

Flavour Anomalies Hints of new non-universal interactions?

Antonio Pich

IFIC, U. Valencia – CSIC

XLIX International Meeting on Fundamental Physics (IMPF22), Benasque (Spain), 5-10 September 2022

$V_{cb} \& V_{ub}$: Inclusive–Exclusive Tension

Cabibbo Anomaly $\sim 3 \sigma$

Cabibbo Anomaly $\sim 3 \sigma$

Recalculation of radiative corrections

C.-Y. Seng, 2112.10942

 $\begin{array}{c} \kappa_{\mu 2}/\pi_{\mu 2} \\ \kappa_{\ell 3} \\ 0.222 \\ 0.220 \\ 0.220 \\ 0.960 \\ 0.965 \\ 0.970 \\ 0.975 \\ V_{ud} \end{array}$

V_{ud} : Superallowed $(0^+ \rightarrow 0^+)$ nuclear β transitions $|V_{ud}|^2 = \frac{\pi^3 \log 2}{ft \ G_e^2 m_e^5 (1 + \delta_{\rm BC})} = \frac{(2984.48 \pm 0.05) \,\mathrm{s}}{ft \ (1 + \delta_{\rm BC})}$ $f_{+}(0) = 1 + \mathcal{O}[(m_u - m_d)^2]$ $\delta_{ m RC} = \Delta_R^V + \Delta_{ m Nucl}$, $\mathcal{F}t = ft (1 + \Delta_{ m Nucl})$, $\Delta_{ m Nucl} = \delta_R' + \delta_{ m NS} - \delta_C$ 7t (s) Statistical errors only Hardy-Towner 2020: 3074 $\Delta_P^V = 0.02454$ (19) 3073 $\mathcal{F}t = (3072.24 \pm 0.57_{\text{stat}} \pm 0.36_{\delta_{D}'} \pm 1.73_{\delta_{\text{NS}}}) \text{ s}$ 3072 307 = (3072.24 ± 1.85) s 0.975 V_{ud} $\mathcal{F}t$ error 2.6 larger than in 2015 ($\delta_{\rm NS}$) Į Į 0.974 -Seng et al. Gorchtein 0 973

 $|V_{ud}| = 0.97373$ (31)

2000

1990

$$\rightarrow$$

 $1 - \sum |V_{ui}|^2 = \begin{cases} 0.00206 \ (66)_{K \to \pi \ell \nu} \\ 0.00112 \ (64)_{K/\pi \to \mu \nu} \end{cases}$ 3.1σ 1.7σ 2020

2010 Date of analysis

CP Violation in $K \rightarrow \pi \pi$

$$\eta_{00} \equiv \frac{\mathcal{M}(K_L^0 \to \pi^0 \pi^0)}{\mathcal{M}(K_S^0 \to \pi^0 \pi^0)} \equiv \varepsilon - 2\varepsilon' \qquad , \qquad \eta_{+-} \equiv \frac{\mathcal{M}(K_L^0 \to \pi^+ \pi^-)}{\mathcal{M}(K_S^0 \to \pi^+ \pi^-)} \equiv \varepsilon + \varepsilon'$$

• Indirect CP: $|\varepsilon| = \frac{1}{3} |\eta_{00} + 2\eta_{+-}| = (2.228 \pm 0.011) \cdot 10^{-3}$ • Direct CP: $\operatorname{Re}(\varepsilon'/\varepsilon) = \frac{1}{3} \left(1 - \left| \frac{\eta_{00}}{\eta_{+-}} \right| \right) = (16.6 \pm 2.3) \cdot 10^{-4}$ First evidence in 1988 by NA31

Flavour Anomalies

Time evolution of ε'/ε predictions:

10^{-3} units

- 1983	SD (<i>Q</i> ₆), LO	~ 2	Gilman-Hagelin
- 1990-2000	SD, large m_t (Q_8), NLO	$\sim {\rm few} \cdot 10^{-1}$	Munich, Rome
	+ models of LD contributions	$\sim {\cal O}(1)$	Dortmund, Trieste
- 1999-2001	${\sf SD}+{\sf LD}~(\chi{\sf PT})$ at NLO	1.7 ± 0.9	Scimemi-Pallante-Pich
- 2000-2003	models of LD contributions	$\sim {\cal O}(1)$	Lund, Marseille
- 2003	NLO isospin breaking in $\chi {\sf PT}$	1.9 ± 1.0	Cirigliano-Ecker-Neufeld-Pich
- 2015	Lattice	$\textbf{0.14} \pm \textbf{0.70}$	RBC-UKQCD
- 2015-2017	Dual QCD, Lattice input	$\textbf{0.19} \pm \textbf{0.45}$	Munich
- 2017	NLO χ PT re-analysis	1.5 ± 0.7	Gisbert-Pich
- 2019	χPT re-analysis of NLO IB	1.4 ± 0.5	Cirigliano-Gisbert-Pich-Rodríguez
- 2020 (April)	Lattice re-analysis (no IB)	$\textbf{2.17} \pm \textbf{0.84}$	RBC-UKQCD
- 2020 (May)	Lattice input + χPT IB	1.74 ± 0.61	Munich
	Lattice input + naive IB	1.39 ± 0.52	

