Gamma-ray astronomy

Javier Rico

Barcelona Institute of Science and Technology

XLIX International Meeting on Fundamental Physics, Benasque, September 8, 2022

XLIX IMFP. Benasque, September 8, 2022

Program

★ Introduction

- Gamma-ray production and detection
- Scientific objectives
- Selected relevant and/or recent results*
 - Cosmic-ray acceleration and propagation
 - Multi-wavelength/Multi-messenger astronomy
 - Particle acceleration in extreme environments
 - Propagation effects
 - Physics beyond the Standard Model

★ The future

* of course, with a personal bias...

Introduction

Direct gamma-ray detection

Medium energy (ME)

- 1-30 MeV
- Compton camera
- COMPTEL
 (1991-2000)

High Energy (HE)

- 100 MeV 300 GeV
- Pair conversion tracker + calorimeter
- Fermi-LAT (2008), Agile (2007), CALET (2015), DAMPE (2015)

Indirect gamma-ray detection

Credit: R. White

HE sources

unassociated

Credit: L. Tibaldo (ECRS2022)

Science with HE and VHE gamma rays

Cosmic rays origin and interactions

Galactic diffuse emission

cosmic rays

Interstellar matter tracers (H₂, H₁,, H₁, dust, ...)

Point-like sources

Diffuse emission

cosmic rays

- ★ GeV/interstellar matter correlation at all scales → CR interactions
- Diffuse emission measured up to PeV (with TeV gap)
- Some excesses over predictions (unresolved sources? exotic origin?)

CR acceleration in SNRs

cosmic rays ac

accelerators

First direct evidence of CR acceleration in SNR by observing for the serving for the serving for the serving for the serving for the service of the servi

New CR accelerator candidates

cosmic rays ac

accelerators

 ★ 8 years Fermi-LAT, better control on systematics → 56 out of 311 candidates are confirmed to have characteristic spectral break

Abdollahi et al. arXiv:2205.03111

- ★ SNRs dominate
- Binaries could also contribute significantly

Analyzed	Confirmed
23	13
4	2
37	6
1	1
31	4
5	4
210	26
	Analyzed 23 4 37 1 31 5 210

PeVatrons

cosmic rays

accelerators

- ★ Galactic CR accelerators must reach 10¹⁵ eV
- Not all SNRs are PeVatrons!
- 12 PeVatrons recently discovered by LHAASO

Leptonic PeVatrons?

cosmic rays

accelerators

- Many possible associations of LHAASO sources (except for the Crab Nebula)
- Maximum energy detected photons compatible spin-down power from possible associated PWNe
- Other associations are possible (PWN, SNR, SFR...)

Recurrent nova RS Oph

cosmic rays

accelerators

- ★ RS Ophiuchi recurrent symbiotic nova August 2021 outburst detected (among many others) by Fermi-LAT, MAGIC, HESS
- ★ New type of VHE gamma-ray emitter

Multi-wavelength/Multimessenger astronomy

TXS 0506+05L

MW/MM

accelerators

cosmic rays

- ★ 3σ association of a high-energy
 (290 TeV) neutrino with gamma-ray source (Fermi-LAT+MAGIC)
- First evidence for an electromagnetic counterpart (flaring blazar, z=0.34) of a neutrino source
- ★ Multi-messenger SED
- Deep monitoring (120h, 2017-2021) with MAGIC reveals several flares compatible with no further neutrino detection [Acciari et al. Astroph. J. 927 (2022) 197]

GW170817

MW/MM

accelerators

https://francis.naukas.com/2017/10/20/la-alerta-de-las-senales-gw170817-y-sgrb170817/

