

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

[Prospects for the Future]

P. Conde Muíño

Outline

- Where do we stand?
- What are the main physics questions today?
- Future accelerators
- Update of the European Strategy for Particle Physics

Standard Model

Extensively probed Remarkable agreement between measurements and

experiment

Standard Model Total Production Cross Section Measurements

[qd 10¹¹ δ 10⁶ 80 ub⁻¹ ATLAS Preliminary hunnum Theory $\sqrt{s} = 7,8,13$ TeV 10⁶ LHC pp $\sqrt{s} = 13$ TeV ╺╴ Data 3.2 - 139 fb⁻¹ 10⁵ -**A**-0 LHC pp $\sqrt{s} = 8$ TeV Data 20.2 - 20.3 fb⁻¹ 10^{4} LHC pp $\sqrt{s} = 7$ TeV 10^{3} -**O**-Data 4.5 - 4.6 fb⁻¹ ____ 0 10² ___□ *****•• _____ ____ 10^{1} **0** VBF 1 10^{-1} tīΗ (×0.3) $(\times 0.2)$ 10^{-2} t tīW tīZ pp W Ζ tī Wt Н ww WΖ ΖZ tītī t WWV t-chan s-chan

Status: February 2022

Standard Model

Extensively probed Remarkable agreement between measurements and experiment

Standard Model Production Cross Section Measurements

Status: February 2022

Last missing fundamental particle in the SM

Is this the last missing piece?

 Is this the Standard Model Higgs?

$$\mathscr{L}_{SM} = D_{\mu}H^{\dagger}D_{\mu}H - (y_{ij}H\bar{\psi}_{i}\psi_{j} + h.c.) + \mu^{2}H^{\dagger}H - \frac{\lambda}{2}(H^{\dagger}H)^{2}$$

Bosons

Fermions

Higgs potential

$$(m_W^2 W^{\mu +} W^{-}_{\mu} + \frac{1}{2} m_Z^2 Z^{\mu 0} Z^0_{\mu}) (1 + \frac{h}{v})^2$$

 $\frac{h}{r})^2 \qquad -\sum_f m_f \bar{f} f(1+\frac{h}{v})$

$$\frac{1}{2}m_{h}^{2}h^{2} + \lambda_{3}vh^{3} + \frac{1}{4}\lambda_{4}h^{4}$$

$$\mathscr{L}_{SM} = D_{\mu}H^{\dagger}D_{\mu}H - (y_{ij}H\bar{\psi}_{i}\psi_{j} + h.c.) + \mu^{2}H^{\dagger}H - \frac{\lambda}{2}(H^{\dagger}H)^{2}$$

Bosons

Fermions

Higgs potential

$$\frac{1}{2}m_{h}^{2}h^{2} + \lambda_{3}vh^{3} + \frac{1}{4}\lambda_{4}h^{4}$$

$$\mathscr{L}_{SM} = D_{\mu}H^{\dagger}D_{\mu}H - (y_{ij}H\bar{\psi}_{i}\psi_{j} + h.c.) + \mu^{2}H^{\dagger}H - \frac{\lambda}{2}(H^{\dagger}H)^{2}$$

$$\mathscr{L}_{SM} = D_{\mu}H^{\dagger}D_{\mu}H - (y_{ij}H\bar{\psi}_{i}\psi_{j} + h.c.) + \mu^{2}H^{\dagger}H - \frac{\lambda}{2}(H^{\dagger}H)^{2}$$

Bosons Fermions Higgs potential
 $(m_{W}^{2}W^{\mu+}W_{\mu}^{-} + \frac{1}{2}m_{Z}^{2}Z^{\mu0}Z_{\mu}^{0})(1 + \frac{h}{\nu})^{2} - \sum_{i}m_{f}\bar{f}f(1 + \frac{h}{\nu}) \frac{1}{2}m_{h}^{2}h^{2} + \lambda_{3}\nu h^{3} + \frac{1}{4}\lambda_{4}h^{4}$

12

Higgs boson couplings to bosons & fermions

Direct measurement of
 σ × BR

Precision ATLAS & CMS

- ▶ ggF: better than 10%
- Other production modes:
 10-20%
- ► BR~7-12%

 $\sigma \times B$ normalized to SM prediction

- ATLAS p-value: 72%
- Similar results for CMS

Coupling modifiers

For each interaction vertex introduce an effective vertex with a coupling modifier κ_i

Current precision~3-20%

Higgs Cross section in different kinematic regions

Probing differential distributions Combined p-value:

▶ 94%

Probing the structure of coupling vertices

Higgs self coupling

- Determine the shape of the Higgs potential $\frac{1}{2}m_h^2h^2 + \lambda_3vh^3 + \frac{1}{4}\lambda_4h^4$
- Di-Higgs production

 κ_{2V}

How does all fit together?

- Higher order corrections relate different SM observables
- Global fit
 - P-value of combined fit: 23%

W, top and Higgs boson masses

M_w [GeV]

80.5

80.45

80.4

80.35

80.3

80.25

- $M_{top'}M_{W'}M_H$ related through higher order electroweak corrections

- Need very high precision —> extremely challenging
- Controversial experimental results on $M_{\scriptscriptstyle W}$

Flavour anomalies

$$R(D^{(*)}) = \frac{BF(\overline{B} \to D^{(*)}\tau^{-}v_{\tau})}{BF(\overline{B} \to D^{(*)}\mu^{-}v_{\mu})}$$

Flavour anomalies

- Differential branching fraction systematically low at high q^2

Neutrino masses

Experimental data

de Salas et al, JHEP 02 (2021) 071[arXiv:2006.11237]

Many answered questions remain...