Flavour Anomalies

Empirical Evidence

$$\begin{aligned} A[K^0 \to \pi^+ \pi^-] &= A_0 e^{i \,\delta_0} + \frac{1}{\sqrt{2}} A_2 e^{i \,\delta_2} \equiv \mathcal{A}_{1/2} + \frac{1}{\sqrt{2}} \mathcal{A}_{3/2} \\ A[K^0 \to \pi^0 \pi^0] &= A_0 e^{i \,\delta_0} - \sqrt{2} A_2 e^{i \,\delta_2} \equiv \mathcal{A}_{1/2} - \sqrt{2} \mathcal{A}_{3/2} \\ A[K^+ \to \pi^+ \pi^0] &= \frac{3}{2} A_2 e^{i \,\delta_2} \equiv \frac{3}{2} \mathcal{A}_{3/2} \end{aligned}$$

• Unitarity: $\delta_0 = (39.2 \pm 1.5)^\circ \Rightarrow A_0 \approx 1.3 \times \text{Dis}(\mathcal{A}_0)$

$$A_{I} = \operatorname{Dis}(\mathcal{A}_{I}) \sqrt{1 + \tan^{2} \delta_{I}} \qquad \qquad \tan \delta_{I} = \frac{\operatorname{Abs}(\mathcal{A}_{I})}{\operatorname{Dis}(\mathcal{A}_{I})}$$

• Analyticity: $\Delta \operatorname{Dis} (\mathcal{A}_{l})[s] = \frac{1}{\pi} \int dt \, \frac{\operatorname{Abs} (\mathcal{A}_{l})[t]}{t - s - i\epsilon} + \text{subtractions}$ Large δ_{0} \rightarrow Large Abs (\mathcal{A}_{0}) \rightarrow Large correction to $\operatorname{Dis} (\mathcal{A}_{0})$

Claims of an ε'/ε anomaly originate in incorrect treatments of the $\pi\pi$ cut

A. Pich

SM Prediction of ε'/ε

Cirigliano, Gisbert, Pich, Rodríguez-Sánchez, 1911.01359

A. Pich

Flavour Anomalies

First evidence of C/P in charm decays (5.3σ)

LHCb 1903.08726 $\Delta a_{\mathcal{CP}} = (-15.4 \pm 2.9) \cdot 10^{-4}$, $\Delta a_{\mathcal{CP}}^{\text{dir}} = (-15.7 \pm 2.9) \cdot 10^{-4}$

Large uncertainty in SM prediction:

- Naive perturbative QCD (+ LCSR) $\Rightarrow |\Delta a_{CP}^{dir}| \le 3 \cdot 10^{-4}$
- Chala et al, 1903.10490

Grossman-Schacht, 1903.10952

Solomonidi, Vale-Silva, A.P.

- Re-scattering: $\Delta a_{CP}^{dir} \Rightarrow \Delta U = 0$ rule in charm
- Dispersive work in progress

A. Pich

Flavour Anomalies

S. Maccolini, ICHEP 2022

Time-integrated CP asymmetry

$$\mathcal{A}_{\rm CP}(f) \approx a_f^d + \frac{\langle t \rangle_f}{\tau_{D^0}} \Delta Y$$
$$a_f^d \equiv \frac{|\mathcal{M}(D^0 \to f)|^2 - |\mathcal{M}(\bar{D}^0 \to \bar{f})|^2}{|\mathcal{M}(D^0 \to f)|^2 + |\mathcal{M}(\bar{D}^0 \to \bar{f})|^2}$$

 $\mathcal{A}_{\rm CP}(K^-K^+) = (6.8 \pm 5.4 \pm 1.6) \cdot 10^{-4}$

Evidence of direct C/Pin $D^0 \to \pi^- \pi^+$ (3.8 σ) $a^d_{\pi^-\pi^+} = (23.2 \pm 6.1) \cdot 10^{-4}$ $a^d_{K^-K^+} = (7.7 \pm 5.7) \cdot 10^{-4}$ $\rho(a^d_{KK}, a^d_{\pi\pi}) = 0.88$