XLIX IMFP. Benasque, September 8, 2022

NSBS/kilonova/short GRB connection

GW170817: an enlightening event

MW/MM

accelerators

Branchesi @ Gamma2022

XLIX IMFP. Benasque, September 8, 2022

Particle acceleration in extreme environments

GRB 190114C

accelerators

MW/MM

- **\star** Long gamma-ray burst (T₉₀ = 361s)
- ★ First detection of VHE emission from GRB (>50 σ)
 - MAGIC observation started at T₀+50s
 - Brightest VHE source ever → 100×Crab
 - Emission above 100 GeV strongly absorbed by interaction with extragalactic background light
- ★ Exhaustive MWL coverage
 - Afterglow emission produced by jet interaction with surrounding medium
 - Synchrotron emission excluded, SSC favored

Other GRB dete

Transient: Gamma Rays

accelerators

MW/MM

- The detection of GRB190114 have opened the can for almost routine GRB detections (4.5 detections so far by MAGIC and HESS)
- Spectra difficult to explain by SSC process
 - No evidence of two components
 - No evidence of Klein-Nishina cut-off
 - Extended synchrotron above the expected maximum energy?

Propagation effects

Gamma-ray propagation: EBL

propagation

Extragalactic background radiation

propagation

Cooray, arXiv:1602.03512

Measuring EBL

propagation

- ★ Directly:
 - Direct measurements (lots of foregrounds) +
 - Galaxy counts (lower limit) +
- ★ Indirectly

EBL models

10²

40

30

20

10

3

2

3×10

2×10⁻

10-

10

Specific intensity [nW m⁻² sr⁻¹]

Attenuation of gamma rays traveling + cosmological distances

0.1 TeV

Measuring the EBL imprint

propagation

accelerators

 The measurement is dominated by systematics

- Energy scale
- Intrinsic spectra
- Still, useful & constraining upper limits

Gamma-ray propagation: IGMF

propagation

XLIX IMFP. Benasque, September 8, 2022

Intergalactic magnetic fields

propagation

 ★ TeV + EBL produce e⁺e⁻ pairs, which lose energy through IC with CMB, producing GeV secondaries

Physics beyond the Standard Model

XLIX IMFP. Benasque, September 8, 2022

J. Rico - Gamma-ray Astronomy 33

Search for spectral irregularities

BSM

propagation

- ★ Cause: magnetic field in the source
- ★ Observations:
 - NGC1275 (6 years with Fermi-LAT)
 - PKS2155-304 (13 h super flare with HESS)
- No preference for ALP hypothesis found in the data

XLIX IMFP. Benasque, September 8, 2022

Search for high energy boost in flux

propagation

BSM

- Cause: escape EBL while being ALP
- No evidence for ALP-induced high-E flux boost in a large compilation of HE+VHE spectra (106 blazars)

Figure 7. Residuals to the best-fit models for the 106 spectra (737 points) studied in this paper, as a function of optical depth.

Figure 8. Flux enhancement, defined by the ratio of observed and expected fluxes, as a function optical depth. The shaded gray region is the flux enhancement implied by the results of Horns & Meyer (2012).

Correlation with Galactic magnetic fields

- \star Assuming ALP- γ conversions only at source and Galaxy
- ★ Simple approach: compare HE and VHE photon indices, look for autocorrelations among sources.
- \star No correlation observed even compared to expected for $g_{a_{\gamma}}$ close to CAST limit
Gamma-ray propagation: LIV

propagation

XLIX IMFP. Benasque, September 8, 2022

J. Rico - Gamma-ray Astronomy 37

Lorentz Invariance Violation

BSM

propagation

 Lorentz Invariance violation (LIV) expressed by Taylor expansion of the dispersion relation:

$$E^{2} = p^{2}c^{2} + m^{2}c^{4} \pm E^{2}\left(\frac{E}{E_{\rm QG}}\right)^{n}$$

★ E_{QG} ≈ E_{PI} ≈ 10²⁸ eV, vs: E_{max,CR} ≈ 10²⁰ eV

 $E_{\max,\gamma} ≈ 10^{15} eV + → "superluminal"$ - → "subluminal"

