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Computing in High Energy Physics
● The computing system (hardware and software) is an essential element in 

the instrumentation and scientific exploitation of HEP experiments
● The sheer volume and complexity of data in HEP experiments requires 

complex data acquisition, processing, simulation and analysis
●

3



High Energy Physics data-intensive computing
●  HEP computing driven by large-scale data flow + volume

○ Scale of data from 10s of TB to 100s of PB/year
● Data-intensive applications need performance, reliability, and low latency
● Overall balance of compute + I/O + storage + networking needs to be 

carefully designed
○ Multiple IO requirements, e.g. high I/O workflows: 10-100 Mbit/s/core

● Large variety of workflows 
○ Data calibration, reconstruction, simulation
○ Data reduction (skimming, slimming), data analysis

● Data pipelines can be complex and need to be run many times
○ Individual campaigns can last for months

● Most experimental data requires fine-grained analysis
○ Hundreds of analysis users using resources in a “chaotic” way



The Worldwide LHC 
Computing Grid (WLCG)
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WLCG: design principles and enabling technologies
● Computing infrastructure geographically distributed and federated

○ Glued through common software interfaces
○ High availability (24x7 in big centers) and reliability (>95%)

● Tiered structure
○ Tier-0: storage of raw data, prompt data processing (calibration, reconstruction)
○ Tier-1: custodial archival of data, organized data processing
○ Tier-2: data simulation and analysis 

● Sites interconnected with low latency and high bandwidth networks
○ Optical private network (LHCOPN) interconnecting Tier-0 and Tier-1 sites  
○ LHC Open Network Environment (LHCONE) linking Tier 2 sites 

● Seamless access through specific software services 
○ Authentication and authorization system for secure access to services
○ Data management: data transfers, cataloguing, access
○ Workflow management: task orchestration (data processing, simulation and 

analysis), job execution, monitoring 6



Worldwide LHC 
Computing Grid

Distributed high-throughput computing 
infrastructure to store, process & 
analyze data produced by LHC 
experiments
● 167 sites, 42 countries, 63 MoU's
● ~1 million CPU cores
● ~750 PB disk storage
● ~1250 PB tape storage
● Optical private network 

(LHCOPN) and overlay over 
NRENs (LHCONE) with 10/100 
Gbps links 

● ~Tbps LAN bandwidth between 
compute and storage nodes at 
sites
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Major features and capabilities of HEP computing infrastructure
● Networks

○ International and national, private and public
●  Data management

○ Key to success, data transfers, storage systems, data management tools and data 
organization

●  Compute
○ Provision of resources and workload scheduling, execution and monitoring

● Authentication and authorization 
○ The mechanism of federation, single sign on, etc

● Operations support
○ Security, incidence response, problem tracking, daily operations, upgrade campaigns

● Diverse experiment-specific services and tools, applications

Distributed data-intensive high throughput computing (HTC)
Precursor of Big Data processing and Cloud computing 8



Hardware technologies in WLCG

CPU: x86 processors 
(Intel, AMD)
~1 million CPU cores 

Disk: hard disk drives 
(up to 20 TB/disk)
~750 petabytes 

Tape: cartridges 
(up to 18 TB/tape)
~1250 petabytes 
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Hardware technologies in WLCG

Network: 
Ethernet switches interconnecting compute and storage hardware at a site (LAN)
Ethernet routers  interconnecting sites (Wide Area Network)
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Optical private Ethernet 
networks T0 ↔ T1s

Typically 100 Gbps 
WAN links

Over infrastructure 
provided by national 
research and academic 
network providers 
(e.g. Geant, RedIris)
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WLCG Computing 
resource evolution
Countries pledge resources annually 
according to the experiment needs
Currently:
~1M CPU cores, ~2 exabyte storage
~20% annual growth 

~1 million CPU cores

750 Petabytes

1 exabyte
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Hardware cost evolution
● Growth based on assumption of “flat budget”

○ More hardware with same money profiting from 
decreasing hardware prices

○ 10-20% price reductions in the past

● Unclear if trend will continue
○ Large impact

CPU

Disk
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WLCG Memorandum of Understanding in Spain
● Signed by Spain in 2007
● Contribute with 5% of computing 

resources at the T1 and T2 levels 
for the ATLAS, CMS and LHCb 
experiments 
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Spain in WLCG

Spanish contribution:

● ~5% resources T1 & T2 (MoU)
● 1 Tier-1 center (PIC, CIEMAT-IFAE) 
● 6 Tier-2 centers 

