

An Atomtronics Spin Field Effect Transistor

David Wilkowski

Benasque2022

Issues with solid-state devices

- Insufficient spin-orbit coupling
- Insufficient polarisation of the input/output spin injection current
- Depolarization in gate region due to scattering

Atomtronics solutions

Spin-dependent atom-light coupling

Optical pumping

Diluted gases or BEC

Spin-FET expected applications:

High integration density, ultrafast switching and low power consumption

 σ_{\perp}

- Atomtronics Datta-Das transistor
 - C. Madasu et *al*, ArXiv 2203.13360 (2022)
- Non-Abelian transformation
 - F. Leroux et *al*, Nat. Comm. **9** 7 (2018)

M. Hasan et *al*, ArXiv:2201.00885 (2022)

Centre for

Quantum Technologies

STIRAP: Stimulated Raman Adiabatic Passage

The atom stays in a dark state i.e. uncoupled to the excited state Full transfer from 3 (spin up) to 1 (spin down) no matter the value of ξ

Review: N. V. Vitanov, et *al.*, RMP **89**, 015006 (2017)

Full transfer similar to the two-level case

STIRAP: Four-State General Case

State |2) is never populated

K. Bergmann's group, Kaiserslautern (De)

Centre for Quantum Technologies

Theory: R. Unanyan et al., Optics comm. 155, 144 (1998) (resolution of the 4-state problem)

J. Y. Vaishnav et *al.*, PRL **101**, 265302 (2008) (Synthetic gauge field)

Experiment (Ne* beam): H. Theuer, et al., Optics Express 4, 77 (1999) (Beam splitter)
F. Vewinger, et al., PRL 91, 213001 (2003) (Coherent state superposition)

Review: N. V. Vitanov, et al., RMP 89, 015006 (2017)

Tripod and Degenerate Dark States

 $\begin{aligned} |\Omega_1| &= \Omega \sin \alpha \cos \beta \\ |\Omega_2| &= \Omega \sin \alpha \sin \beta \\ |\Omega_3| &= \Omega \cos \alpha \end{aligned}$

Centre for Quantum

Technologies

$$\Omega = \sqrt{|\Omega_1|^2 + |\Omega_2|^2 + |\Omega_3|^2}$$

Diagonalization of the Hamiltonian

$$|D_{1}\rangle = \begin{pmatrix} \sin\beta e^{i\Phi_{31}} \\ -\cos\beta e^{i\Phi_{32}} \\ 0 \\ 0 \\ 0 \\ \end{bmatrix} |D_{2}\rangle = \begin{pmatrix} \cos\alpha \cos\beta e^{i\Phi_{32}} \\ \cos\alpha \sin\beta e^{i\Phi_{32}} \\ -\sin\alpha \\ 0 \\ \end{bmatrix}$$

Excited state population is zero
With $\Phi_{ii} = \Phi_{i} - \Phi_{i}$

Bare states 4 Ω_3 Ω Ω_{2} $|1\rangle$ $|2\rangle$ 3 **Dressed states** $|B_1\rangle$ Ε $\downarrow +\hbar\Omega/2$ $|D_2\rangle$ $|D_1\rangle$ 0 $-\hbar\Omega/2$ $|B_2\rangle$

J. Dalibard et *al*, RMP **83** 1523 (2011) J. Ruseckas et *al*, PRL **95** 010404 (2005)

We perform an adiabatic following in $\{|D_1\rangle, |D_2\rangle\}$ subspace

$$|D_1\rangle = \begin{pmatrix} \sin\beta e^{i\Phi_{31}} \\ -\cos\beta e^{i\Phi_{32}} \\ 0 \end{pmatrix} \qquad |D_2\rangle = \begin{pmatrix} \cos\alpha\cos\beta e^{i\Phi_{31}} \\ \cos\alpha\sin\beta e^{i\Phi_{32}} \\ -\sin\alpha \end{pmatrix}$$