μ Anomalous Magnetic Moment

$$\mu_{\ell} = \frac{e}{2m_{\ell}} \frac{g_{\ell}}{2}$$

White Paper (2020)	Colangelo, Moriond EW 2021	
Contribution	Value $\times 10^{11}$	
$ \begin{array}{l} HVP \ LO \ (e^+e^-) \\ HVP \ NLO \ (e^+e^-) \\ HVP \ NNLO \ (e^+e^-) \\ HVP \ LO \ (lattice, \ \textit{udsc}) \\ HLD \ (lattice, \ \textit{udsc}) \\ HLD \ (bhenomenology) \\ HLD \ (lattice, \ \textit{uds}) \\ HLD \ (phenomenology + lattice) \\ \end{array} $	6931(40) -98.3(7) 12.4(1) 7116(184) 92(19) 2(1) 79(35) 90(17)	
QED Electroweak HVP $(e^+e^-, LO + NLO + NNLO)$ HLbL (phenomenology + lattice + NLO	116 584 718.931(104) 153.6(1.0) 6845(40) D) 92(18)	
Total SM Value Experiment (E821) Difference: $\Delta a_{\mu} := a_{\mu}^{exp} - a_{\mu}^{SM}$	116 591 810(43) 116 592 089(63) 279(76)	

 $\mathsf{a}_{\ell} \equiv \frac{1}{2} \left(g_{\ell} - 2 \right)$

$$\Delta a_{\mu} \equiv a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = (251 \pm 59) \cdot 10^{-11}$$
(4.2 σ)

,

Light-by-Light Contributions

Colangelo, Moriond EW 2021								
Contribution	PdRV(09) Glasgow consensus	N/JN(09)	J(17)	WP(20)				
π^0, η, η' -poles π, K -loops/boxes S-wave $\pi\pi$ rescattering	114(13) -19(19) -7(7)	99(16) -19(13) -7(2)	95.45(12.40) -20(5) -5.98(1.20)	93.8(4.0) -16.4(2) -8(1)				
subtotal	88(24)	73(21)	69.5(13.4)	69.4(4.1)				
scalars tensors axial vectors <i>u</i> , <i>d</i> , <i>s</i> -loops / short-distance	 15(10) 	 22(5) 21(3)	1.1(1) 7.55(2.71) 20(4)	} - 1(3) 6(6) 15(10)				
c-loop	2.3	-	2.3(2)	3(1)				
total	105(26)	116(39)	100.4(28.2)	92(19)				

Masjuan, Sánchez-Puertas (17); Colangelo, Hagelstein, Hoferichter, Laub, Procura, Stoffer (17-20); Hoferichter, Hoid, Kubis, Leupold, Schneider (18); Bijnens, Hermansson-Truedsson, Laub, Rodríguez-Sánchez (20, 21); ...

Errors reduced, size unchanged

Cannot account for the anomaly

LO Hadronic Vacuum Polarization

Aoyama et al, 2006.04822

$$a_{\mu}^{\rm HVP,LO} = \frac{\alpha^2 m_{\mu}^2}{9\pi^2} \int_{s_{\rm th}}^{\infty} \frac{ds}{s^2} \hat{K}(s) R(s)$$

Dominated (75%) by 2π contribution

$$R(s) = 12\pi \operatorname{Im} \Pi_{em}(s)$$
$$= \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

 $\Delta a_{\mu} \equiv a_{\mu}^{\exp} - a_{\mu}^{SM} = (279 \pm 76) \cdot 10^{-11}$ (3.7 σ)

LO Hadronic Vacuum Polarization

Aoyama et al, 2006.04822

$$a_{\mu}^{\mathrm{HVP,LO}} = \frac{\alpha^2 m_{\mu}^2}{9\pi^2} \int_{s_{\mathrm{th}}}^{\infty} \frac{ds}{s^2} \hat{K}(s) R(s)$$

Dominated (75%) by 2π contribution

$$R(s) = \frac{\sigma^0[e^+e^- \to \operatorname{hadrons}(\gamma)]}{4\pi\alpha^2/(3s)}$$

Data need to be undressed \rightarrow MC

$$\Delta a_{\mu} \equiv a_{\mu}^{\exp} - a_{\mu}^{SM} = (279 \pm 76) \cdot 10^{-11}$$
 (3.7 σ)