○ CMS federation: CIEMAT-Madrid & 
IFCA Santander

○ ATLAS federation: IFIC-Valencia, 
IFAE-Barcelona, UAM-Madrid

○ LHCb federation: USC-Santiago, 
UB-Barcelona
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WLCG-Spain: a success story
CPU 
power

Disk 
capacity

Tape 
capacity

● ~Two decades contributing to WLCG at high level
○ ~5% WLCG resources, ~1500M CPU hours delivered
○ Providing 1 of the 13 Tier-1 sites worldwide (PIC)
○ Federated Tier-2 sites for ATLAS (IFIC, IFAE, UAM), 

CMS (CIEMAT, IFCA), LHCb (USC, UB)
○ Among the most reliable sites in WLCG

● A large effort from HEP community and institutions
○ ~24 M€ funding from HEP national plan since 2001
○ Funding from institutions of the same order

■ Funding personnel, electricity, infrastructure
● Large community of experts in distributed high 

throughput computing
○ Contributions to LHC computing, development, 

integration, operations, management
● Big strategic asset for Spanish HEP community!

~20k CPU 
cores

15 PB

20 PB
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WLCG-ES sustainability challenge
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▪ Decreasing funding from HEP 
national programme
▪ From ~2.5M€/year in 2007 to 

~0.5 M€/year in 2019
▪ Contribution reduced from 

5% to 4%
▪ Aging equipment 

(~50% > 5 years)
▪ Big effort to complement funding 

and resources
▪ From institutions
▪ From national/regional scientific 

infrastructure calls
▪ Required funding ~1.5M€/year 



WLCG’s success
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● ~50∙109 CPU-hours delivered
● ~2 exabyte of experimental and 

simulated data stored



WLCG: Lessons learnt
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▪ The network is a fundamental resource and opportunity
▪ Rely even more on the network to add flexibility and reduce resource needs

▪ Distributed data management and storage is expensive
▪ hardware and operations 
▪ Data pre-placement is very complex. Remote data access can be inefficient

▪ A trusted federated infrastructure is of tremendous value and importance
▪ Although X.509 authorization/authentication model difficult to use 

▪ Hardware and cost evolution is becoming a serious concern
▪ Only support for x86 CPU architecture is a problem
▪ Find and use additional resources outside WLCG

▪ Scalability and sustainability are key issues
▪ Move to industry standards, use common tools



● Run 3 (2022-2025): ~2x more data. Evolutionary changes in computing models
● Run 4 (HL/LHC, 2029+): ~20-30x more data. Revolutionary changes required

20

LHC / HL-LHC plan



LHCb Run 3
● All-software-trigger @ 30 MHz readout
● >10x increase in output data rate (10 GB/s)
● Discarding raw data for ~⅔ of the events after prompt 

reconstruction 
● Large resource increases required (~50%/year) 
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The HL-LHC computing challenge: ATLAS
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● 2018 predictions: ~4-5x gap between “flat budget - 20% annual increase” and 
resource requirements for HL-LHC

● Intense R&D to reduce data and compute resource requirements

~10M cores 5 Exabytes

CPU Disk 



The HL-LHC computing challenge: CMS

CPU Disk

~4M cores 2 Exabytes
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LHC computing roadmap
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LHC computing roadmap: storage

Reduce amount of data 
▪ Current data processing model is based on data replication and 

local access
▪ Local access to data is more efficient (bandwidth, latency, reliability)
▪ A single site has not enough CPU to  to fulfil the processing demands
▪ Datasets are replicated several times at different sites for performance 

reasons
▪ Lots of sites (150+) with managed storage
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LHC computing roadmap: storage

▪ Build powerful data repositories (data lakes) and serve data to remote 
CPU resources 

▪ Reduce operational cost: deploy fewer (larger & federated) storage services
▪ Global redundancy, economy of scale

▪ Efficient data streaming needed: Content delivery service, data caching
▪ Caching layer to hide network latency 

(read-ahead) and reduce data transfers 
over the network (cache hits)

▪ Data cache is unmanaged and 
requires small capacity
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Reduce amount of data
● Less data ➦ less storage, less processing and 

analysis compute needs
○ Reduce trigger output rate (HL-LHC planned 7.5 kHz ➛ 

?)
○ Reduce data formats

● Impact in physics?

● NanoAOD format in CMS
○ ~1 kB/event
○ Goal: to be used by 50% of physics analyses
○ Reduces by 4x CMS storage needs for HL-LHC
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Storage reduction by using smaller data format

▪ Intense R&D programme to reduce computing resource needs
▪ Use of nanoAOD data format reduces disk space needs by 4x!
▪ Flat budget should be ~enough!!! But sustained funding required!

