

Flavour Anomalies Hints of new non-universal interactions?

Antonio Pich

IFIC, U. Valencia – CSIC

XLIX International Meeting on Fundamental Physics (IMPF22), Benasque (Spain), 5-10 September 2022

Table of Elementary Particles

A. Pich

Standard Model of the Fundamental Interactions $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$

- **1** Interactions determined by gauge symmetries. Flavour Universality
- **②** Gauge symmetries require all elementary particles to be massless
- **③** Masses generated through the interaction with the Higgs doublet

$$\mathcal{L}_{Y} = -\sum_{jk} \left\{ \left(\bar{u}_{j}, \bar{d}'_{j} \right)_{L} \left[c^{(d)}_{jk} \left(\frac{\phi^{(+)}}{\phi^{(0)}} \right) d'_{kR} + c^{(u)}_{jk} \left(\frac{\phi^{(0)*}}{-\phi^{(-)}} \right) u_{kR} \right] + \left(\bar{\nu}_{j}, \bar{\ell}'_{j} \right)_{L} c^{(l)}_{jk} \left(\frac{\phi^{(+)}}{\phi^{(0)}} \right) \ell'_{kR} \right\}$$

Mass is the only difference among the three fermion families

Standard Model of the Fundamental Interactions $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$

- **1** Interactions determined by gauge symmetries. Flavour Universality
- **②** Gauge symmetries require all elementary particles to be massless
- **③** Masses generated through the interaction with the Higgs doublet

$$\mathcal{L}_{Y} \ = \ - \ \sum_{jk} \left\{ \left(\bar{u}_{j}, \bar{d}'_{j} \right)_{L} \left[c^{(d)}_{jk} \left(\begin{array}{c} \phi^{(+)}_{0} \\ \phi^{(0)} \end{array} \right) d'_{kR} \ + \ c^{(u)}_{jk} \left(\begin{array}{c} \phi^{(0)*}_{0} \\ -\phi^{(-)} \end{array} \right) u_{kR} \right] + \left(\bar{\nu}_{j}, \bar{\ell}'_{j} \right)_{L} c^{(l)}_{jk} \left(\begin{array}{c} \phi^{(+)}_{0} \\ \phi^{(0)} \end{array} \right) \ell'_{kR} \right\}$$

Mass is the only difference among the three fermion families

④ Fermion mass eigenstates \neq weak eigenstates

Flavour Mixing: $d'_i = V_{ij} d_j$, $V^{\dagger} V = V V^{\dagger} = I$ CP violation (if $N_G \ge 3$)

Flavour-Changing Charged Currents

$$\mathcal{L}_{_{\mathrm{CC}}} = -rac{g}{2\sqrt{2}} W^{\dagger}_{\mu} iggl\{ \sum_{ij} ar{u}_i \gamma^{\mu} (1-\gamma_5) V_{ij} d_j + \sum_{ij} ar{
u}_i \gamma^{\mu} (1-\gamma_5) U^{\dagger}_{ij} \ell_j iggr\} + \mathrm{h.c.}$$

Flavour-Conserving Neutral Currents (GIM)

LHCb 2001.10354 ${
m Br}({
m K_S} o \mu^+\mu^-) < 2.1 imes 10^{-10}$ (90% CL)

NO

Successful Description of Flavour & CP

Rare Decays

$$\begin{split} & \mathrm{Br}(K_L^0 \to \mu^+ \mu^-) = 6.8 \times 10^{-9} \\ & \mathrm{Br}(B_s^0 \to \mu^+ \mu^-) = 3.0 \times 10^{-9} \\ & \mathrm{Br}(\bar{b} \to \bar{s}\gamma) = 3.1 \times 10^{-4} \end{split}$$

CKM Unitarity

A. Pich

Flavour Anomalies

Successful Description of Flavour & CP

Rare Decays

Sensitivity to (virtual) heavy scales

CKM Unitarity

A. Pich

Flavour Anomalies

A Higgs field indeed

Many Interesting Flavour Anomalies

 $b \to c au
u$, $b \to s \mu^+ \mu^-$, $(g-2)_{\mu,e}$, $\tau^\pm \to \pi^\pm K_S
u$, $a_{\rm CP}^{D^0 \to \pi\pi}$, V_{ub} , V_{ud} , \cdots

Some already gone: $B \to \tau \nu$, $W \to \tau \nu$, $\varepsilon'_K / \varepsilon_K$, ε_K , ...