- Why is there a matter-antimatter asymmetry in the Universe?
- What are dark matter and dark energy?
- Why is gravity so weak?
- Why is the Higgs boson so light (naturalness/hierarchy problem)?
- Why three fermion families?
- Why do neutral leptons, charged leptons and quarks behave differently?
- What is the origin of neutrino masses and oscillations?

Searches for new exotic particles at the LHC

ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits

Status: July 2022

ATLAS Preliminary

 $\int \mathcal{L} dt = (3.6 - 139) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$

Status. July 2022		$\int \mathcal{L} dt = (3)$.6 – 139) fb⁻¹	√ <i>s</i> = 8, 13 TeV
$\underbrace{\qquad Model \qquad \qquad \ell, \gamma Jets \dagger \ E_{T}^{m}$	l ^{iss} ∫£ dt[fb	⁻¹] Limit		Reference
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	es 139 - 36.7 - 139 - 3.6 - 139 - 139 - 36.1 es 139 es 36.1 es 36.1	Mas 9.4 TeV Mas 9.55 TeV Gec mass 4.5 TeV Gec mass 2.3 TeV Gec mass 2.0 TeV		2102.10874 1707.04147 1910.08447 1512.02586 2102.13405 1808.02380 2004.14636 1804.10823 1803.09678
$\begin{array}{cccc} & \mathbf{\hat{SSM}} \stackrel{W' \to \bar{\mathbf{fr}}}{} & \mathbf{\hat{r}} & \mathbf{\hat{r}} & \mathbf{\hat{r}} & \mathbf{\hat{r}} & \mathbf{\hat{r}} \\ \mathbf{\hat{SSM}} \stackrel{W' \to \bar{\mathbf{fr}}}{} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} \\ \mathbf{\hat{SSM}} \stackrel{W' \to \bar{\mathbf{fr}}}{} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} \\ \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} \\ \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} \\ \mathbf{\hat{s}} & \mathbf{\hat{s}} \\ \mathbf{\hat{s}} & \mathbf{\hat{s}} \\ \mathbf{\hat{s}} & \mathbf{\hat{s}} \\ \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} \\ \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} \\ \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} \\ \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} \\ \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} \\ \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} & \mathbf{\hat{s}} \\ \mathbf{\hat{s}} \\ \mathbf{\hat{s}} & \mathbf{\hat{s}} \\ \mathbf{\hat{s}} & \mathbf{\hat{s}} \\ \mathbf{\hat{s}} & \mathbf{\hat{s}} \\ \mathbf{\hat{s}} \\ \mathbf{\hat{s}} & \mathbf{\hat{s}} \\ \mathbf{\hat{s}} \\ \mathbf{\hat{s}} \\ \mathbf{\hat{s}} \\ \mathbf{\hat{s}} \\ \mathbf{\hat{s}} \\ \mathbf$	es 139 es 139		$\label{eq:gv} \begin{split} & \Gamma/m = 1.2\% \\ & g_V = 3 \\ & g_V = 1, g_f = 0 \\ & g_V = 3 \\ & g_V = 3 \\ & g_V = 3 \\ & m(N_R) = 0.5 \text{TeV}, g_L = g_R \end{split}$	1903.06248 1709.07242 1805.09299 2005.05138 1906.05509 ATLAS-CONF-2021-025 ATLAS-CONF-2021-043 2004.14636 ATLAS-CONF-2022-005 2207.00230 2207.00230 1904.12679
$ \begin{array}{c} \text{Cl} qqqq & - 2j & - $	- 37.0 - 139 - 139 - 139 es 36.1	Λ Λ 1.8 TeV Λ 2.0 TeV Λ 2.5 TeV	21.8 TeV η_{LL}^- 35.8 TeV η_{LL}^- $g_* = 1$ $ C_{4t} = 4\pi$	1703.09127 2006.12946 2105.13847 2105.13847 1811.02305
Pseudo-scalar med. (Dirac DM) 0 e, μ, τ, γ 1 – 4 j Ye	es 139 es 139 es 139 139	mmed 2.1 TeV mmed 376 GeV 3.1 TeV mmed 560 GeV 3.1 TeV	$\begin{array}{l} g_q = 0.25, \ g_{\chi} = 1, \ m(\chi) = 1 \ {\rm GeV} \\ g_q = 1, \ g_{\chi} = 1, \ m(\chi) = 1 \ {\rm GeV} \\ \tan\beta = 1, \ g_Z = 0.8, \ m(\chi) = 100 \ {\rm GeV} \\ \tan\beta = 1, \ g_{\chi} = 1, \ m(\chi) = 10 \ {\rm GeV} \end{array}$	2102.10874 2102.10874 2108.13391 ATLAS-CONF-2021-036
