Neutrino Telescopes

Sergio Navas University of Granada, Spain

XLIX International Meeting on Fundamental Physics (IMFP22)

Centro de Ciencias de Benasque Pedro Pascual, Benasque (Spain) September 5–10, 2022

Neutrino Telescopes:

VNNy ? v How ? VNNo ? Astrophysical v VNnat? s Atmospheric V

Looking at the sky ...

Deep Universe Opaque to High Energy photons

The Cosmic Rays

Galactic Magnetic field

Cosmic accelerator

Neutrinos as messengers from deep Universe

- First proposed by Pauli (1930) \Box E conservation desperate solution
- First detected by Cowan & Reines (1956) <- 25 years later!
- Electrically Neutral

 ¬ no electric charge
- "Weak interaction" only <- barely interact with matter

- 3 flavours \Leftrightarrow oscillate

Neutrinos trace nuclear and hadronic processes

Galactic Magnetic field

Cosmic accelerator

 $p + p/\gamma \rightarrow X + \pi^{0} \rightarrow \gamma\gamma$ $\rightarrow X + \pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$ $\rightarrow \mu^{+} \rightarrow e^{+} + \nu_{e} + \overline{\nu}$

Neutrinos are everywhere on Earth ...

Radioactive decays from Earth's mantle and from nuclear reactors Our body emits ~4000 neutrinos/s from ⁴⁰K decays

... and out there!

The Sun in neutrinos by SuperKamiokande (1996 – 2018)

$\sim 10^{11}$ neutrinos/cm²/s at Earth

and out there! . . .

The neutrino flux

The Cherenkov effect

SuperKamiokande

- ∼41 m height × \emptyset 39 m
- ~13,000 phototubes
- 365 24/7 detector
- 50 ktons of pure water
 ~10⁶ ktons needed !

ON HIGH ENERGY NEUTRINO PHYSICS

10th ICHEP (1960)

M. A. Markov

Joint Institute for Nuclear Research, Dubna, USSR

In the papers by Zheleznykh and myself (1958, 1960) possibilities of experiments with cosmic ray neutrinos are analyzed. We have considered those neutrinos produced in the earth's atmosphere from pion decay. From the known μ spectrum the neutrino energy spectrum is reconstructed. We propose setting up apparatus in an underground lake or deep in the ocean in order to separate charged particle directions by Čerenkov radiation. We consider μ mesons

A gigantic dark volume filled with photosensors

Neutrino Event Topologies

- CC v_{μ} interactions
- Ideal tool for astronomy
- Excellent angular resolution + Large effective volume
- Larger atmospheric backgr.

- NC / CC ν_{e} interactions, most ν_{τ}
- Contained events → Better energy resolution
- Almost no atmospheric backgr.

ANTARES (0.01 km³) (2007 – 2022) Mediterranean Sea Baikal-GVD (0.4 km³) (1998 + upgrading) Lake Baikal (Russia)

KM3NeT/ORCA (0.007 km³) KM3NeT/ARCA (1 km³) (under deployment)

KM3NeT

IceCube

IceCube (1 km³) (completed in 2011) South Pole

KM3NeT/ORCA (0.007 km³) KM3NeT/ARCA (1 km³) (under deployment)

IceCube Lab

IceCube (1 km³) (completed in 2011) South Pole

KM3NeT/ORCA (0.007 km³) KM3NeT/ARCA (1 km³) (under deployment)

IceCube (1 km³) (completed in 2011) South Pole

Antarctica : IceCube (1 km³)

2820 m depth 5160 OMs | 60 DOMs/string | 17 m DOM vertical spacing | 125 m string spacing

Sergio Navas (U. Granada) XLIX International Meeting on Fu

X International Meeting on Fundamental Physics (09/2022)

23

GVD-Baikal (0.4 km³ in 2021)

DOI: 10.22323/1.395.0002

1366 m depth 36 OMs/string | 8 strings / cluster | 8 clusters deployed = 2304 PMTs (10-inch) | 6 more clusters by 2025

Mediterranean Sea: ANTARES and KM3NeT

ANTARES: ~10 Mt instrumented mass. Completed in 2008

KM3NeT: A distributed research infrastructure with <u>2 main physics topics</u>: ORCA & ARCA

Low-energy (~GeV) studies of atmospheric neutrinos

High-energy (TeV-PeV) neutrino astrophysics

KM3NeT: ORCA and ARCA

KM3NeT: Building Blocks

ANTARES: decommissioned on May 2022

- First Under-Sea neutrino telescope
- Precursor to KM3NeT
- Competitive results
 - Northern hemisphere
 - Galactic plane
 - Dark matter
- Decommissioned after14 years of operation.