- ★ LIV Manifestations include:
 - Energy dependent speed of light in vacuum
 - Modification of energy threshold of reactions (e.g. UHECR with CMB or γ with EBL)
 - + Photon decay
 - $(\gamma \rightarrow e^+e^- \text{ and/or } \gamma \rightarrow 3 \gamma)$
 - Vacuum birefringence
 - Vacuum Cherenkov radiation (by superluminal electrons in vacuum)
 - Suppression of particle interactions/decays

+

XLIX IMFP. Benasque, September 8, 2022

Subluminal LIV anomalous transparency

BSM

propagation

Change in the threshold for EBL absorption:

$$\epsilon_{\rm th} = \frac{m_e^2}{E_{\gamma}} \longrightarrow \frac{m_e^2}{E_{\gamma}} \mp \frac{1}{4} \left(\frac{E_{\gamma}}{E_{\rm QG,n}}\right)^n E_{\gamma}$$

Time-of-flight LIV searches

BSM

propagation

★ Energy dependent photon group velocity:

$$v_{\gamma} = \frac{dE}{dp} \simeq c \left[1 \pm \sum_{n=1}^{\infty} \frac{n+1}{2} \left(\frac{E}{E_{\text{QG}}} \right)^2 \right]$$

\star Difference in time of flight of two photons with energies $E_h > E_l$

$$\Delta t \simeq \pm \frac{n+1}{2} \frac{E_h^n - E_l^n}{H_0 E_{\text{QG}}^n} \kappa_n(z)$$

Effect accumulates over cosmological distances

LIV with GRB090510 at HE

BSM

propagation

- GRB090510 detected by Fermi GBM and LAT
- ★ z = 0.903
- ★ GBM provides T₀
- Largest energy photon E = 31
 GeV detected 0.8 s after T₀:
 - Conservative maximum delay
 τ ≈ 26 s/TeV
- * Limits (95% CL): $E_{QG,n=1} > 1.5 \times 10^{28} \text{ eV}$ $E_{QG,n=2} > 3.0 \times 10^{19} \text{ eV}$
- Most constraining limits on time-of-flight LIV up to date

Abdo et al. Nature 462, (2009) 331 104 103 Energy (MeV) 10 15,000 Counts per bin 150 **GBM** Nals 100 10,000 F (8-260 keV) 50 5,000 -0.50.5 Time since GBM trigger (10 May 2009, 00:22:59.97 UT) (s)

Superluminal LIV gamma decay

BSM

- Modified dispersion relation
 (superluminal case) allows the decays
 γ → e⁺e⁻ (n=1) and γ → 3 γ (n=2)
- Both reactions lead to hard spectral cutoff at high energies
- No dependence on distance: use Galactic sources, not affected by increase of threshold for interaction with EBL
- HAWC and LHAASO observations of ~PeV photons set strong limits to cutoff and hence to LIV effects

WIMP searches

 Indirect searches: looking for spectral and spatial signatures of dark matter in the extra-terrestrial fluxes of stable SM particles

HE Messangers:

- Gamma-rays
- Neutrinos
- Electron/positrons
- Antiprotons, Antideuterium, Antinuclei

***** Characteristic spectral features:

- Separation from background
- Can measure basic physical properties: mass, cross-section / lifetime

Gamma-rays or neutrinos do not suffer from propagation effects:

- Exploit spatial features known from simulations
- Can determine DM abundance and distribution in the Universe

Posible DM gamma-ray sources

BSM

Adapted from Conrad & Reimer, Nat. Phys. 13 (2017) 224

XLIX IMFP. Benasque, September 8, 2022

J. Rico - Gamma-ray Astronomy 45

Galactic Center at Very High Energy

- ★ Galactic Center (halo) observed by HESS for 546h!
- ★ Most intense DM annihilation expected signal as seen from Earth
- Most constraining limits of cross sections, below thermal relic cross section for leptonic channels
- ★ Caveat: assuming a cored density profile limit is O(2-3) times worse

