

PL,R ⌘ �z
L,R = 2a†

L,RaL,R � 1. (20)

With these definitions, the total fermion parity P =
(�1)N = �PLPR. We list below in the Table IV
the fermion parities of the four towers of states gener-
ated upon the four states (14). The above considera-

TABLE IV: Local vs total fermionic parities of the low-energy
states.

States |� 1
2 i |0i

✏
0
L

|0i
✏
0
R

|� 1
2 i

(PL,PR) (+1,+1) (�1,+1) (+1,�1) (�1,�1)

P = �PLPR �1 +1 +1 �1

tions stems from the fractionalization of the Z2 group
(2) between the two edges, i.e: Z2 = Z2,L ⌦ Z2,R
where Z2,L,R = {1, �x

L,R}. The generators �x
L,R are de-

fined so that they reverse the local fermion parity PL,R
of the states (14) and express in terms of the bound-
states modes as �x

L,R = (a†
L,R + aL,R). Together with

�y
L,R = �i(a†

L,R � aL,R), �x
L,R, �y

L,R are the four Ma-
jorana modes, localized at the ends of the system, as-
sociated with the low-energy excitations. Away from
the topological fixed point, i.e. when ✏

0

L,R 6= 0, they

are gapped excitations and it is only when ✏
0

L,R ! 0

that they become the ZEM of the topological SSS-\OBC
phase. As we shall now see, the above fractionaliza-
tion of the Z2 symmetry implies the existence of frac-
tional spin-1/4 localized at the two ends of the system.
Indeed, in a system where the total number of parti-
cles N and the total spin Sz are both conserved the to-
tal fermion parity P = e�i2⇡Sz

. We may therefore de-
fine fractional spin- 14 operators Sz

L,R = 1
4�z

L,R such that
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FIG. 4: DMRG results for the model described by Eq. 16
in absence of spin-orbit coupling, v = 0. A system of length
L = 100 sites with model parameters t = 1, U = �1 is
considered. (a) Expectation value of the ẑ component of the
spin along the chain in the ground states of the system for even
and odd number of particles. The blue and green solid curves
correspond to the two degenerate ground states of a system
with N = 20 particles and zero net spin. Accumulation of
spin at the edge of the system is observed, with the integrated
spin in the left (right) half of the system being ± 1

4 . The red
dashed curve corresponds to the ground state of a system
with N = 21 particles and total spin S = + 1

2 . Due to the
non-zero spin localized at the edge, and power-law decaying
spin density wave correlations expected in a phase with ��

pinned to ⇡
2 (see Eq. 5), a spin density wave pattern is formed

in the bulk. (b) Matrix elements for the transition between
each of the two ground states with N = 20 particles and
the ground state with N = 21 particles by adding a spin up
particle at a position i along the lattice. As can be seen, the
matrix elements are non-zero only at either end of the system
depending on the initial state. This is in agreement with the
existence of low energy single particle states at the edges of
the system.

not resolve the expected exponential splitting between
the two lowest energy states; this is presumably because
the correlation length is much smaller than the system
size. The two states found by DMRG are the minimally
entangled states with an integrated spin of hSzi = ± 1

4
near the two edges. The configuration of the ẑ com-
ponent of the spin in the two ground states is shown in
Fig. 4a. The topological phase is expected to have power-
law decaying spin density wave correlations in the bulk
(see Eq. 5 for �� pinned to ⇡

2 ). As a result, the spin
polarization at the edge induces a spin density wave that
decays as a power law into the system, clearly visible in
the figure.

We then obtain the lowest energy state of the sys-
tem with an extra spin up particle. Let us denote it
by |2N + 1i. We calculate the matrix elements between
each of the states with an even number of particles, |2Ni,
to the state |2N + 1i by adding a spin up particle at a

position i along the lattice,
���h2N + 1| c†i," |2Ni

��� (see Fig.