$\begin{array}{cccc} Scalar LQ 2^{rd} & gen & 2\mu & \geq 2 i & Yi \\ Scalar LQ 3^{rd} & gen & 1 \tau & 2b & Yi \\ Scalar LQ 3^{rd} & gen & 0 e, \mu & \geq 2 i, \geq 2b & Yi \\ Scalar LQ 3^{rd} & gen & 0 e, \mu \geq 1 \tau \geq 1 j, \geq 1b & - \\ Scalar LQ 3^{rd} & gen & 0 e, \mu, \geq 1 \tau \sim 1 j, \geq 1b & - \\ Scalar LQ 3^{rd} & gen & 0 e, \mu, \geq 1 \tau \sim 1 j, \geq 1b & - \\ Scalar LQ 3^{rd} & gen & 0 e, \mu, \geq 1 \tau \sim 1 j, \geq 1b & - \\ Scalar LQ 3^{rd} & gen & 0 e, \mu, \geq 1 \tau \sim 1 j, \geq 1b & - \\ Scalar LQ 3^{rd} & gen & 0 e, \mu, \geq 1 \tau \sim 1 j, \geq 1b & - \\ Scalar LQ 3^{rd} & gen & 0 e, \mu, \geq 1 \tau \sim 1 j, \geq 1b & - \\ Scalar LQ 3^{rd} & gen & 0 e, \mu, \geq 1 \tau \sim 1 j, \geq 1b & - \\ Scalar LQ 3^{rd} & gen & 0 e, \mu, \geq 1 \tau \sim 1 j, \geq 1b & - \\ Scalar LQ 3^{rd} & gen & 0 e, \mu, \geq 1 \tau \sim 1 j, \geq 1b & - \\ Scalar LQ 3^{rd} & gen & 0 e, \mu, \geq 1 \tau \sim 1 j, \geq 1b & - \\ Scalar LQ 3^{rd} & gen & 0 e, \mu, \geq 1 \tau \sim 1 j, \geq 1b & - \\ Scalar LQ 3^{rd} & gen & 0 e, \mu, \geq 1 \tau \sim 1 j, \geq 1b & - \\ Scalar LQ 3^{rd} & gen & 0 e, \mu, \geq 1 \tau \sim 1 j, \geq 1b & - \\ Scalar LQ 3^{rd} & gen & 0 e, \mu, \geq 1 \tau \sim 1 j, \geq 1b & - \\ Scalar LQ 3^{rd} & gen & 0 e, \mu, \geq 1 \tau \sim 1 j, \geq 1b & - \\ Scalar LQ 3^{rd} & gen & 0 e, \mu, \geq 1 \tau \sim 1 j, \geq 1b & - \\ Scalar LQ 3^{rd} & gen & 0 e, \mu, \geq 1 \tau \sim 1 j, \geq 1b & - \\ Scalar LQ 3^{rd} & gen & 0 e, \mu, \geq 1 \tau \sim 1 j, \geq 1b & - \\ Scalar LQ 3^{rd} & gen & 0 e, \mu, \geq 1 \tau \sim 1 j, \geq 1b & - \\ Scalar LQ 3^{rd} & gen & 0 e, \mu, \geq 1 \tau \sim 1 j, \geq 1b & - \\ Scalar LQ 3^{rd} & gen & 0 e, \mu, \geq 1 \tau \sim 1 j, \geq 1b & - \\ Scalar LQ 3^{rd} & gen & 0 e, \mu, \geq 1 \tau \sim 1 j, \geq 1 b & - \\ Scalar LQ 3^{rd} & gen & 0 e, \mu, \geq 1 \tau > 1 j, \geq 1 b & - \\ Scalar LQ 3^{rd} & gen & 0 e, \mu, \geq 1 t & 0 & - \\ Scalar LQ 3^{rd} & gen & 0 e, \mu, \geq 1 t & 0 & - \\ Scalar LQ 3^{rd} & gen & 0 & - \\ Scalar LQ 3^{rd} & gen & 0 & - \\ Scalar LQ 3^{rd} & gen & 0 & - \\ Scalar LQ 3^{rd} & gen & 0 & - \\ Scalar LQ 3^{rd} & gen & 0 & - \\ Scalar LQ 3^{rd} & gen & 0 & - \\ Scalar & gen & 0 & - \\ Scal$	es 139 es 139 es 139 es 139 - 139 es 139 es 139 es 139	LO mass 1.7 TeV LO ^a mass 1.2 TeV LO ^a mass 1.24 TeV LO ^a mass 1.24 TeV	$\begin{array}{l} \beta=1\\ \beta=1\\ \mathcal{B}(LQ_y^v\rightarrow br)=1\\ \mathcal{B}(LQ_y^u\rightarrow tr)=1\\ \mathcal{B}(LQ_y^u\rightarrow tr)=1\\ \mathcal{B}(LQ_y^u\rightarrow br)=1\\ \mathcal{B}(LQ_y^u\rightarrow br)=1\\ \mathcal{B}(LQ_y^u\rightarrow br)=0.5, \mbox{ YM coupl.} \end{array}$	2006.05872 2006.05872 2108.07665 2004.14060 2101.11582 2101.12527 2108.07665
$\begin{array}{c} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $	36.1 es 36.1 es 139 es 36.1	B mass 1.34 TeV T ₅₇₃ mass 1.64 TeV T mass 1.0 TeV Y mass 1.85 TeV B mass 2.0 TeV	$\begin{array}{l} {\rm SU(2) \ doublet} \\ {\rm SU(2) \ doublet} \\ {\rm SU(2) \ doublet} \\ {\rm SU(2) \ singlet, \ \kappa_T=0.5} \\ {\rm SU(2) \ singlet, \ \kappa_T=0.5} \\ {\rm SU(2) \ singlet, \ \kappa_R=0.3} \\ {\rm SU(2) \ doublet, \ \kappa_R=0.3} \\ {\rm SU(2) \ doublet, \ \kappa_R=0.3} \\ {\rm SU(2) \ doublet, \ \kappa_R=0.3} \end{array}$	ATLAS-CONF-2021-024 1808.02343 1807.11883 ATLAS-CONF-2021-040 1812.07343 ATLAS-CONF-2021-018 ATLAS-CONF-2022-044
Excited lepton l* 3 e, µ	- 139 - 36.7 - 139 - 20.3 - 20.3	q' mass 6,7 TeV q' mass 5,3 TeV b' mass 3,2 TeV r' mass 3,0 TeV r' mass 1,6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1910.08447 1709.10440 1910.0447 1411.2921 1411.2921
LRSM Majorana v 2 μ 2j - Higgs triplet $H^{\pm\pm} \rightarrow W^{\pm} \psi^{\pm}$ 2,34 e. μ (SS) various Y Higgs triplet $H^{\pm\pm} \rightarrow U^{\pm} \psi^{\pm}$ 2,3,4 e. μ (SS) - Y Higgs triplet $H^{\pm\pm} \rightarrow (t$ 2,3,4 e. μ (SS) - Y Multi-charged particles 3 e. μ , 7 - Multi-charged particles	- 139 - 20.3 - 139 - 34.4		$\begin{array}{l} m(W_R) = 4.1 \mbox{ TeV}, g_L = g_R \\ \mbox{DY production} \\ \mbox{DY production}, \mathcal{B}(H_L^{\pm\pm} \to \ell \tau) = 1 \\ \mbox{DY production}, g = 5e \\ \mbox{DY production}, g = 1g_D, \mbox{spin 1/2} \end{array}$	2202.02039 1809.11105 2101.11961 ATLAS-CONF-2022-010 1411.2921 ATLAS-CONF-2022-034 1905.10130
$\sqrt{s} = 13 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$ full data 10^{-1} 1 10^{-1} Mass scale [TeV]				