Observations of dSphs

BSM

- Low luminosity galaxies orbiting the Milky Way
- ★ Kinematics dominated by DM:
 M/L ~ O(1000) M_☉/L_☉
- Moderate expected intensities, with relatively low uncertainties

Combining d, 10⁻²⁷ 10⁻²⁸ 10⁻²⁹ 10⁻²⁹

^{10⁻²¹} ²⁰ ^{10⁻²²} رم10⁻²⁰ All ds ____10 ★ Stack the likelihoods ິ<mark>ພິ</mark> 10⁻²¹ ∃ 10⁻²² , E C B 10^{-21} e*e⁻ μ+μ⁻ × 10⁻²³ 10⁻²² 10⁻²² of different dSphs: 10^{-23} 10⁻²³ bV × 10⁻²⁴ 10-24 _% 10⁻²⁴ ໍດິ₁₀--25 with different uncer 10⁻²⁵ 10⁻²⁶ 10^{-26} factor 10⁻²⁷ 10^{-26} 10⁻²⁷ Combined limit (\mathscr{GS}) Fermi-LAT limit Combined lin 10⁻²⁸ 10⁻²⁸ H_o median HAWC limit H_o median N_{dSph} эn 10⁻²⁷ H_o 68% containment H.E.S.S. limit H₀ 68% conta 10⁻²⁹ 10^{-29} $\mathcal{L}(\alpha; \boldsymbol{\nu} | \boldsymbol{\mathcal{D}}) = \prod \mathcal{L}_{\gamma}(\alpha \overline{J}_{l}; \boldsymbol{\mu}_{l} | \boldsymbol{\mathcal{I}})$ containment H_o 95% containment H_o 95% conta MAGIC limit Thermal relic cross section VERITAS limit Thermal relic 10⁻³⁰ containment 10⁻³⁰ 10⁻²⁸ 10^{2} 10 10^{3} 10^{4} 10⁵ 10^{2} 10 10^{2} 10 m_{DM} [GeV] י אט $\mathcal{L}_{J}(\overline{J} \mid \overline{J}_{\text{obs}}, \sigma_{J}) = \frac{1}{\ln(10)\overline{J}_{\text{obs}}\sqrt{2\pi\iota}} \int_{J_{\text{obs}}}^{\infty} \sqrt{2\pi\iota} \int_{J_{\text{obs}}}^{\infty} \sqrt{2\pi$ ్లా 10⁻²⁰ All dSphs $\tau^+\tau^-$ [∞]E⁻²¹ ∃ 10⁻²² τ+τ ⁰² 10^{-2'} %26 10⁻²³ ĥ × 10⁻²⁴ observed by differe 10-2 10^{-2} 10^{-26} Preliminary $\mathcal{L}_{\gamma}(\alpha \overline{J}; \boldsymbol{\mu} | \boldsymbol{\mathcal{D}}_{\gamma}) = \prod^{N_{\text{meas}}} \mathcal{L}_{\gamma, k}(\alpha \overline{J}; \boldsymbol{\mu})$ 10⁻²⁷ 10^{-2} Fermi-LAT limit Combined limit (98) Fermi-LAT+MAGIC \$ 10^{-28} HAWC limit H_o median H₀ 68% containment Ho median MAGIC Segue 1 H.E.S.S. limit 10-27 10⁻²⁹ H_o 95% containment MAGIC limit H_o 68% containment Fermi-LAT Thermal relic cross section VERITAS limit 10⁻³⁰ H_o 95% containment Thermal relic cross s 10-28 10^{2} 10^{3} 10 10^{4} m_{DM} [GeV] 10² 10^{3} 10^{4} m_{DM} [GeV]) m_{DM} [GeV])