Lepton Flavour Universality in W Decays

	CMS	LEP	ATLAS	LHCb	CDF	D0
$R_{u/e}$	1.009 ± 0.009	0.993 ± 0.019	1.003 ± 0.010	0.980 ± 0.012	0.991 ± 0.012	0.886 ± 0.121
$R_{\tau/e}$	0.994 ± 0.021	1.063 ± 0.027	_	_	_	_
$R_{\tau/\mu}$	0.985 ± 0.020	1.070 ± 0.026	0.992 ± 0.013	_	_	_
$R_{\tau/\ell}$	1.002 ± 0.019	1.066 ± 0.025	_	_	_	_

LEPTON UNIVERSALITY

CHARGED CURRENT UNIVERSALITY

$$\begin{vmatrix} g_{\mu} / g_{e} \end{vmatrix}$$
A. Pich, arXiv:2012.07099
 $(updated)$
 $B_{\tau \to \mu} / B_{\tau \to e}$
 $B_{\tau \to \mu} / B_{\pi \to e}$
 $B_{K \to \mu} / B_{K \to e}$
 $B_{K \to \pi \mu} / B_{K \to \pi e}$
 1.0010 ± 0.0009
 $B_{K \to \pi \mu} / B_{K \to \pi e}$
 1.0010 ± 0.0025
 $B_{W \to \mu} / B_{W \to e}$
 1.001 ± 0.003

$$\begin{vmatrix} g_{\tau} / g_{e} \end{vmatrix}$$
 $B_{\tau \to \mu} \tau_{\mu} / \tau_{\tau}$
 $B_{\tau \to \mu} \tau_{\mu} / \tau_{\tau}$
 $B_{\tau \to \mu} \tau_{\mu} / \tau_{\tau}$
 1.0028 ± 0.0015
 $B_{W \to \tau} / B_{W \to e}$
 1.008 ± 0.012

3.4σ discrepancy

LHCb, 1711.05623:
$$\mathcal{R}_{J/\psi} \equiv \frac{\mathcal{B}(B_c \to J/\psi \pi \bar{\nu}_{\tau})}{\mathcal{B}(B_c \to J/\psi \mu \bar{\nu}_{\mu})} = 0.71 \pm 0.17 \pm 0.18$$
 (1.7 σ) $\mathcal{R}_{J/\psi}^{SM} \approx 0.26 - 0.28$
LHCb, 2201.03497: $\mathcal{R}_{\Lambda_b^0 \to \Lambda_c^+} = 0.242 \pm 0.026 \pm 0.040 \pm 0.059$ $\mathcal{R}_{\Lambda_b^0 \to \Lambda_c^+}^{SM} \approx 0.324 \pm 0.004$
Belle, 1903.03102: $F_L^{D^*} = 0.60 \pm 0.08 \pm 0.04$ (1.6 σ) $F_{L,SM}^{D^*} = 0.455 \pm 0.003$
Belle, 1612.00529: $\mathcal{P}_{\tau}^{D^*} = -0.38 \pm 0.51^{+0.21}_{-0.16}$ $\mathcal{P}_{\tau,SM}^{D^*} = -0.499 \pm 0.003$
A. Pich Flavour Anomalies 11

Possible Caveats / Constraints:

③ Differential distributions. Polarizations:

Data self-consistency

④ Time evolution of data:

Effective Field Theory

 $C^X_{AB}\big|^{\rm SM}=0$

$$\mathcal{H}_{eff}^{b \to c\tau\nu} = \frac{4G_F}{\sqrt{2}} V_{cb} \left\{ \mathcal{O}_{LL}^V + \sum_{A,B=L,R} \left[C_{AB}^V \mathcal{O}_{AB}^V + C_{AB}^S \mathcal{O}_{AB}^S + C_{AB}^T \mathcal{O}_{AB}^T \right] + \text{h.c.} \right\}$$

