Dispersive calculation of hadronic contributions to $(g - 2)_{\mu}$

Gilberto Colangelo

 $u^{\scriptscriptstyle \mathsf{b}}$

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

LatticeNET 2022 - Benasque, September 15

Outline

Introduction: $(g - 2)_{\mu}$ in the Standard Model

Hadronic Vacuum Polarization contribution to $(g - 2)_{\mu}$ Data-driven approach Lattice approach: BMW result and its consequences

Hadronic light-by-light contribution to $(g - 2)_{\mu}$ Dispersive approach to the hadronic light-by-light tensor Short-distance constraints and axial vectors

Conclusions and Outlook

Outline

Introduction: $(g - 2)_{\mu}$ in the Standard Model

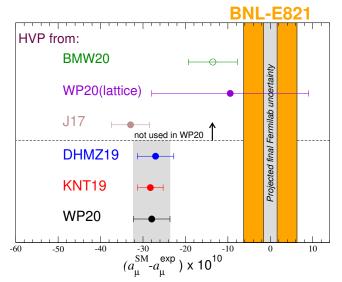
Hadronic Vacuum Polarization contribution to $(g - 2)_{\mu}$ Data-driven approach Lattice approach: BMW result and its consequences

Hadronic light-by-light contribution to $(g - 2)_{\mu}$ Dispersive approach to the hadronic light-by-light tensor Short-distance constraints and axial vectors

Conclusions and Outlook

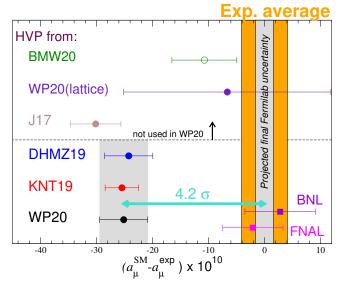
Present status of $(g - 2)_{\mu}$: experiment vs SM

Before



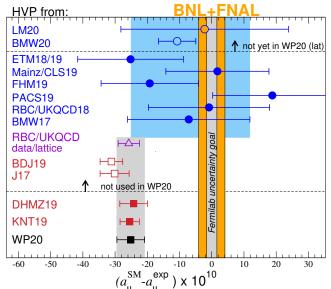
Present status of $(g - 2)_{\mu}$: experiment vs SM

After the Fermilab result



Present status of $(g - 2)_{\mu}$: experiment vs SM

After the Fermilab result



White Paper (2020): $(g - 2)_{\mu}$, experiment vs SM

Contribution	Value $\times 10^{11}$
HVP LO (e^+e^-)	6931(40)
HVP NLO (e^+e^-)	-98.3(7)
HVP NNLO (e^+e^-)	12.4(1)
HVP LO (lattice , <i>udsc</i>)	7116(184)
HLbL (phenomenology)	92(19)
HLbL NLO (phenomenology)	2(1)
HLbL (lattice, <i>uds</i>)	79(35)
HLbL (phenomenology + lattice)	90(17)
QED	116584718.931(104)
Electroweak	153.6(1.0)
HVP (e^+e^- , LO + NLO + NNLO)	6845(40)
HLbL (phenomenology + lattice + NLO)	92(18)
Total SM Value	116 591 810(43)
Experiment	116 592 061 (41)
Difference: $\Delta a_{\mu} := a_{\mu}^{exp} - a_{\mu}^{SM}$	251(59)

White Paper (2020): $(g - 2)_{\mu}$, experiment vs SM

Contribution	Value $\times 10^{11}$
HVP LO (e^+e^-)	6931(40)
HVP NLO (e^+e^-)	-98.3(7)
HVP NNLO (e^+e^-)	12.4(1)
HVP LO (lattice BMW(20), udsc)	7075(55)
HLbL (phenomenology)	92(19)
HLbL NLO (phenomenology)	2(1)
HLbL (lattice, <i>uds</i>)	79(35)
HLbL (phenomenology + lattice)	90(17)
QED	116584718.931(104)
Electroweak	153.6(1.0)
HVP (e^+e^- , LO + NLO + NNLO)	6845(40)
HLbL (phenomenology + lattice + NLO)	92(18)
Total SM Value	116 591 810(43)
Experiment	116 592 061 (41)
Difference: $\Delta a_{\mu} := a_{\mu}^{\exp} - a_{\mu}^{SM}$	251(59)

White Paper (2020): $(g - 2)_{\mu}$, experiment vs SM

White Paper:

T. Aoyama et al. Phys. Rep. 887 (2020) = WP(20)

Muon g - 2 Theory Initiative Steering Committee: GC Michel Davier (vice-chair) Aida El-Khadra (chair) Martin Hoferichter Laurent Lellouch Christoph Lehner (vice-chair) Tsutomu Mibe (J-PARC E34 experiment) Lee Roberts (Fermilab E989 experiment) Thomas Teubner Hartmut Wittig

White Paper (2020): $(g - 2)_{\mu}$, experiment vs SM

White Paper:

T. Aoyama et al. Phys. Rep. 887 (2020) = WP(20)

Muon g-2 Theory Initiative

Workshops:

- ▶ 1st plenary meeting, Q-Center (Fermilab), 3-6 June 2017
- HVP WG workshop, KEK (Japan), 12-14 February 2018
- HLbL WG workshop, U. of Connecticut, 12-14 March 2018
- 2nd plenary meeting, Mainz, 18-22 June 2018
- ▶ 3rd plenary meeting, Seattle, 9-13 September 2019
- Lattice HVP workshop, virtual, 16-20 November 2020
- 4th plenary meeting, KEK (virtual), 28 June-02 July 2021
- ▶ 5th plenary meeting, Higgs Center Edinburgh, 5-9 Sept. 2022

White Paper executive summary (my own)

- QED and EW known and stable, negligible uncertainties
- HVP dispersive: consensus number, conservative uncertainty (KNT19, DHMZ19, CHS19, HHK19)
- HVP lattice: consensus number, $\Delta a_{\mu}^{\text{HVP,latt}} \sim 5 \Delta a_{\mu}^{\text{HVP,disp}}$

(Fermilab-HPQCD-MILC18,20, BMW18, RBC/UKQCD18, ETM19,SK19, Mainz19, ABTGJP20)

- ► HVP BMW20: central value → discrepancy < 2σ; Δa^{HVP,BMW}_μ ~ Δa^{HVP,disp} published 04/21 → not in WP
- ► HLbL dispersive: consensus number, w/ recent improvements $\Rightarrow \Delta a_{\mu}^{\text{HLbL}} \sim 0.5 \Delta a_{\mu}^{\text{HVP}}$
- ► HLbL lattice: single calculation, agrees with dispersive $(\Delta a_{\mu}^{\text{HLbL,latt}} \sim 2 \Delta a_{\mu}^{\text{HLbL,disp}}) \rightarrow \text{final average} \qquad (\text{RBC/UKQCD20})$

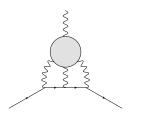
Theory uncertainty comes from hadronic physics

- Hadronic contributions responsible for most of the theory uncertainty
- Hadronic vacuum polarization (HVP) is O(α²), dominates the total uncertainty, despite being known to < 1%</p>

unitarity and analyticity ⇒ dispersive approach
 ⇒ direct relation to experiment: σ_{tot}(e⁺e⁻ → hadrons)
 e⁺e⁻ Exps: BaBar, Belle, BESIII, CMD2/3, KLOE2, SND
 alternative approach: lattice, becoming competitive
 (BMW, ETMC, Fermilab, HPOCD, Mainz, MILC, RBC/UKQCD)

Theory uncertainty comes from hadronic physics

- Hadronic contributions responsible for most of the theory uncertainty
- Hadronic vacuum polarization (HVP) is O(α²), dominates the total uncertainty, despite being known to < 1%</p>
- Hadronic light-by-light (HLbL) is O(α³), known to ~ 20%, second largest uncertainty (now subdominant)



- earlier: model-based—uncertainties difficult to quantify
- ► recently: dispersive approach ⇒ data-driven, systematic treatment
- lattice QCD is becoming competitive (Mainz, RBC/UKQCD)

Outline

Introduction: $(g-2)_{\mu}$ in the Standard Model

Hadronic Vacuum Polarization contribution to $(g-2)_{\mu}$ Data-driven approach Lattice approach: BMW result and its consequences

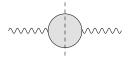
Hadronic light-by-light contribution to $(g - 2)_{\mu}$ Dispersive approach to the hadronic light-by-light tensor Short-distance constraints and axial vectors

Conclusions and Outlook

Ş

HVP contribution: Master Formula

Unitarity relation: simple, same for all intermediate states



 $\mathrm{Im}\bar{\Pi}(q^2) \propto \sigma(e^+e^- \to \mathrm{hadrons}) = \sigma(e^+e^- \to \mu^+\mu^-)R(q^2)$