Geometric Gauge field: $\vec{A}_{jk} = i\hbar \langle D_j | \vec{\nabla} D_k \rangle$

We get:

$$\vec{A}_{11} = \hbar \left(\cos^2 \beta \vec{\nabla} \Phi_{23} + \sin^2 \beta \vec{\nabla} \Phi_{13} \right)$$

$$\vec{A}_{12} = \hbar \cos \alpha \left(\frac{1}{2} \sin(2\beta) \vec{\nabla} \Phi_{12} - i \vec{\nabla} \beta \right)$$

$$\vec{A}_{22} = \hbar \cos^2 \alpha \left(\cos^2 \beta \vec{\nabla} \Phi_{23} + \sin^2 \beta \vec{\nabla} \Phi_{13} \right)$$

With $\Phi_{ij} = \Phi_i - \Phi_j$

 \vec{A} depends on the variation of the laser relative phases Φ_{ij} and one mixing angle $\beta = \tan^{-1} \frac{|\Omega_2|}{|\Omega_1|}$

$$H = \frac{\left(\vec{p} - \vec{A}\right)^2}{2m} + W \qquad \text{Scalar potential:} \quad W_{jk} = \frac{\hbar^2}{2m} \sum_l \langle \nabla D_j | B_l \rangle \langle B_l | \nabla D_k \rangle$$

DDT Theory

$$\vec{A}_{11} = \hbar \left(\cos^2 \beta \vec{\nabla} \Phi_{23} + \sin^2 \beta \vec{\nabla} \Phi_{13} \right)$$

$$\vec{A}_{12} = \hbar \cos \alpha \left(\frac{1}{2} \sin(2\beta) \vec{\nabla} \Phi_{12} - i \vec{\nabla} \beta \right)$$

$$\vec{A}_{22} = \hbar \cos^2 \alpha \left(\cos^2 \beta \vec{\nabla} \Phi_{23} + \sin^2 \beta \vec{\nabla} \Phi_{13} \right)$$

For $T \ll T_r$ and $\langle p \rangle \approx p_z \gg \hbar k$,

We get: $\vec{A}_{11} = 0$ $\vec{A}_{12} = -i\hbar \cos \alpha \vec{\nabla} \beta$ $\vec{A}_{22} = 0$ Spin

Spin-orbit coupled system

$$H = \frac{\left(\vec{p} - \vec{A}\right)^2}{2m} + W \approx \frac{\vec{p}^2}{2m} - \frac{p_z A_z}{m} \propto p_z \sigma_y$$

Because $p_z \gg \hbar k$: $\left| \left\langle \frac{p_z A_z}{m} \right\rangle \right| \gg \left| \frac{A^2}{2m} + W \right|$

$$A_z = -\hbar \cos\alpha \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \frac{d\beta}{dz}$$

Theory to experiment

For $T \ll T_r$ and $\langle p \rangle \gg \hbar k$,

$$i\hbar \frac{\partial \Psi(r,t)}{\partial t} = -\frac{\hat{p}_z \hat{A}_z}{m} \Psi(r,t)$$

J. Y. Vaishnav et. al., PRL 101, 265302(2008)

Time-depend approach

We pulse the laser beams while the atoms remain at rest in the laboratory frame.

$$\hat{p}_{z}\hat{A}_{z} \equiv -\hbar m \cos \alpha(t) \frac{\partial \beta}{\partial t} \hat{\sigma}_{z}$$

Experimental Sequence

Centre for Quantum

Technologies

Spin Rotation and Filtering

We swap the "1" beam and the "2" beam

Centre for Quantum Technologies

C. Madasu et *al*, ArXiv 2203.13360 (2022)

Sensitivity to Pulse Separation

 Ω_1

 Ω_2

 Ω_3

|3)

 $m_{\rm F} = 9/2$

 $\eta \sigma_t \eta \sigma_t$

 $m_F = 7/2 |e\rangle$

 $m_{\rm F} = 7/2$

 $|2\rangle$

The atomtronics devices control knob is different from standard FET !