14/02/2006

KM3NeT-ORCA Detector Unit Deployment

Signal and Background in Neutrino Telescopes

Signal and Background in Neutrino Telescopes

Signal and Background in Neutrino Telescopes

(per km³)

Atmospheric μ 's~ 10^{11} /yearAtmospheric ν 's $\rightarrow \mu$'s~ 10^5 /yearAstrophysical ν 's $\rightarrow \mu$'s~ 10 /year

Cosmic ray

×10¹⁰ background suppression

1. Direction (¹)

2. Fiducial Volume ©

3. Energy (1)

Astrophysical ν

Atm. v Avn Cosmic ray

KM3NeT/ORCA-6 atmospheric muons

KM3NeT/ORCA-6 neutrino candidates

• Astrophysical v · Almospheric v beam

First Detection of Astrophysical Neutrinos

- PeV neutrinos observed for the first time (IC, PRL 111 (2013), 021103)
- Are there more?

I. Astrophysical Diffuse Flux: solid confirmation

 $-\gamma_{astro}$

(single power law with normalization and slope)

 $d\Phi$

 \overline{dE}

 $= \Phi_{astro} \times \left(\frac{E_{\nu}}{100 \text{ TeV}}\right)$

I. Astrophysical Diffuse Flux

- Measured with multiple independent analyses/selections
- Global agreement on Flux & Index (assuming single power-law distribution)
- Slight tension may be caused by differences in flavour composition, energy range, background, ...

I. ARCA: Astrophysical Diffuse Flux

ARCA can confirm the IceCube diffuse flux within 1 year of data taking (full detector)
With a much better angular resolution for both tracks and cascades

Which is the origin of the observed neutrinos?

- Consistent with isotropic distribution \Rightarrow favours extra-galactic origin

Gamma-rays as tracers of neutrinos

Extragalactic sky dominated by Blazars

Galactic gamma-rays from diffuse emission and discrete sources (SNRs, PWNs, ...)

Fermi (1 - 100 GeV)

Galactic Neutrinos (from the Milky Way) ?

IceCube + ANTARES combined

- Multimessenger motivation: correlation with potential hadronic γ -ray signals

Clusters of Neutrinos ? All-Sky Search

ANTARES Data: 2007 – 2020 (3845 days) \rightarrow 10162 tracks + 225 showers

- Full sky (no source assumption)
- No significant evidence of cosmic neutrino sources found
- $(RA, \delta) = (343.7^{\circ}, 23.6^{\circ})$ close to Radio Blazar J0242+1101 $(RA, \delta) = (39.6^{\circ}, 11.1^{\circ})$ close to Blazar MG3 J225517+2409

Full sky search: pre-trial *p-values* for a point-like source of the ANTARES visible sky.

Point Sources of Neutrinos: Catalogue Search

ANTARES Data: 2007 – 2020 (3845 days) \rightarrow 10162 tracks + 225 showers

- 121 Catalogue sources investigated (galactic + extragalactic)
- No significant evidence of cosmic neutrino sources found

II. ARCA: Search for Point-like Sources

- ARCA6 DUs for 100 days: First point-like source search results
- Time integrated source search
- Angular resolution ~1.3° for E⁻²
- No significant excess observed ⇒ No competitive results yet.

V. Real-Time Alert System

The discovery of HE cosmic neutrinos: IC170922A

Extreme high energy neutrino alert from IceCube followed by detection of very high energy photons from Flaring Blazar TXS 0506+056

IC170922A Alert Follow-up

Photons from TXS 0506+056

 3σ chance coincidence correlation ("evidence") •

Sergio Navas (U. Granada)

5.72

5:68

5.64 77.41

77.37 . 77.3

6.5

6.0

Archival neutrino searches around TXS 0506+056

- Archival data revealed a 13 ± 5 neutrino excess (3.5 σ) in 2014 – 2015 over 110 days
- No evidence of EM activity from the source during this period

ANTARES TXS 0506+056 follow-up

NTARES .