Searches for long lived massive particles

*Only a selection of the available mass limits on new states or phenomena is shown.

+Small-radius (large-radius) jets are denoted by the letter j (J).

LHC / HL-LHC Plan

27

ATL-PHYS-PUB-2022-018 CMS PAS FTR-22-001

High Luminosity LHC expectations

ATL-PHYS-PUB-2022-018 **CMS PAS FTR-22-001**

High Luminosity LHC expectations

What's next?

International Linear Collider

Compact Linear Collider

Circular Electron Positron Collider

Future Circular Collider

Future Colliders

Future Circular Collider

- 100 km circular collider
- FCC-ee: e^+e^- collider
 - $\sqrt{s} = 91 350 \text{ GeV}$
 - Precision physics
- FCC-hh: pp collider
 - 100 TeV
 - Enlarge discovery potential

Future Circular Collider

- 100 km circular collider
- FCC-ee: e^+e^- collider
 - $\sqrt{s} = 91 350 GeV$
 - Precision physics
- FCC-hh: pp collider
 - Discovery machine
 - 100 TeV

Slide by P. Janot

[1] Design outline: ILC250 accelerator facility

ILC

- e^+e^- linear collider
- Center of mass energy:250, 500, 1000 GeV

Slide by S. Asai

CLIC

- Linear e^+e^- collider
- $\sqrt{s} = 380 3000 \text{ GeV}$

CEPC

The Circular Electron Positron Collider

- □ The CEPC aims to start operation in 2030's, as a Higgs (Z / W) factory in China.
- □ To run at $\sqrt{s} \sim 240$ GeV, above the ZH production threshold for ~1 M Higgs; at the Z pole for ~Tera Z; at the W⁺W⁻ pair and possible $t\bar{t}$ pair production thresholds.
- □ Higgs, EW, flavor physics & QCD, probes of physics BSM.
- **D** Possible *pp* collider (SppC) of $\sqrt{s} \sim 50-100$ TeV in the future.

e^+e^- colliders — operation goals

CLUC3000

CLIC

FCC

ILC, Japan	CL
250 GeV, 11 y \rightarrow 2 ab ⁻¹	3
500 GeV, 8.5 y 4 ab ⁻¹	15
1000 GeV, 8.5 y 8 ab ⁻¹	30

CLIC, CEF	RN		
380 GeV,	8 y	\rightarrow	1 ab⁻¹
500 GeV,	7 у		2.5 ab ⁻¹
8000 GeV,	8.5 y		5 ab⁻¹

FCC-ee,	CER	N		
m _z ,	4 y	\rightarrow	150 ab ⁻¹	
2 x m _W ,		\rightarrow	10 ab ⁻¹	
240 GeV,	3 y 🗍	\rightarrow	5 ab⁻¹	
2 x m _{top} ,	5у	\rightarrow	1.5 ab ⁻¹	

CEPC, China m_Z , 2 y \rightarrow 16 ab⁻¹ 2 x m_W, 1 y \rightarrow 2.6 ab⁻¹ 240 GeV, 7 y \rightarrow 5.6 ab⁻¹

e^+e^- colliders — energies and luminosities

per detector in e⁺e⁻	# Z	# B	#τ	# charm	# WW
LEP	4 x 10 ⁶	1 x 10 ⁶	3 x 10 ⁵	1 x 10 ⁶	2 x 104
SuperKEKB	-	1011	1011	1011	-
FCC-ee	2.5 x 10 ¹²	7.5 x 10 ¹¹	2 x 10 ¹¹	6 x 10 ¹¹	1.5 x 10 ⁸