Centre for Quantum Technologies

Independent of σ_t , thus of the atomic velocity over a large range (geometric origin)

C. Madasu et *al*, ArXiv 2203.13360 (2022)

- Atomtronics Datta-Das transistor
 - C. Madasu et *al*, ArXiv 2203.13360 (2022)
- Non-Abelian transformation
 - F. Leroux et *al*, Nat. Comm. **9** 7 (2018)

- 2D Zitterbewegung dynamic
 - M. Hasan et *al*, ArXiv:2201.00885 (2022)

Gauge field (Berry's connection):

 $\vec{A}_{11} = \hbar \left(\cos^2 \beta \vec{\nabla} \Phi_{23} + \sin^2 \beta \vec{\nabla} \Phi_{13} \right)$ $\vec{A}_{12} = \hbar \cos \alpha \left(\frac{1}{2} \sin(2\beta) \vec{\nabla} \Phi_{12} - i \vec{\nabla} \beta \right)$ $\vec{A}_{22} = \hbar \cos^2 \alpha \left(\cos^2 \beta \vec{\nabla} \Phi_{23} + \sin^2 \beta \vec{\nabla} \Phi_{13} \right)$

 \vec{A} depends on the variation of the laser relative phases Φ_{ij} and one mixing angle $\beta = \tan^{-1} \frac{|\Omega_2|}{|\Omega_1|}$

Mixing angle \rightarrow one gauge field component \rightarrow Abelian gauge field

Phases \rightarrow all gauge field components \rightarrow non-Abelian gauge field

Non-Abelian gauge field \rightarrow the components of \vec{A} do not commute Closed loop \rightarrow Non-Abelian Berry phase (Wilczek-Zee phase)

Geometric Transformation: Degenerated or Not

$$\begin{split} |\psi(\mathcal{C})\rangle &= e^{i\gamma} |\psi(0)\rangle \\ e^{i\gamma} e^{i\gamma\prime} &= e^{i\gamma\prime} e^{i\gamma} \end{split}$$

Commute (Abelian transformation)

Don't commute (non-Abelian transformation)

 $|\psi(\mathcal{C})\rangle = U|\psi(0)\rangle$

 $UU' \neq U'U$

Path Ordering Operator

$$U = \operatorname{pexp}\left(\frac{i}{\hbar} \oint_{C} A(t) dt\right) \qquad A(t) = \left[i\hbar \left\langle D_{j} \right| \frac{dD_{k}}{dt} \right\rangle\right]$$

C: close loop

 \wp : path ordering operator A(t): Berry connection

F. Wilczek and A. Zee PRL **52**, 2111 (1984)

The time dependence means that the parameters are ramped in a defined temporal order For example:

Don't commute (non-Abelian transformation)

C. Chalony et *al*, PRL **107** 243002 (2011) T. Yang, et *al*, EPJD **69**, 226 (2015) TECHNOLOGICA UNIVERSIT

Geometric Gate: Realization

Centre for Quantum

Technologies

Centre for Duantum Technologies Non-Abelian Transformation: Path-ordering

The result depends on the starting point.

F. Leroux et *al*, Nat. Comm. **9** 3580 (2018)

- Atomtronics Datta-Das transistor
 - C. Madasu et *al*, ArXiv 2203.13360 (2022)
- Non-Abelian transformation
 - F. Leroux et *al*, Nat. Comm. **9** 7 (2018)

M. Hasan et *al*, ArXiv:2201.00885 (2022)

Non-Abelian Gauge Field with Tripod

Tripod scheme on ultracold fermionic strontium gas

• Hamiltonian (Dark state basis)

$$H = \frac{1}{2m} (\boldsymbol{p} - \boldsymbol{A})^2 + W$$

J. Dalibard et *al*, RMP **83** 1523 (2011)

• Commutation

Centre for Quantum Technologies

• Abelian: $[A_x, A_y] = 0$

• Non-Abelian:
$$[A_x, A_y] \neq 0$$

 $\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ &$

Hamiltonian in moving frame at v_0 with laser detuning

$$H = \frac{1}{2m} (\boldsymbol{p} - \boldsymbol{A})^2 + W - \boldsymbol{v}_0 \boldsymbol{A} + \boldsymbol{w}_\delta$$