- Three searches performed:
- I. Online prompt search for neutrinos associated with IC170922A
- II. Time-dependent search in TXS 0506+056 historical bursting periods
- III. Time-integrated search from TXS 0506+056

- No counterpart events seen in ANTARES data
- No significant evidence of cosmic ν 's \rightarrow upper limits

Almospheric v beam

1. A setting to be at a setting. This is an antitude of the section. A set of the section of the section of the section.

Physics with Atmospheric neutrinos

Cosmic ray

Upgoing neutrinos: Baseline: 12.800 km $\cos\theta_{\text{zenith}} = -1$

Atm.,v

Cosmic ray

Cosmic ray

ORCA-6 1 year: Neutrino Oscillations L/E

Atmospheric neutrinos traversing the Earth: sensitive to Δm_{31}^2 Clear effect of oscillations seen with 6 ORCA lines in 1 year

ORCA-6 1 year: Neutrino Oscillations $\Delta m_{31}^2 \&$

With full ORCA: very precise measurement of neutrino oscillation parameters.

Full ORCA Neutrino Oscillations: Δm_{32}^2 &

Full ORCA, 90% CL interval for Δm_{32}^2 and θ_{23} : NO: 85×10⁻⁶ eV² and $\begin{pmatrix} +1.9 \\ -3.1 \end{pmatrix}$ ° IO : 75×10⁻⁶ eV² and $\begin{pmatrix} +2.0 \\ -7.0 \end{pmatrix}$ °

ORCA Neutrino Mass Ordering (NMO)

Sign of Δm_{31}^2 sensitive to matter effects in the oscillation patterns ✓ NO (v_e appear. ①) = IO (anti- v_e appear. ①) ✓ E_{res} ~7 GeV (3 GeV) in Mantle (Core)

NMO affects oscillograms : ($\cos\theta - E_{reco}$) plots

ORCA Neutrino Mass Ordering (NMO)

Non-Standard Interactions (NSI): ANTARES

NSIs would distort the standard MSW effects \rightarrow oscillograms modified w.r.t. SM predictions (shifts in minima and changes in amplitudes)

Non-Standard Interactions (NSI)

NSIs would distort the standard MSW effects \rightarrow oscillograms modified w.r.t. SM predictions (shifts in minima and changes in amplitudes)

- ORCA6 limits: Less than a factor 3 from best world limits!
- Full ORCA in 3 years: constraints by one order of magnitude better than current experimental limits

ORCA+ARCA: Core Collapse Supernovae

Eur. Phys. J. C 81, 445 (2021)

- Supernova MeV neutrinos → collective excess of multi-fold coincidences on all DOMs
- Real time monitoring activity
- A trigger for CCSN already implemented \ominus integrated in SNEWS

Search for Dark Matter in the Sun & Galactic Center

Relic WIMPS gravitationally bound in celestial massive objects (Galactic Center, Sun ...) They would accumulate and annihilate yielding HE neutrinos

Searches for a possible ν_{μ} excess from these objects due to DM annihilation \Rightarrow very clean signature with no significant astrophysical background expected.

Explored channels: WIMP + WIMP $\rightarrow b\overline{b}$, W^+W^- , $\tau^+\tau^-$, $\mu^+\mu^-$, $\nu_{\mu}\overline{\nu}_{\mu}$

The Galactic Center and the Sun

ANTARES

2030 – 2040 First EeV neutrinos Precision PeV v tests

2020's

Hints of sources Firsts ν physics tests

5&5

log 10 (Neutrino Energy / GeV)

Expected sensitivity of the Ice-

MP

90% C.L. exclusion (F

Cube detector. The thick solid line indicates the 90% c.l. limit setting potential for an E^{-2} type spectrum for a time period of three years (see

GeV)

dN / dE) / (cm²

ʻш

Figure 6.

astro-ph: 0209556

First Observation of PeV neutrinos

Predictions

Today

Sergio Navas (U. Granada)

Neutrino Telescopes

Sergio Navas University of Granada, Spain

UNIVERSIDAD DE GRANADA

XLIX International Meeting on Fundamental Physics

Centro de Ciencias de Benasque Pedro Pascual, Benasque (Spain) September 5-10, 2022