 $\mathcal{O}_{AB}^{V} = \left(\bar{c}\,\gamma^{\mu}\mathcal{P}_{A}b\right)\left(\bar{\tau}\gamma_{\mu}\mathcal{P}_{B}\nu\right), \qquad \mathcal{O}_{AB}^{S} = \left(\bar{c}\,\mathcal{P}_{A}b\right)\left(\bar{\tau}\mathcal{P}_{B}\nu\right), \qquad \mathcal{O}_{AB}^{T} = \delta_{AB}\,\left(\bar{c}\,\sigma^{\mu\nu}\mathcal{P}_{A}b\right)\left(\bar{\tau}\sigma_{\mu\nu}\mathcal{P}_{A}\nu\right)$

Many analyses (usually with single operator/mediator and partial data information) Freytsis et al, Bardhan et al, Cai et al, Hu et al, Celis et al, Datta et al, Bhattacharya et al, Alonso et al, ...

Global fit to all data:	$(q^2 \text{ distributions included})$ $ u_L $ Murgui-Penűelas-Jung-Pich, 19 $ u_R$ Mandal-Murgui-Penűelas-Pich, 20)4.09311)4.06726			
Assumptions	• $C_{AB}^{\chi} \neq 0$ for 3 rd fermion generation only • EWSB linearly realized $\rightarrow C_{RL}^{V} = 0$ • CP symmetry \rightarrow Real Wilson coefficients				
A. Pich	Flavour Anomalies	13			

Global fit to all data: ν_L

$F_L^{D^*}, B_{10}$	Min 1	Min 2	
$\chi^2/{ m d.o.f.}$	37.4/54	40.4/54	
c_{LL}^V	0.09 + 0.13 - 0.12	0.34 + 0.05 - 0.07	$\mathcal{B}(B_c \to \tau \bar{\nu}) < 10$
c_{RL}^{S}	0.09 + 0.12 - 0.61	-1.10 + 0.48 - 0.07	$F_{I}^{D^{*}}$ included
c_{LL}^S	-0.14 + 0.52 - 0.07	-0.30 + 0.11 - 0.50	_
c_{LL}^T	$0.008 + 0.046 \\ - 0.044$	0.093 + 0.029 - 0.030	

- Strong preference for New Physics $(\chi^2_{SM} \chi^2 = 31.4)$
- No clear preference for a particular Wilson coefficient in the global minimum
- Min 1 compatible with a global modification of the SM (Fitting only C^V_{LL} just increases χ² by 1.4)
- Min 2 is further away from the SM & involves large scalar contributions
- $F_L^{D^*}$ difficult to accommodate at 1σ
- Complex C_{AL}^{χ} do not improve the χ^2 , but open many more solutions
- Including C_{RL}^{V} slightly improves the agreement with data (χ^2 /d.o.f. = 32.5/53). Two additional fine-tuned solutions with $C_{LL}^{V} \sim -0.9$

Global Fit within ν_R Scenarios

Mandal-Murgui-Peñuelas-Pich, 2004.06726

Sc 1: \mathcal{O}_{LR}^{V} , \mathcal{O}_{RR}^{V} , \mathcal{O}_{LR}^{S} , \mathcal{O}_{RR}^{S} , \mathcal{O}_{RR}^{T} , \mathcal{O}_{LL}^{V}
So 2: \mathcal{O}_{LR}^{V} , \mathcal{O}_{RR}^{V} , \mathcal{O}_{LR}^{S} , \mathcal{O}_{RR}^{S} , \mathcal{O}_{RR}^{T}
So 3, V^{μ} : \mathcal{O}_{RR}^{V} So 4, Φ : \mathcal{O}_{LR}^{S} , \mathcal{O}_{RR}^{S} [b: $+ \mathcal{O}_{LL}^{S}$, \mathcal{O}_{RL}^{S}]
$ \begin{split} & \tilde{\mathbf{c}} \boldsymbol{c}, \boldsymbol{U}_{1}^{\boldsymbol{\mu}} \colon \boldsymbol{\mathcal{O}}_{RR}^{\boldsymbol{V}}, \boldsymbol{\mathcal{O}}_{LR}^{\boldsymbol{S}} [\mathbf{b} \colon + \boldsymbol{\mathcal{O}}_{LL}^{\boldsymbol{V}}, \boldsymbol{\mathcal{O}}_{RL}^{\boldsymbol{S}}] \\ & \tilde{\mathbf{c}} \boldsymbol{c}, \tilde{R}_{2} \colon \boldsymbol{\mathcal{O}}_{RR}^{\boldsymbol{S}}, \boldsymbol{\mathcal{O}}_{RR}^{\boldsymbol{T}} \\ & \tilde{\mathbf{c}} \boldsymbol{c}, \boldsymbol{S}_{1} \colon \boldsymbol{\mathcal{O}}_{RR}^{\boldsymbol{V}}, \boldsymbol{\mathcal{O}}_{RR}^{\boldsymbol{S}}, \boldsymbol{\mathcal{O}}_{RR}^{\boldsymbol{T}} [\mathbf{b} \colon + \boldsymbol{\mathcal{O}}_{LL}^{\boldsymbol{V}}, \boldsymbol{\mathcal{O}}_{LL}^{\boldsymbol{S}}, \boldsymbol{\mathcal{O}}_{Ll}^{\boldsymbol{T}}] \\ & \tilde{\mathbf{c}} \boldsymbol{c}, \boldsymbol{8}, \tilde{\boldsymbol{v}}_{2}^{\boldsymbol{\mu}} \colon \boldsymbol{\mathcal{O}}_{LR}^{\boldsymbol{S}} \end{split} $