LO Hadronic Vacuum Polarization

Dominated (75%) by 2π contribution

$$R(s) = \frac{\sigma^0[e^+e^- \to \text{hadrons}(\gamma)]}{4\pi\alpha^2/(3s)}$$

$$rac{d \Gamma (au^- o
u_ au \, V^-)}{ds} \propto \sigma'^{=1} (e^+ e^- o V^0)$$

The BMW-2020 and au results were not included in the WP 2020 value

A. Pich

Flavour Anomalies

e^+e^- versus au data

Isospin-breaking corrections:

Cirigliano et al, hep-ph/0104267, hep-ph/0207310 Flores-Baez et al, hep-ph/0608084

Updated in Miranda-Roig, 2007.11019

A. Pich

Flavour Anomalies

Major tensions in hadronic e^+e^- data

Experimental Discrepancies

- BaBar/KLOE disagreement at $\rho(\pi\pi)$
- Differences in \(\phi(K^+K^-)\) largely exceed the quoted uncertainties
- Inclusive results larger than exclusive ones around 2 GeV

- Compilation of different data sets with quite different systematics
- Energy scanning versus Initial State Radiation method (BaBar, KLOE)
- Modelling of Final State Radiation needed (usually with scalar QED)
- The most relevant discrepancy for $a_{\mu}^{
 m HVP,LO}$ is Babar vs KLOE at $ho(\pi\pi)$

KLOE data vs other experiments

Discrepancies in the differential distribution are much larger than what gets reflected in the integral over the mass spectrum

Recent Lattice simulations agree with BMW & au

Comparison performed with specific windows in Euclidean time to increase reliability

Electron Anomalous Magnetic Moment

Morel et al, Nature 588 (2020) 61

New measurement of α

 α^{-1} (Rb) = 137.035 999 206 (11)

 $8.1\times 10^{-11} \text{ accuracy}$

5.8 σ discrepancy with Cs experiment

$$\begin{split} \Delta a_e &\equiv a_e^{\exp} - a_e^{\rm SM} \\ &= \begin{cases} (-8.8 \pm 3.6) \cdot 10^{-13} & (\text{Cs}, -2.4\sigma) \\ (+4.8 \pm 3.0) \cdot 10^{-13} & (\text{Rb}, +1.6\sigma) \end{cases} \end{split}$$

Summary

- Flavour structure and *C/P* are major pending questions
- Important cosmological implications (Baryogenesis)
- Sensitive to New Physics: Flavour Anomalies!

Intriguing signals (Most anomalies related to 3rd family)

Many questions. Higher statistics & better systematics (QCD) needed

Eagerly awaiting new experimental results

Don Quixote and the Windmills

Look, your worship, it's just the spectrum of the Standard Model

Massive & dark SUSY states show up through a hidden portal from a warped dimension Backup

Lepton Flavour Universality in Z Decays

V_{ij} Determinations

СКМ	Value	Source	PDG 2022
V _{ud}	0.97373 ± 0.00031	Nuclear β decay	
V _{us}	0.2243 ± 0.0008	$K o (\pi) \ell u$	
V_{ub}	0.00382 ± 0.00020	$b ightarrow u \ell u , B ightarrow \pi \ell u$	
V _{cd}	0.221 ± 0.004	$D ightarrow (\pi) \ell u , u d ightarrow c X$	
V _{cs}	0.975 ± 0.006	$D ightarrow K \ell u , D_s ightarrow \ell u$	
V _{cb}	0.0408 ± 0.0014	$b ightarrow c \ell u , B ightarrow D^{(*)} \ell u$	
V _{td}	0.0086 ± 0.0002	$B^0_d - ar{B}^0_d$ mixing] SM lear
V _{ts}	0.0415 ± 0.0009	$B_s^0-ar{B}_s^0$ mixing	
V_{tb}	1.014 ± 0.029	$par{p},pp o tar{b}+X$	

$$\sum_{j} |V_{uj}|^{2} = 0.9985 (7) , \qquad \sum_{j} |V_{cj}|^{2} = 1.001 (12) , \qquad \sum_{i} |V_{ib}|^{2} = 1.03 (6)$$
$$W \to \ell \bar{\nu}_{\ell} \qquad \Longrightarrow \qquad \sum_{j} \left(|V_{uj}|^{2} + |V_{cj}|^{2} \right) = 2.002 \pm 0.027$$