2018 2021
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ATLAS storage requirements reduction

29



LHC computing roadmap: CPU
Reduce CPU needs or get access to new resources
▪ Use external resources

▪ Supercomputers?
▪ Use new CPU architectures

▪ Accelerators or co-processors (GPU)
▪ Make the software more efficient

▪ New of faster algorithms (parallelization, machine learning)

▪ All that requires significant investment in software, infrastructure and 
service  adaptations
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Exploiting supercomputers for LHC 
● Lot of public funding worldwide in supercomputer (HPC) facilities 

○ Defined roadmap towards ExaFlop machines 
■ e.g. EuroHPC B€ funding: 2 ~200 PFlop machines by 2022, 2 exaFlop by 2025

○ Funding agencies pushing us to use those resources

● Data intensive computing with HPC facilities is a challenge
○ Limited/no network connectivity in compute nodes
○ Limited storage for caching input/output event data files

● Our applications are not really suited for HPC
○ No large parallelization (no use of fast node interconnects)
○ No substantial use of accelerators (GPU)

● Substantial integration work to make HPC work for HTC
○ No one-fit-all solution: each facility is different
○ Little effort available in the LHC experiments

● Not suitable resource allocation model
○ We would need a guaranteed share of resources rather than apply for allocations 31



Barcelona supercomputing center & LHC computing
● The Barcelona Supercomputing Center (BSC) is the largest supercomputing 

center in Spain
○ MareNostrum4 (150k CPU cores); MareNostrum5 10x larger (expected from 2023)

● BSC - WCLG-ES agreement
○ LHC computing designated  as a BSC “strategic project”
○ Access to dedicated resources (up to 7% of MareNostrum4) 
○ Providing CPU for LHC simulation (~50M hours/year, ~50% of WLCG-ES CPU)

32



Hardware evolution
● WLCG compute resources based on x86 architecture (Intel, AMD)
● Resources outside WLCG (e.g. HPCs) available in other CPU architectures

○ IBM Power9
○ ARM (low energy consumption with lightweight cores)

● Dramatic development of massively parallel architectures 
○ Graphics Processing Units (GPU)
○ Field Programmable Gate Arrays (FPGA) 

● New HPC machines will bring a lot of these cards
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Use of compute accelerator cards

● Potential large speed improvement from hardware 
accelerated coprocessors
○ Larger performance/€ and smaller electric 

consumption/performance
● Difficult to use

○ Need to re-engineer HEP codes to a massively parallel 
environment

○ Data ingestion can be a limiting factor
● Very suitable for certain applications

○ E.g., excellent at training deep neural networks
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Software optimization
● Recent initiatives

○ HEP Software Foundation (coordinate software R&D for LHC)
○ Institute for Research & Innovation in Software for HEP (IRIS-HEP); 25M$, 5 years
○ Proposal a EU scientific software institute
○ COMCHA  forum in Spain

● Exploit new hardware architectures
○ High level parallelism, new instruction sets, non x86 processors
○ Support in software frameworks for heterogeneous hardware

■ Support for multi-threading, vectorisation, CPU/GPU orchestration
● Innovative algorithms

○ Machine/deep learning
○ Recast physics problem as machine learning problem vs re-rewrite physics 

algorithms for new hardware 35



CPU reduction by improving algorithms

2018 2021

▪ Intense R&D programme to reduce computing 
resource needs

▪ Improve simulation and reconstruction algorithms
▪ Offload part of the processing work to GPUs 

(~3x better cost/performance)
36



ATLAS CPU needs reduction by using fastsim/fastreco

Faster physics algorithms: 
exploit more broadly fast 
simulation & reconstruction
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HL-LHC computing challenge status
● Intense R&D has already paid off in a drastic reduction of computing resource 

needs for HL-LHC
○ Attainable with constant funding (~20% annual increase with cheaper hardware)

● Data challenge can be met extensively using smaller data formats 
○ ~1 kB/event for analysis 

● Compute challenge can be met through software improvements, speeding up 
algorithms and using new hardware architectures 
○ GPUs and accessing supercomputing resources

● But keeping the current level of funding is needed!!!
○ High electricity prices is a serious concern!
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Machine 
learning

● Learn (training) and predict (inference 
- classification or regression)

● Mainly based on (deep) multilayer 
neural networks (DNN)

● Flourished due to wealth of data and 
huge processing capacity

○ New hardware architectures (GPU, TPU)
○ Developments of AI algorithms 39



Use of ML in HEP
● Started to be used in 1990s and 2000s; explosion of applications in 2010s
● Used in almost all aspects of the HEP experiments with large impact