We choose: $w_{\delta} = -\frac{A^2}{2m} - W + v_0 A$ We get in the moving frame: $H = \frac{p^2}{2m} - \frac{pA}{m}$

Spin-Orbit Coupling (SOC) Hamiltonian

Zitterbewegung: Dual nature interference, particle/anti-particle & position

Zitterbewegung in SOC

R. Gerritsma *et al. Nature* **463** 68 (2010)

L. J. LeBlanc *et al. NJP* **15** 073011 (2013)

Heisenberg picture

 $m\dot{v} = \frac{im}{\hbar}[H, v] = \frac{i}{\hbar m}p \times (A \times A)$ Non-inertial force (non-zero curvature)

Despite [H, p] = 0, $\dot{v} \neq 0$ if $p \neq 0$, and the Gauge field is non-Abelian (even homogenous)

→ 2D anisotropic *Zitterbewegung* effect

Dynamic transverse to p : Spin hall effect

Experimental Sequence

Centre for

Quantum

Technologies

Expectation value of the velocity: $\langle \boldsymbol{v} \rangle / v_r = -(2P_1 + P_2)\hat{x} - P_2\hat{y}$

 v_r : recoil velocity

M. Hasan et *al*, ArXiv:2201.00885 (2022)

 P_1 P_2 P_3

Observation of 2D *Zitterbewegung*

$$m\dot{\boldsymbol{v}} = \frac{im}{\hbar}[H, \boldsymbol{v}] = \frac{i}{\hbar m}\boldsymbol{p} \times (\boldsymbol{A} \times \boldsymbol{A})$$

 $\langle \boldsymbol{p} \rangle \equiv (p_0, \theta_0) \neq 0$ Mean atomic momentum $(\delta_j \neq 0)$

 $\langle \boldsymbol{v} \rangle / v_r = -(2P_1 + P_2)\hat{x} - P_2\hat{y}$

Centre for Quantum Technologies

 $p \equiv (p_0, \theta_0)$ Mean atomic momentum

 $\boldsymbol{v} \equiv (|\boldsymbol{v}|, \eta)$ Mean *Zitterbewegung* velocity

v and **p** are orthogonal in the *xy*-plane

M. Hasan et *al*, ArXiv:2201.00885 (2022)

Amplitude Anisotropy

The amplitude vanishes when the initial pseudo-spin is collinear to the spin texture (eigenstate) M. Hasan et *al*, ArXiv:2201.00885 (2022)

- Datta-Das transistor
 - Velocity-independent spin rotation: like a Stren-Gerlach but not a spin Hall effect
 - Two parameters for the amplitude (source-drain voltage) and the sensitivity (gate-source voltage)
 - Key device for future atomtronics circuits

C. Madasu et *al*, ArXiv 2203.13360 (2022)

- Path sensitivity on a non-Abelian transformation
 - Transformation depends on the starting point
 - Universal geometric single Qubit gate

F. Leroux et *al*, Nat. Comm. **9** 7 (2018)

- 2D Zitterbewegung dynamic
 - Non-Abelian gauge field, without mass (scalar) term
 - Spin Hall effect and amplitude anisotropy

M. Hasan et *al*, ArXiv:2201.00885 (2022)

People & Funding

Christian Miniatura (Majulab)

Frederic Leroux

Mehedi Hasan

Chetan S. Madasu

Frederic Chevy (LKB, ENS, Paris)

Ketan Rathod

Kwong Chang-Chi

Kanhaiya Pandey

Ministry of Education, Singapore

Centre for Quantum Technologies

Thanks to: Riadh Rebhi (CQT), Benoit Gremaud (CPT)