$\mathcal{B}(B_c \rightarrow \tau \bar{\nu})$	$\chi^2/d.o.f$	Pull _{SM}		Pull _{SM}	p-value	
		$\bar{P}_{\tau}^{D^*}$, $F_L^{D^*}$	\mathcal{R}_{D,D^*}	$d\Gamma/dq^2$		
2.16%	52.87/59					69.95%
< 10%	37.26/53	0.007	2.08	0.0414	2.4	95.02%
< 10%	38.86/53	0.001 🗶	2.08	0.0006	2.2	92.68%
< 30%	36.42/53	0.022	2.08	0.0866	2.5	96.00%
< 30%	38.54/53	0.011	2.08	0.000	2.2	93.21%
< 10%	38.54/54	0.006 🗡	2.32	0.0113	2.5	93.20%
< 10%	39.05/54	0.004 🗡	2.32	0.0003	2.4	93.73%
< 30%	38.33/54	0.035 🗡	2.32	0.0023	2.5	94.73%
< 30%	38.80/54	0.025 🗶	2.32	0*	2.4	94.09%
< 10%	39.50/58	0.150 🗡	3.65	0.0835	3.7 🗸	97.00%
< 10%	49.93/57	0.079 🗡	2.34 🗡	0*	1.2	73.52%
< 10%	49.93/57	0.079 🗡	2.34 🗡	0*	1.2	73.52%
< 30%	44.49/57	0.311 🗡	2.66 🗡	0*	2.4	88.62%
< 30%	44.49/57	0.311 🗶	2.66 🗶	0*	2.4	88.62%
< 10%	43.56/55	0.054 🗡	2.07 🗡	0*	1.9	86.70%
< 30%	40.03/55	0.218	2.52	0*	2.5	93.54%
< 10%	39.39/57	0* 🗡	3.22	0.0981	3.2 ✓	96.36%
< 10%	39.37/55	0* 🗡	3.34	0.0060	2.6	94.47%
< 10%	44.20/58	0* 🗡	3.34	0*	2.9	90.93%
< 10%	39.21/57	0.126 🗡	3.22	0.0616	3.3 √	96.53%
< 10%	39.06/55	0.014 🗶	2.56	0.0112	2.7	94.87%
< 10%	47.32/57	0.259 🗡	2.56 🗡	0*	1.9	81.60%
	$\begin{array}{c} \mathcal{B}(B_e \to \tau \bar{\nu}) \\ \hline \\ & < 10\% \\ < 10\% \\ < 30\% \\ < 30\% \\ < 30\% \\ < 00\% \\ < 30\% \\ < 10\% \\ < 30\% \\ < 00\% \\ < 30\% \\ < 00\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Flavour Anomalies

S7a S7b

New (non official) analysis of BaBar data:

Advisors: D.G. Hitlin, F.C. Porter

$e-\mu$ anomaly in $B ightarrow D^*\ell u$ Belle data (1809.03290)

Some inconsistencies identified in the data

Flavour Anomalies

Data consistently below SM predictions Large hadronic uncertainties

$B ightarrow { m K}^* \mu^+ \mu^- ightarrow { m K} \pi \, \mu^+ \mu^-$

C. Langenbruch, LHC implications 2018

NP or SM cc-loop?