○ Data analysis 
■ Event classification, anomaly detection

○ Online event selection (trigger)
○ Data quality monitoring

■ Anomaly detection
○ Object reconstruction, identification and calibration

■ Jet substructure, b-tagging, etc
○ Event fast simulation

■ Electromagnetic calorimeter showering
● Machine learning in HEP community white paper

○ Outline of R&D for the next decade 40

https://arxiv.org/pdf/1807.02876.pdf


Data analysis ecosystem
● Challenges in scaling up HEP analysis to meet the needs of HL-LHC

○ 2nd Analysis ecosystem workshop, 2022 
● Development of highly performant data analysis systems that reduce 

"time-to-insight" and maximize physics
○ Specialized infrastructure and services that provide integrated data, 

software and computational resources to execute analysis workflows
○ Innovate in existing community tools like ROOT and incorporate new 

cutting-edge python data science tools
○ Fast analysis turnaround is key

■ Fast access to input data, data processing parallelism
○ New data formats for performance reasons (columnar analysis, RNTuple)
○ Declarative interfaces (RDataFrame, Coffea)
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Quantum computing
● Quantum technology is an emerging field of physics and engineering with the 

potential to revolutionise science and society
○ Quantum effects, such as superposition and entanglement, are used to speed 

up certain classes of computational problems beyond the limits achievable with 
classical systems based on logical bits

● Large investment in development of quantum technologies for computing
● CERN Quantum Technology Initiative 

○ CERN ambitions to be at the forefront of this revolution
○ Foster innovative ideas in the field of high-energy physics and act as a hub for 

innovation and knowledge creation and sharing
○ Collaboration with industry and academia
○ Ongoing R&D projects

■ Computing and algorithms, quantum sensors, communication and networks
○ Strategy and roadmap 42

https://quantum.cern/research
https://zenodo.org/record/5846455


Quantum computing in Spain
● Quantum Computing Technology Group at IFAE

○ Building quantum processors out of superconducting quantum circuits
● Quantic group at BSC

○ Leading the Quantum Spain project to create a national quantum 
computing ecosystem for Artificial Intelligence 
■ Funded with 20 M€ together with other members of Spanish supercomputing 

network
■ Build a quantum computer with superconducting qubits
■ Create a cloud-based remote access service to the processor, to enable 

industry and the public sector to experiment with new quantum algorithms
■ Develop useful quantum algorithms
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https://qct.ifae.es/


Leveraging WLCG infrastructure and services
● Other future HEP projects beyond LHC are largely increasing their 

experimental data volumes and processing requirements
○ Neutrinos (DUNE), high energy gamma rays (CTA), gravitational waves (ET), radio 

astronomy (SKA), etc
● Create economies of scale, through the adoption of common approaches for 

data management
● Share existing infrastructure

○ Sites supporting several projects using the same tools
● Use existing services

○ Large scale data management (data transfers, data streaming, caching, etc)
○ Compute resource provisioning and scheduling 
○ Access to opportunistic resources using existing interfaces (HPCs, Clouds)
○ Authentication and Authorization infrastructure 44



Support of HEP experiments at PIC

▪ Tier-1 for ATLAS, CMS, LHC
▪ Tier-0 for MAGIC and PAUS 
▪ Science Data Center for EUCLID
▪ Data center for CTA
▪ Support for VIRGO/LIGO, 

T2K, DUNE
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The ESCAPE project
● ESCAPE (European Science Cluster of Astronomy & Particle physics ESFRI 

research infrastructures) brings together the astronomy, astroparticle and 
particle physics communities with aligned challenges of data-driven research

● EU funded project, 2019-2023, 16 M€
● Build a link between ESFRI projects and e-infrastructure providers
● Provide access to a scalable federated data infrastructure

46



ESCAPE consortium
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  Outlook
▪ Management of exabyte-scale science data in HEP

▪ HL-LHC and other experiments reaching similar scales
▪ Building on solid ground

▪ Distributed high throughput computing infrastructure developed over the past 
two decades for LHC computing

▪ Intense R&D program ongoing
▪ Changing landscape in resources, architecture and technologies 

▪ Heterogeneous facilities (HPCs, dedicated HTC data infrastructure) and 
resources (GPU)

▪ New technologies, software algorithms  (machine learning, quantum 
computing)

▪ Federated, network-centric computing is even more important for future
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  Outlook
▪ Sustainability 

▪ Infrastructures & centres likely to be common between HEP & Astronomy, 
Astroparticle, Gravitational Waves, etc. 
▪ Leverage infrastructure, effort, technologies

▪ HEP should keep at the forefront 
▪ Share our experience
▪ Synergies and collaborations across disciplines and domains is important 

and positive 
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