Precision physics

Complementarity ee/eh/hh colliders

kappa-0-HL	HL+FCC-ee ₂₄₀	HL+FCC-ee	HL+FCC-ee (4 IP)	HL+FCC-ee/hh	HL+FCC-eh/hh	HL+FCC-hh	HL+FCC-ee/eh/hh
Kw [%]	0.86	0.38	0.23	0.27 0.17		0.39	0.14
κ _Z [%]	0.15	0.14	0.094	0.13	0.27	0.63	0.12
$\kappa_{g}[\%]$	1.1	0.88	0.59	0.55	0.56	0.74	0.46
κγ[%]	1.3	1.2	1.1	0.29	0.32	0.56	0.28
$\kappa_{Z\gamma}[\%]$	10.	10.	10.	0.7	0.71	0.89	0.68
κ_c [%]	1.5	1.3	0.88	1.2	1.2	-	0.94
κ _t [%]	3.1	3.1	3.1	0.95	0.95	0.99	0.95
$\kappa_b[\%]$	0.94	0.59	0.44	0.5	0.52	0.99	0.41
$\kappa_{\mu}[\%]$	4.	3.9	3.3	0.41	0.45	0.68	0.41
$\kappa_{\tau}[\%]$	0.9	0.61	0.39	0.49	0.63	0.9	0.42
Γ_H [%]	1.6	0.87	0.55	0.67	0.61	1.3	0.44
ALL COMBI							
only FCC-ee@240GeV only FCC-hh							ı

39

CERN-ESU-004

New physics searches

Examples of sensitivity to new physics for different future colliders

arXiv:2103.13403

The road towards the future colliders

Update of the European Strategy for Particle Physics

Provides a clear prioritisation of European ambitions in advancing the science of particle physics

 takes into account the worldwide particle physics landscape and developments in related fields

42

1 Major developments from the 2013 Strategy

A. Since the recommendation in the 2013 Strategy to proceed with the programme of upgrading the luminosity of the LHC, the HL-LHC project, was approved by the CERN Council in June 2016 and is proceeding according to plan. In parallel, the LHC has reached a centre-of-mass energy of 13 TeV, exceeded the design luminosity, and produced a wealth of remarkable physics results. Based on this performance, coupled with the innovative experimental techniques developed at the LHC experiments and their planned detector upgrades, a significantly enhanced physics potential is expected with the HL-LHC. The required high-field superconducting Nb₃Sn magnets have been developed. *The successful completion of the high-luminosity upgrade of the machine and detectors should remain the focal point of European particle physics, together with continued innovation in experimental techniques. The <i>full physics potential of the LHC and the HL-LHC, including the study of flavour physics and the quark-gluon plasma, should be exploited.*

European Strat

1 Major developments from the 2013 Strategy

European Strat

2 R General considerations for the 2020 update

A. Europe, through CERN, has world leadership in accelerator-based particle physics and related technologies. The future of the field in Europe and beyond depends on the continuing ability of CERN and its community to realise compelling scientific projects. *This Strategy update should be implemented to ensure Europe's continued scientific and technological leadership.*

B. The European organisational model centred on close collaboration between CERN and the national institutes, laboratories and universities in its Member and Associate Member States is essential to the enduring success of the field. This has proven highly effective in harnessing the collective resources and expertise of the particle, astroparticle and nuclear physics communities, and of many interdisciplinary research fields. Another manifestation of the success of this model is the collaboration with non-Member States and their substantial contribution. The particle physics community must further strengthen the unique ecosystem of research centres in Europe. In particular, cooperative programmes between CERN and these research centres should be expanded and sustained with adequate resources in order to address the objectives set out in the Strategy update. European Strat

2 General considerations for the 2020 update

C. The broad range of fundamental questions in particle physics and the complexity of the diverse facilities required to address them, together with the need for an efficient use of resources, have resulted in the establishment of a global particle physics community with common interests and goals. This Strategy takes into account the rich and complementary physics programmes being undertaken by Europe's partners across the globe and of scientific and technological developments in neighbouring fields. *The implementation of the Strategy should proceed in strong collaboration with global partners and neighbouring fields.*

3 High-priority future initiatives

A. An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing these compelling goals will require innovation and cutting-edge technology:

• the particle physics community should ramp up its R&D effort focused on advanced accelerator technologies, in particular that for high-field superconducting magnets, including high-temperature superconductors;

• Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage. Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update.

The timely realisation of the electron-positron International Linear Collider (ILC) in Japan would be compatible with this strategy and, in that case, the European particle physics community would wish to collaborate.

4 Other essential scientific activities for particle physics

A. The quest for dark matter and the exploration of flavour and fundamental symmetries are crucial components of the search for new physics. This search can be done in many ways, for example through precision measurements of flavour physics and electric or magnetic dipole moments, and searches for axions, dark sector candidates and feebly interacting particles. There are many options to address such physics topics including energy-frontier colliders, accelerator and non-accelerator experiments. A diverse programme that is complementary to the energy frontier is an essential part of the European particle physics Strategy. *Experiments in such diverse areas that offer potential high-impact particle physics programmes at laboratories in Europe should be supported, as well as participation in such experiments in other regions of the world.*

B. Theoretical physics is an essential driver of particle physics that opens new, daring lines of research, motivates experimental searches and provides the tools needed to fully exploit experimental results. It also plays an important role in capturing

4 Other essential scientific activities for particle physics

C. The success of particle physics experiments relies on innovative instrumentation and state-of-the-art infrastructures. To prepare and realise future experimental research programmes, the community must maintain a strong focus on instrumentation. *Detector R&D programmes and associated infrastructures* should be supported at CERN, national institutes, laboratories and universities. Synergies between the needs of different scientific fields and industry should be identified and exploited to boost efficiency in the development process and increase opportunities for more technology transfer benefiting society at large. Collaborative platforms and consortia must be adequately supported to provide coherence in these R&D activities. The community should define a global detector R&D roadmap that should be used to support proposals at the European and national levels.