4b). We find that the matrix elements are non-zero only
at either end of the system, depending on the initial state.
This is in agreement with the existence of a low energy
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FIG. 5: Pair binding energy (see Eq. 7) as function of
system size for the model Hamiltonian given in Eq. 16 with
parameters t = 1, U = �1, spin-orbit couplings v = 0 and
v = 1, and fixed density n = 2N

L = 0.2. The red solid lines
are fits to parabolic curves. For v = 0 the system is in the
topological phase and the pair binding energy tends to zero
as 1/L ! 0. For v = 1 the system is in the trivial phase and
EB tends to a finite constant equal to the single particle gap
in the system.

single particle state at the edge of the system.

In addition we calculated the pair binding energy (de-
fined in Eq. 7 above), as function of system size, keeping
the density of particles fixed at n = 0.2 (see Fig. 5). We
find that it indeed tends to zero as the system becomes
large, as expected in the topological phase. This once
again indicates the existence of a low energy edge state,
with an energy going to zero in the thermodynamic limit.

For non-zero v, Sz is no longer conserved. More-
over, conservation of Sz (or any other spin component)
mod 2 is also broken, ensuring no residual symmetries
are present. However, we find that the system remains in
the topological phase for a finite range of spin-orbit cou-
pling strength, v < vc. To see this, we perform finite-size
scaling of the energy gap (defined as the energy di↵er-
ence between the first excited state and the ground state
in an even particle number sector); keeping the density
constant, we choose system sizes for which the number of
particles is even. We find the gap to be exponentially de-
creasing with system size, as expected in the topological
phase. For each spin-orbit coupling strength, we extract
the inverse correlation length in the system by fitting
the energy gap, �E, vs. system size, L, to the form
�E = 1

Le
�L/⇠. We find that the correlation length ⇠

diverges as v approaches vc ⇡ 0.22 (see Fig. 6).

For v & vc we calculate the pair binding energy, EB ,
for di↵erent system sizes. As can be seen from Fig. 6, the
binding energy tends to a non-zero value that increases
with v, as the system size is increased (see also Fig. 5 for
EB as function of system size for v = 1). This indicates

A.	Keselman	and	E.	Berg,	Phys.	Rev.	B	91,	235309	(2015).		



Majorana ZEM 
•  Hilbert space breaks into four towers labelled by local fermionic parity 

quantum numbers: 

 

•  Conservation of total fermionic parity and existence of local fermionic 
parities leads to entanglement of the edges 

 

 

 

 

 

 

•  Majorana operators change the local fermionic parities and hence 
map states corresponding to different towers : 
 

•  		Reduce	the	magnetic	field,	the	impurity	spin	fluctuates	–	
							interplay		Majorana	and	Kondo	spin?	
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Reduce Symmetry: 
- Apply a magnetic field to the impurities at the edges 

• Break the SU(2) symmetry at the edges by applying strong magnetic 
fields to the magnetic impurities 

•  Effective boundary Hamiltonian :   using 

• Bound state operators commute with the Hamiltonian  
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 Two impurity model 

• Quantum fluctuations at the edges lead to SPT phase: entanglement 
between the two edges 

 
•  Preserving SU(2) symmetry at the edges leads to enhancement of the 

symmetry at the boundaries: SUSY 

• Breaking the SU(2) symmetry by applying strong magnetic fields 
reduces SUSY algebra to Clifford algebra: Majorana modes 



Conclusions & Outlook 

•  YSR	states	are	destroyed	by	quantum	fluctuations	
•  Facilitate	1st	order	QPT	–	semiclassical	description	

• Nature	of	the	Kondo	cloud		
• Unscreened	dynamical	scale	
• Massive	Thirring	–	shrinking	of	YSR	region		
• Multiple	impurities,	Quench	dynamics,	other	SCs			
	

	 	 	 		



• Quantum	fluctuations	at	the	edges	lead	to	SPT	phase:	entanglement	
between	the	two	edges	

	
• Preserving	SU(2)	symmetry	at	the	edges	leads	to	enhancement	of	the	
symmetry	at	the	boundaries:	SUSY	

• Breaking	the	SU(2)	symmetry	by	applying	strong	magnetic	fields	
reduces	SUSY	algebra	to	Clifford	algebra:	Majorana	modes	