Flavour Anomalies

D* Observables

It is not possible to accommodate all D* data at 1σ

$$C_P \equiv \frac{C_{S_R}}{C_{S_R}} - C_{S_L}$$

A. Pich

Flavour Anomalies

Sensitivity to individual Wilson coefficients

Solid (dashed) lines indicate ranges satisfying $Br(B_c \rightarrow \tau \nu) < 10\%$ (30%). Fainted lines do not fulfil this constraint

Predictions from global fit:

$$\mathcal{L} \supset \frac{g_2}{2c_W} Z'_{\alpha} \left\{ \left[\bar{s} \gamma^{\alpha} (g_L^Q P_L + g_R^Q P_R) b + h.c. \right] + \bar{\ell} \gamma^{\alpha} (g_V^{\ell} + \gamma_5 g_A^{\ell}) \ell \right\}$$
$$\downarrow$$
$$\frac{e^2}{16\pi^2} V_{tb} V_{ts}^* \cdot \left\{ C_9^{\ell}, C_{10}^{\ell} \right\} = \frac{M_Z^2}{2m_{Z'}^2} \cdot \left\{ g_L^Q g_V^{\ell}, g_L^Q g_A^{\ell} \right\}$$

Many possibilities:

- L_{μ} - L_{τ} Altmannshofer et al, ...
- Z' + VLQ Kamenik et al
- Fermiophobic Falkowski et al
- Horizon. Sym. Guadagnoli et al
- Faisel-Tandeam, ...

More possibilities...

Anatomy of ε'/ε calculation

$$\operatorname{Re}\left(\frac{\varepsilon'}{\varepsilon}\right) = -\frac{\omega_{+}}{\sqrt{2}|\varepsilon|} \left\{ \frac{\operatorname{Im} A_{0}^{(0)}}{\operatorname{Re} A_{0}^{(0)}} \left(1 - \Omega_{\text{eff}}\right) - \frac{\operatorname{Im} A_{2}^{\text{emp}}}{\operatorname{Re} A_{2}^{(0)}} \right\}$$

 $\mathcal{A}_{n}^{(X)} = a_{n}^{(X)} \left[1 + \Delta_{L} \mathcal{A}_{n}^{(X)} + \Delta_{C} \mathcal{A}_{n}^{(X)} \right]$ Cirigliano-Gisbert-Pich-Rodríguez 2019

() $O(p^4) \chi PT$ Loops: Large correction (NLO in $1/N_c$) FSI $\Delta_L \mathcal{A}_{1/2}^{(8)} = 0.27 + 0.47 i$; $\Delta_L \mathcal{A}_{3/2}^{(g)} = -0.50 - 0.21 i$ **2** $O(p^4)$ LECs fixed at $N_C \rightarrow \infty$: Small correction $\Delta_{C} [\mathcal{A}_{1/2}^{(8)}]^{-} = 0.10 \pm 0.05$; $\Delta_{C} [\mathcal{A}_{3/2}^{(g)}]^{-} = -0.19 \pm 0.19$ **3** Isospin Breaking $O[(m_u - m_d) p^2, e^2 p^2]$: Sizeable correction $\Omega_{\rm off} = 0.11 \pm 0.09$ Re(g₈), Re(g₂₇), $\chi_0 - \chi_2$ fitted to data 4

KLOE data vs other experiments

KLOE-2, 1711.03085

Internal tensions also among the three KLOE datasets: 2008, 2010, 2012

Flavour Anomalies

Comparison with SND 2020

2004.00263

Flavour Anomalies

Isospin-breaking corrections applied to au data

Z. Zhang, 1511.05405

In order to achieve compatibility with e^+e^- data, FJ introduces huge IB corrections (blue line), which are not supported by the explicit calculations available

My Personal Summary

- Unsatisfactory situation
- Large (underestimated) systematic errors
- Better data samples needed

Belle-II, Beijing, Novosibirsk

- Lattice will certainly help
- Forthcoming MUonE experiment at CERN: σ(μe → μe)
 Measure Π_{em}(Q²) with space-like data

The μ anomaly does not necessarily imply New Physics

Belle does not see any asymmetry at the 10⁻² level

$$A_i^{\text{CP}} \simeq \left\langle \cos\beta\cos\psi \right\rangle_i^{\tau^-} - \left\langle \cos\beta\cos\psi \right\rangle_i^{\tau^+}$$

bins (*i*) of $W = \sqrt{\varrho^2}$
 $\beta = K_s$ direction in hadronic rest frame

 $\psi = \tau$ direction

BaBar signal incompatible (with EFT) with other sets of flavour data

Cirigliano-Crivellin-Hoferichter, 1712.06595

Rendón-Roig-Toledo, 1902.08143

Flavour Anomalies