Accelerators R&D Roadmap

B. Innovative accelerator technology underpins the physics reach of high-energy and high-intensity colliders. It is also a powerful driver for many accelerator-based fields of science and industry. The technologies under consideration include high-field magnets, high-temperature superconductors, plasma wakefield acceleration and other high-gradient accelerating structures, bright muon beams, energy recovery linacs. *The European particle physics community must intensify accelerator R&D and sustain it with adequate resources. A roadmap should prioritise the technology, taking into account synergies with international partners and other communities such as photon and neutron sources, fusion energy and industry. Deliverables for this decade should be defined in a timely fashion and coordinated among CERN and national laboratories and institutes.*

• Lab Directory Group (LDG) mandated to develop the Accelerators R&D Roadmap

LDG: European "Lab Directors Group" (10 labs)

- CERN, CIEMAT, DESY, IRFU, IJCLAB, NIKHEF, LNF, LNGS, PSI, STFC-RAL
- o lab-to-lab communications with a view to address together the ESPP
- o current chairperson: Dave Newbold (STFC-RAL)

Accelerators R&D Roadmap development

- Intensive process during 2021
 - Expert panels convened in January 2021
 - Intensive community consultation
 - Interim reports at EPS-HEP Conference in July 2021
 - Interactions with national communities (via ECFA delegates)
 - Reviews by SPC (CERN Scientific Policy Committee)
 - Closed process for prioritisation, planning and costing

Accelerators R&D Roadmap

- Roadmap presented to CERN Council in Dec. 2021
 - Broad and deep survey of each technology area
 - Identification of key R&D objectives for short term and long term
 - Definition of delivery plans for the next five to ten years
 - Outline estimates of resources needs and the necessary facilities
 - Overarching recommendations on the future R&D programme

Accelerators R&D Roadmap

Example: high field magnet development

Accelerators R&D Roadmap implementation

- LDG was mandated by Council in December 2021 to work out an implementation plan
- First Coordination Structure proposed
 - Lightweight, causing minimal disruption / delay to existing projects
 - Discussions with CERN Council and Funding Agencies have started

Multiple projects within each R&D Theme

FCC Feasibility Study

• Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage. Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update.

FCC Feasibility Study

- Release Feasibility Study Report by end 2025
- Optimisation of placement and layout of the ring and demonstration of the geological, technical, environmental and administrative feasibility of the tunnel and surface areas
- Pursue, together with the Host States, of the preparatory administrative processes required for a potential project approval
- Optimisation of the design of the colliders and their injector chains
- Elaboration of a sustainable operational model for the colliders and experiments (human and financial resources, environmental aspects and energy efficiency)
- Identification of substantial resources from outside CERN's budget for the implementation of the first stage of a possible future project
- Consolidation of the physics case and detector concepts for both colliders

56

Future Circular Collider Feasibility Study

 Classical structure common to CERN projects

FCC Feasibility Study

- New lowest risk placement identified
 - 8 surface sites
 - ► C = 91.2 km
 - 4-fold symmetry and 4-fold superperiodicity
 - ► FCC-ee 2 or 4 IPs
 - ► FCC-hh 4 IPs
- Present implementation variant was established considering:
 - Geological 3D model and tunnelling risks
 - 95% in molasse geology for minimising tunnel construction risks

FCC Feasibility Study

- New lowest risk placement identified
 - 8 surface sites
 - ► C = 91.2 km
 - 4-fold symmetry and 4-fold superperiodicity
 - ► FCC-ee 2 or 4 IPs
 - ► FCC-hh 4 IPs
- Present implementation variant was established considering:
 - Geological 3D model and tunnelling risks
 - 95% in molasse geology for minimising tunnel construction risks

Detectors R&D Roadmap

C. The success of particle physics experiments relies on innovative instrumentation and state-of-the-art infrastructures. To prepare and realise future experimental research programmes, the community must maintain a strong focus on instrumentation. *Detector R&D programmes and associated infrastructures should be supported at CERN, national institutes, laboratories and universities. Synergies between the needs of different scientific fields and industry should be identified and exploited to boost efficiency in the development process and increase opportunities for more technology transfer benefiting society at large. Collaborative platforms and consortia must be adequately supported to provide coherence in these R&D activities. The community should define a global detector R&D roadmap that should be used to support proposals at the European and national levels.*

Detectors R&D Roadmap

- Intensive process during 2021
 - Community consultation
 - Interim reports at EPS-HEP Conference in July 2021

- Interactions with national communities (via ECFA delegates)
- SPC (CERN Scientific Policy Committee)
- Roadmap presented to CERN Council in Dec. 2021, after endorsement by Plenary ECFA in Nov. 2021

Detectors R&D Roadmap Document

- Identified R&D objectives to ensure that detectors R&D is not the limiting factor at the earliest feasible start dates of a proposed facility
- Defined Detector Research and Development Themes (DRDTs) and objectives

Detectors R&D Roadmap

See presentation by S. Kuehn

DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) & DETECTOR COMMUNITY THEMES (DCTs)