Discrepancy confirmed in recent lattice analyses $B \rightarrow K \ell^+ \ell^-$

HPQCD 2207.13371

Inclusion of non-local (long-distance) contributions

A. Pich

22

A. Pich

Flavour Anomalies

23

Violations of Lepton Flavour Universality

$$R_{H} \equiv \frac{\int_{q_{\min}^{2}}^{q_{\max}^{2}} \frac{d\Gamma(B \to H \, \mu^{+} \mu^{-})}{dq^{2}} \, dq^{2}}{\int_{q_{\min}^{2}}^{q_{\max}^{2}} \frac{d\Gamma(B \to H \, e^{+} e^{-})}{dq^{2}} \, dq^{2}} \stackrel{\text{SM}}{=} 1 \pm \mathcal{O}(10^{-2}) \quad \text{QED corrections}$$

V. Gligorov, ICHEP 2022

Precision dominated by LHCb, Belle 2 will be able to independently verify with ~10ab⁻¹. Will be interesting to see the eventual impact of the parked CMS dataset.

- $B_s^0 \to \mu^+ \mu^-$ strongly constrains pseudoscalar operators and bounds $C_{10,\mu}^{\rm NP}$
- Preferred solutions: $C_{9,\mu}^{\rm NP} \neq 0$ or $C_{9,\mu}^{\rm NP} \approx -C_{10,\mu}^{\rm NP} \neq 0$
- Additional solutions with LFU components (Algueró et al, 1809.08447)
- SMEFT: $b \to c\tau\nu$ and $b \to s\ell\ell$ anomalies \implies Large $b \to s\tau\tau$

 $(\bar{Q}_{2}\gamma^{\mu}Q_{3})(\bar{L}_{3}\gamma_{\mu}L_{3}) + (\bar{Q}_{2}\gamma^{\mu}\sigma^{I}Q_{3})(\bar{L}_{3}\gamma_{\mu}\sigma^{I}L_{3}) \approx 2[(\bar{c}_{L}\gamma_{\mu}b_{L})(\bar{\tau}_{L}\gamma^{\mu}\nu_{\tau L}) + (\bar{s}_{L}\gamma_{\mu}b_{L}))(\bar{\tau}_{L}\gamma^{\mu}\tau_{L})]$

A. Pich

Leptoquark Solutions

 $\mathcal{L}_{\text{eff}} = -\frac{1}{n^2} \lambda_{ij}^q \lambda_{\alpha\beta}^\ell \left[C_T \left(\bar{Q}_L^i \gamma_\mu \sigma^a Q_L^j \right) (\bar{L}_L^\alpha \gamma^\mu \sigma^a L_L^\beta) \right]$ $+ C_S \left(\bar{Q}_L^i \gamma_\mu Q_L^j \right) \left(\bar{L}_L^\alpha \gamma^\mu L_L^\beta \right)$

 $U(2)_{q} \otimes U(2)_{\ell}$ Family Symmetry

Angelescu et al. 1808.08179

Model	$R_{D^{(*)}}$	$R_{K^{(\ast)}}$	$R_{D^{(*)}} \ \& \ R_{K^{(*)}}$
$S_1 = (\bar{3}, 1, 1/3)$	\checkmark	X *	× *
$R_2 = (3, 2, 7/6)$	\checkmark	× *	×
$S_3 = (\bar{3}, 3, 1/3)$	×	\checkmark	×
$U_1 = (3, 1, 2/3)$	\checkmark	\checkmark	\checkmark
$U_3 = (3, 3, 2/3)$	×	\checkmark	×

Possible UV completions:

- 4321 model Di Luzio et al Bordone et al
- (Pati-Salam)³
- PS + VLF Calibbi et al
- Warped PS Blanke-Crivellin
- SU(5) GUT (R₂ & S₃) Becirevic et al
- S₁ & S₃

•

Crivellin et al. Buttazzo et al. Marzocca