 10^{-27}

 10^{-28}

 10^{-29}

10⁻³⁰

10

 10^{3}

m_{DM} [GeV] Fermi-LAT+MAGIC: Ahnen et al. JCAP 1602 (2016) 39

Combined li

H_o 68% conta

H_o 95% conta

Thermal relic

 10^{2}

H₀ median

Fermi-LAT limit

HAWC limit

MAGIC limit

10⁴

H.E.S.S. limit

VERITAS limit

an

10⁵ 10²

containment

containment

J. Rico - Gamma-ray Astronomy 48

The future

Present and future sensitivity

ASTROGAM

- Proposed to M7 ESA call (launch 2037)
- ★ Cover the "MeV gap"
- Improved angular resolution thanks to measurement of Compton electron track

HERD

- Cosmic-ray/Gamma-ray detector in the Chinese Space Station
- Installation expected in 2027
- * 3D, homogeneous, isotropic, finely segmented calorimeter
- Gamma energy coverage: 100 MeV - 1 TeV with superb angular and energy resolutions

CTA

- ★ Two sites: La Palma (N) and Paranal, Chile (S)
- ★ 64 (13+51) telescopes of three different sizes
- * ERIC should be operative beginning of 2023 when official construction phase will start

CTA capabilities

LST

- ★ LST1 installed @ La Palma in 2019
- Finishing commissioning
- ★ LST2-4 under production
- ★ LST for South partially funded
- LST1 producing science and preparing first papers

XLIX IMFP. Benasque, September 8, 2022

Cortina, Gamma2022

Summary

- ★ Gamma-ray Astronomy is a consolidated branch of astronomy
- ★ The current generation of instruments have produced/are producing significant advances in our understanding of:
 - The origin of Galactic cosmic rays
 - The origin of cosmic neutrinos and extragalactic cosmic rays
 - NS-NS mergers
 - Particle acceleration in known and new source classes
 - Radiation and magnetic fields in cosmic voids
 - Physics BSM (DM searches, LIV tests)
- Future observatories such as CTA, HERD and ASTROGAM will improve further our understanding about these and other topics in a fully multi-wavelenth/multi-messenger approach to the study of our Universe

Thank you for your attention!

Backup

LE: Compton camera

Boggs & Jean (2000)

E' = outgoing photon energy

 $E=\Sigma E_i$

(original photon energy is the sum of all energy deposits)

$$E' = E - E_1$$

$$\frac{1}{E'} - \frac{1}{E} = \frac{1}{m_e c^2} (1 - \cos \phi)$$

 \Rightarrow we can obtain the primary photon E and a CONE of possible directions

COMPTEL

* GRB May 3 1991

- ★ Method works for large S/N data
- ★ COMPTEL onboard CGRO (1991-2000)

HE: pair conversion camera

- Pair production dominant above a few MeV
- Anti-coincidence to veto dominant charged CaRs
- High-Z foils before each tracking plane to maximize conversion probability
- Tracker to measure direction
- Calorimeter to measure energy

Pair conversion telescopes

- ★ COS-B (1975-1982)
- ★ ESA (first satellite)
- 25 sources; first galactic map

- CGRO-EGRET (1991-2000)
- NASA
- 271 sources; (LMC, pulsars, blazars, UID)

- AGILE (2007)
- ASI
- Crab Nebular variability; Cyg X-3; pion bump in SNR W44;...

- Fermi-LAT (2008)
- NASA
- 5065 sources; GRBs Fermi bubbles; high resolution map; Galactic center excess; DM searches; constrain QG...

XLIX IMFP. Benasque, September 8, 2022

VHE and UHE: atmospheric showers

- Small effective area results in extremely low detection rates at E > 100 GeV, even for strong sources:
 Φ_{Crab,E>100GeV} ≈ 100 photons/m²/year
- ★ Calorimeter depth ≤ 10 radiation lengths, which corresponds to ≈ 1 ton/m² (hard to put into orbit)
 - \Rightarrow VHE showers leak out of the calorimeter
- Solution: a "pair conversion telescope" in which the atmosphere is part of the detector
- ★ Ground-based detectors → geographical location relevant