Gaseo

Liqui

Solid state

				< 203	0 203			> 2045
eous	DRDT 1.2 DRDT 1.3	Improve time and spatial resolution for gaseous der long-term stability Achieve tracking in gaseous detectors with dE/dx in large volumes with very low material budget and schemes Develop environmentally friendly gaseous detect areas with high-rate capability Achieve high sensitivity in both low and high-pre	PID and Photon	 DRDT 4.1 Enhance the timing resolution and spectral range of photon detectors DRDT 4.2 Develop photosensors for extreme environments DRDT 4.3 Develop RICH and imaging detectors with low mass and high resolution timing 			nsors for Id imaging	extreme environments
uid	DRDT 2.2 DRDT 2.3	Develop readout technology to increase spatial i resolution for liquid detectors Advance noise reduction in liquid detectors to lc thresholds Improve the material properties of target and de in liquid detectors Realise liquid detector technologies scalable for large systems	Quantum	DRDT 5.2	Promote Investig technole Establis explorat	the deve ate and a ogies to p h the neo ion of en	lopment o dapt state particle ph essary fra nerging teo	of advanced quantum sensing technologies e-of-the-art developments in quantum
lid ate	DRDT 3.2 DRDT 3.3	Achieve full integration of sensing and microelec CMOS pixel sensors Develop solid state sensors with 4D-capabilities calorimetry Extend capabilities of solid state sensors to ope fluences Develop full 3D-interconnection technologies for in particle physics	Calorimetry	DRDT 6.1 DRDT 6.2 DRDT 6.3	energy a Develop for optir	and timin high-gra nised us calorim	g resolutic nular calo e of particl	orimeters with enhanced electromagnetic on primeters with multi-dimensional readout le flow methods xtreme radiation, rate and pile-up
			Electronics	DRDT 7.2 DRDT 7.3 DRDT 7.4	Develop Develop Develop required	technolo technolo novel te longevit and ada	ogies for in ogies in su chnologies y	eal with greatly increased data density increased intelligence on the detector ipport of 4D- and 5D-techniques is to cope with extreme environments and erging electronics and data processing

Detectors R&D Roadmap Implementation

- ECFA was mandated by Council in December 2021 to work out an implementation plan
 - in close collaboration with the SPC, the funding agencies and the relevant research organisations in Europe and beyond
- First implementation plan proposed

ECFA studies towards e^+e^- top/EW/Higgs Factory

- ECFA statement (endorsed by Plenary ECFA, July 2020):
 - ECFA recognizes the need for the experimental and theoretical communities involved in physics studies, experiment designs and detector technologies at future Higgs factories to gather
 - Supports a series of workshops with the aim to share challenges and expertise, to explore synergies in their efforts and to respond coherently to this priority in the European Strategy for Particle Physics (ESPP).
- Goal: bring the entire e+e- Higgs factory effort together, foster cooperation across various projects, collaborative research programmes are to emerge
- International Advisory Committee:
 - o ECFA-chair would act as chair: Karl Jakobs
 - o From RECFA: Jean-Claude Brient, Tadeusz Lesiak, Chiara Meroni
 - With (HL-)LHC experience: Jorgen D'Hondt, Max Klein, Aleandro Nisati, Roberto Tenchini
 - o For theory: Christophe Grojean, Andrea Wulzer
 - o For Linear Colliders: Steinar Stapnes, Juan Fuster, Frank Simon, Aidan Robson
 - o For Circular Colliders: Alain Blondel, Mogens Dam, Patrick Janot, Guy Wilkinson
 - o For CERN: Joachim Mnich

ECFA studies towards e^+e^- top/EW/Higgs Factory

- Kick-off workshop in June 2021 with 422 registrants
- Central information web page: indico. Agendas for meetings and workshops: indico
- Structure of the study:
 - Activities organised via three Working Groups
 - Community gathers for two major workshops, 2022 and 2023
 - Will provide a report as input to next European Strategy Update
- Focus on e+e- potential
 - Includes electroweak and top factory
 - No discussion of pros and cons of various machines or alternatives to e+e- Higgs factories
 - Understand better the interplay between (HL)-LHC and an e+e- Higgs/EW/Top factory
 - Development of common tools (software, simulation, fast simulation, ...), common analysis methods
 - Exploit synergies, discuss challenges, do not restrict to common items
 - Need for theoretical accuracy and MC generator improvements

Working groups

Conveners: J. Alcaraz (CIEMAT), J. De Blas (Granada), J. List (DESY), F. Maltoni (UC Louvain / Bologna)

- WG 1: Physics Potential
 - Collect, compare and harmonise the work of the different project-specific efforts
 - Interplay between (HL)-LHC and a future Higgs factory
 - e.g. include LHC potential on high-pT measurements and EFT interpretations
 - Identify specific topics where concrete work should be organised
 - Requirements on accuracy in theoretical calculations and parametric uncertainties, ...
 - ▶ 5 physics teams initiated:
 - WG1-GLOB: global interpretations
 - WG1-PREC: theoretical and experimental precision
 - WG1-HTE: specific Higgs/Top/EW studies (+ connection with LHC)
 - WG1-HF: Heavy Flavour
 - WG1-SRCH: Direct searches (weakly-interacting, directly accessible particles)

Working groups

Conveners: P. Azzi (INFN-Padova / CERN), F. Piccinini (INFN Pavia) and D. Zerwas (IJCLab/DMLab)

- WG 2: Physics analysis methods
 - Monte Carlo generators for e+e- precision EW/top Higgs factory
 - Software framework
 - Fast simulation (and its limitations)
 - Particle flow
 - Luminosity measurement
 - Workshops already held on topics of generators, simulation, reconstruction
- WG3: Detector technologies
 Conveners: M. C. Fouz (CIEMAT), G. Marchiori (APC Paris), F. Sefkow (DESY Hamburg)
 - Activities launching imminently, in light of ECFA Detector R&D roadmap
 - Bridge between detector technology activities and detector concepts

First ECFA Workshop towards e^+e^- top/EW/Higgs Factory

Plenary and parallel sessions

- Discussions related to working group activities
- Parallel sessions: mix of invited and submitted contributions.