J. Rico - Gamma-ray Astronomy 63

Air shower detectors

- Detect particles of the shower
- ★ Thin particle fronts
- Particle density
 proportional to
 primary energy
- Particle arrival times correlated with primary direction
- Particle spatial distribution related to primary ID

Cherenkov telescopes

Cherenkov telescopes

VHE/UHE gamma-ray detectors

M87: a broad MWL view

accelerators

MW/MM

- ★ Broadband coordinated observations in 2017 during quiescent state (19 facilities in 15 decades of energy)
- ★ Cannot be modeled by single zone
- ★ Structured jet and time depender ⇒ are key

Li [LEdd]

Searches in gamma rays

★ Gammas do not interact from nearby production sites to Earth:

- Keep direction information all Primary channels
 No need to use complicate tra
 SM: b, W⁺, Z, τ⁺, ...
 SM: b, W⁻, Z, τ⁻, ...
 SM: b, W⁻, Z, τ⁻, ...

XLIX IMFP. Benasque, September 8, 2022

Density profiles

- DM distributes in quasi-spherical halos of gravitationally bound matter
- ★ From N-body simulations we know:
 - Hierarchical: DM halos contain sub-halos
 - Density profile for all halo size described by:

 $\rho(r) = \frac{\rho_{\rm s}}{(r/r_{\rm s})^{\gamma}(1+r/r_{\rm s})^{3-\gamma}}$

(Navarro-Frenck-White profile)

- Free parameters determined by fitting to measured kinematics of visible mass probes (stars and galaxies) - Jeans equation
- This does not include baryon-DM interplay, relevant at the centre of halos, normally baryon dominated
 - Disagreements at the smaller scales

Estimating measured DM fluxes

 Gamma-ray instruments measure number of counts coming from promising DM targets, as a function of measured energy and direction, and compare with background expectations, with a likelihood function:

$$\mathcal{L}_{\gamma} (\alpha \overline{J}; \boldsymbol{\mu} | \boldsymbol{\mathcal{D}}_{\gamma}) = \prod_{i=1}^{N_{E'}} \prod_{j=1}^{N_{\hat{p}'}} P\left(s_{ij}(\alpha \overline{J}; \boldsymbol{\mu}) + b_{ij}(\boldsymbol{\mu}) | N_{ij}\right) \cdot \mathcal{L}_{\mu}(\boldsymbol{\mu} | \boldsymbol{\mathcal{D}}_{\mu})$$

- $$\begin{split} \alpha &= \langle \sigma v \rangle \text{ or } \tau^{-1} & s_{ij} = \text{expected } \# \text{ of gamma events} & \bar{J} = J(\Delta \Omega_{\text{tot}}) \\ \mathbf{D}_{\gamma} &= \text{data} & b_{ij} = \text{expected } \# \text{ of background events} & J(\Delta \Omega) = \int_{\Delta \Omega} d\Omega \frac{dJ}{d\Omega} \\ \mathbf{\mu} &= \text{nuisance parameters} & N_{ij} = \text{observed counts} & J(\Delta \Omega) = \int_{\Delta \Omega} d\Omega \frac{dJ}{d\Omega} \\ \end{split}$$
- ★ The number of expected measured gamma-ray counts is:

$$s_{ij}(\alpha \overline{J}) = \int_{\Delta E'_i} dE' \int_{\Delta \hat{p}'_j} d\Omega' \int_0^\infty dE \int_{\Delta \Omega_{\text{tot}}} d\Omega \int_0^{T_{\text{obs}}} dt \, \frac{d^2 \Phi(\alpha \overline{J})}{dE \, d\Omega} \, \text{IRF}(E', \hat{p}' | E, \hat{p}, t)$$

with IRF the Instrument Response Function, which can be factored in effective area times PDFs for energy and direction estimators

$$\operatorname{IRF}(E', \hat{p}'|E, \hat{p}, t) = A_{\operatorname{eff}}(E, \hat{p}, t) \cdot f_E(E'|E, t) \cdot f_{\hat{p}}(\hat{p}'|E, \hat{p}, t)$$

Axion and axion-like particles

- Axion: Hypothetical spin-0 boson produced by spontaneous breaking of new symmetry introduced in the QCD Lagrangian to solve the "strong CP problem"
 - 2-photon vertex with weak coupling, proportional to their mass
- Generalized to <u>Axion-like particles</u> (ALPs): hypothetical spin-0 particles with 2-photon vertex
 - ALPs are very light and are not viable as <u>thermal relic</u>
 - Produced as a zero-momentum Bose-Einstein condensate when the temperature falls below the QCD scale → <u>Cold</u> dark matter!

LIV with GRB190114C at VHE

BSM

propagation

Acciari et al. Phys. Rev. Lett. 125 (2020) 021301

LC model	Minimal (step function)	Theoretical ([19])		
	$\eta^{ ext{UL}}$	$\eta^{ ext{LL}}$	$\eta^{ m BF}$	$\eta^{ ext{UL}}$
η_1	4.4	-2.2	0.3	2.1
η_2	2.8	-4.8	1.3	3.7
	subl.	superl.		subl.
$E_{\rm QG,1} [10^{19} {\rm GeV}]$	0.28	0.55		0.58
$E_{\rm QG,2} [10^{10} {\rm GeV}]$	7.3	5.6		6.3

- No dependence of observed light curve on energy for VHE gamma rays
- No correlation of photon arrival time with gammaray energy
- Derive limits to quantum gravity scale
 - Competitive for the quadratic leading order even for a featureless light curve

Fluxes vs sensitivity

BSM

- ★ Fermi-LAT dominates searches up to $m_{DM} \sim 1$ TeV (100 GeV) for bb ($\tau^+\tau^-$) channel
- ★ Fermi-LAT is sensitive to the thermal relic density for m_{DM} ~10 GeV and the typical DM-dominated dSph (see later)
- For higher masses sensitivity of Cherenkov telescopes and HAWC still not enough

Dark matter clumps

BSM

- DM galactic satellites (sub-halos) that have not triggered any stellar activity (they shine only in DM-related signals)
- Can only be found serendipitously or in unbiased surveys (Fermi-LAT, HAWC)
- DM clump selection criteria generally based on:
 - No association with astrophysical source/ no emission in other wavelengths
 - Steady sources
 - Spectrum compatible with DM emission
- ★ Selection:
 - 1235 unidentified sources in Fermi-LAT catalogue
 - 44 survive criteria but no preference of DM spectrum over other astrophysical explanations

★ Limits obtained assuming survivors are actually DM clumps and comparing with clumps from N-body simulations

Galaxy clusters

BSM

- ★ Group of gravitationally bound galaxies
- Largest and youngest (i.e. closest) structures in the Universe
- ★ Huge amounts of dark matter (M ~ 10¹⁵ M_☉), but not highly concentrated (except for sub-halos)
 - good candidates to look for DM decay
 - (only hard constraint: DM lifetime should be larger than Hubble time: 10¹⁷s)
- Complex fields of view with possible foregrounds
- * Limits from Perseus cluster (MAGIC, 220h): $\tau_{\rm DM} > 10^{26} - 10^{27} \, {\rm s}$
- Other investigated clusters: Fornax (HESS), Coma (VERITAS+Fermi-LAT), Virgo (Fermi-LAT)

Acciari et al. Phys. Dark. Univ. 22 (2018) 38

Isotropic gamma-ray background

BSM

 All-sky diffuse gamma-ray emission measured by EGRET, Fermi-LAT

★ Sources:

- Unresolved members of extragalactic/highlatitude galactic sources:
 - ✤ AGNs
 - Star-forming galaxies
 - Millisecond pulsars
- Dark matter?
- DM signal searched for in the autocorrelation power spectrum or crosscorrelation with catalogues of astronomical objects
 - DM leaves imprints at different angular scales than other sources
 - Degeneracies broken by investigating in different energy windows and different catalogues