Registration Open!! @Link

First ECFA WORKSHOP

on e⁺e⁻ Higgs / Electroweak / Top Factories 5-7 October 2022, DESY / Hamburg

Phys	ics potential of future Higgs
and	electroweak/top factories
Requ	ired precision (experimenta
and	theoretical)
EFT	(global) interpretation of
Higg	s factory measurements
Rorr	instruction and simulation

Topics:

Recon

Software

NTERNATIONAL ADVIS

Detector R&D

The European Committee for Euture Accelerators (ECEA) organises a series of workshops on physics studies, experiment design and detector technologies towards a future electron-positron Higgs/Electroweak/Top factory

The aim is to bring together the efforts of various eter projects, to share challenges and expertise, to explore synergies, and to respond coherently to this high-priority item of the European Strategy for Particle Physics

LOCAL ORGANISING	
COMMITTEE	
T. Beboke	
F. Blekman	PROGR
F. Gaede	COMMI
E. Gallo	commit
A. Grohsjean	1 Alcar
C. Grojean	P. Azzi
J. Haller	L De Bl
K. Krüger	MC. Fr
G. Moortgat-Pick (Chair)	C. Groje
K. Peters	L List (
J. Reuter	F. Malto
C. Schwanenberger (Chair)	G. Marc
F. Sefkow	F. Piccit
M. Stanitzki	F. Sefk
G. Weiglein	D. Zerw

First ECFA Workshop towards top/EW/Higgs Factory

- Public event targeting the wider scientific community
 - DESY auditorium, webcast via DESY Youtube channel
- Focus:
 - big open questions in fundamental science why a future machine is needed
 - competition and synergy with other big-science projects

how science fits in society; derived applications; environment

- Speaker: H. Murayama

- Panel:
 - F. Gianotti, B. Heinemann, K. Jakobs,
 - 'mid-career' experimentalist and theorist
 - potentially one 'outsider'

Physics Beyond Colliders

A. The quest for dark matter and the exploration of flavour and fundamental symmetries are crucial components of the search for new physics. This search can be done in many ways, for example through precision measurements of flavour physics and electric or magnetic dipole moments, and searches for axions, dark sector candidates and feebly interacting particles. There are many options to address such physics topics including energy-frontier colliders, accelerator and non-accelerator experiments. A diverse programme that is complementary to the energy frontier is an essential part of the European particle physics Strategy. *Experiments in such diverse areas that offer potential high-impact particle physics programmes at laboratories in Europe should be supported, as well as participation in such experiments in*

Physics Beyond Colliders

- Complementary methods to high energy frontier
- To reconcile BSM physics with the non-observation in present experiments, new particles could be
 - very massive
 - very weakly interacting with SM particles

Coordinators: G. Arduini (CERN), J. Jaeckel (Heidelberg), C. Vallée (CPPM, Marseille)

Complementarity of the physics programme

- Extend the reach of high-E colliders through precision experiments and searches for rare processes
- EDM & non-accelerator projects cover the very low-mass domain
- SPS experiments (beam dump, searches for long-lived particles, ...) probe MeV – GeV domain

Search for long lived particles

Search for long lived particles

Proton Beam Dump Facility

Slide by K. Jakobs

- Comprehensive Design Study of a new SPS facility done within PBC
- Promising option (lower cost) identified in existing ECN3 underground hall in CERN North Area (currently used by NA62)
- Under evaluation with respect to alternative NA62 extension + SHADOWS option (new idea to search off-axis for feebly interacting particles)

Instrumentation of NA62 decay vessel well adapted to searches in visible decay mode

SHiP on the Beam Dump Facility

Capabilities

Forward Physics Facility

CERN Physics Beyond Colliders - Summary - (Claude Vallée)

- PBC study extended with a mandate updated to take into account EPPSU recommendations
- Several projects studied for EPPSU are now in implementation phase:
 IAXO at DESY
 - QCD projects for Run 3 (MUonE, COMPASS (Rp), NA61 heavy flavours)
 - LHC small forward detectors (FASER, SND, ...)
- Main developments for other projects:
 - NA60++ (caloric curve of QCD phase transition)
 - AMBER long-term QCD facility
 - pEDM prototype ring study under the lead of Jülich
 - Gamma Factory Proof of Principle experiment preparation (talk by W. Krasny on Wednesday)
- Main new ideas:
 - Long term K⁺ and K⁰ rare decay physics ("HIKE") with higher intensity K beams in ECN3 (NA62++, KLEVER)
 - Completion of NA62 beam-dump mode with a small off-axis detector (SHADOWS) extending acceptance to higher-mass hidden particles
 - Possible relocation of BDF&SHiP in ECN3 to reduce the cost; Dedicated ECN3 Task Force set up to address the competition issue
 - Forward Physics Facility at LHC to extend the reach of forward physics in the HL-LHC era

Beam Dump Facilit

Conventional Beam

PBC UPDATED ORGANISATION

Conclusions

- Many open questions in particle physics today
 - Long way ahead of us
- Update of the European Strategy for Particle Physics
 - Highest priority future collider: e^+e^- Higgs factory
 - Ambitious plan for the next years in order to achieve that
 - Accelerators R&D Roadmap
 - Detectors R&D Roadmap
 - FCC Feasibility Study
 - Physics Beyond Colliders programme
 - ECFA studies/workshops towards top/EW/Higgs Factory

Acknowledgments

Backup

Top quark mass measurement