Analyticity $\left[\bar{\Pi}(q^2) = \frac{q^2}{\pi} \int ds \frac{\mathrm{Im}\bar{\Pi}(s)}{s(s-q^2)}\right] \Rightarrow$ Master formula for HVP

$$\Rightarrow a_{\mu}^{\text{hvp}} = \frac{\alpha^2}{3\pi^2} \int_{s_{th}}^{\infty} \frac{ds}{s} K(s) R(s)$$

K(s) known, depends on m_{μ} and $K(s) \sim \frac{1}{s}$ for large s

Comparison between DHMZ19 and KNT19

	DHMZ19	KNT19	Difference
$\pi^+\pi^-$	507.85(0.83)(3.23)(0.55)	504.23(1.90)	3.62
$\pi^+\pi^-\pi^0$	46.21(0.40)(1.10)(0.86)	46.63(94)	-0.42
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	13.68(0.03)(0.27)(0.14)	13.99(19)	-0.31
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	18.03(0.06)(0.48)(0.26)	18.15(74)	-0.12
$\kappa^+\kappa^-$	23.08(0.20)(0.33)(0.21)	23.00(22)	0.08
K _S K _L	12.82(0.06)(0.18)(0.15)	13.04(19)	-0.22
$\pi^0\gamma$	4.41(0.06)(0.04)(0.07)	4.58(10)	-0.17
Sum of the above	626.08(0.95)(3.48)(1.47)	623.62(2.27)	2.46
[1.8, 3.7] GeV (without cc)	33.45(71)	34.45(56)	-1.00
$J/\psi, \psi(2S)$	7.76(12)	7.84(19)	-0.08
$[3.7,\infty)$ GeV	17.15(31)	16.95(19)	0.20
Total $a_{\mu}^{{ m HVP,\ LO}}$	$694.0(1.0)(3.5)(1.6)(0.1)_{\psi}(0.7)_{\mathrm{DV+QCD}}$	692.8(2.4)	1.2

2π : comparison with the dispersive approach

The 2π channel can itself be described dispersively \Rightarrow more constrained theoretically Ananthanarayan, Caprini, Das (19), GC, Hoferichter, Stoffer (18)

Energy range	ACD18	CHS18	DHMZ19	KNT19
$\begin{array}{l} \leq 0.6 {\rm GeV} \\ \leq 0.7 {\rm GeV} \\ \leq 0.8 {\rm GeV} \\ \leq 0.9 {\rm GeV} \\ \leq 1.0 {\rm GeV} \end{array}$		110.1(9) 214.8(1.7) 413.2(2.3) 479.8(2.6) 495.0(2.6)	$\begin{array}{c} 110.4(4)(5)\\ 214.7(0.8)(1.1)\\ 414.4(1.5)(2.3)\\ 481.9(1.8)(2.9)\\ 497.4(1.8)(3.1)\end{array}$	108.7(9) 213.1(1.2) 412.0(1.7) 478.5(1.8) 493.8(1.9)
[0.6, 0.7] GeV [0.7, 0.8] GeV [0.8, 0.9] GeV [0.9, 1.0] GeV		104.7(7) 198.3(9) 66.6(4) 15.3(1)	104.2(5)(5) 199.8(0.9)(1.2) 67.5(4)(6) 15.5(1)(2)	104.4(5) 198.9(7) 66.6(3) 15.3(1)
$ \begin{array}{c} \leq 0.63 {\rm GeV} \\ [0.6, 0.9] {\rm GeV} \\ [\sqrt{0.1}, \sqrt{0.95}] {\rm GeV} \end{array} $	132.9(8)	132.8(1.1) 369.6(1.7) 490.7(2.6)	132.9(5)(6) 371.5(1.5)(2.3) 493.1(1.8)(3.1)	131.2(1.0) 369.8(1.3) 489.5(1.9)

WP(20)

Combination method and final result

Complete analyses DHMZ19 and KNT19, as well as CHS19 (2π) and HHK19 (3π) , have been so combined:

- central values are obtained by simple averages (for each channel and mass range)
- the largest experimental and systematic uncertainty of DHMZ and KNT is taken
- ► 1/2 difference DHMZ-KNT (or BABAR-KLOE in the 2π channel, if larger) is added to the uncertainty

Final result:

$$a_{\mu}^{ ext{HVP, LO}} = 693.1(2.8)_{ ext{exp}}(2.8)_{ ext{sys}}(0.7)_{ ext{DV+QCD}} imes 10^{-10} = 693.1(4.0) imes 10^{-10}$$

Borsanyi et al. Nature 2021

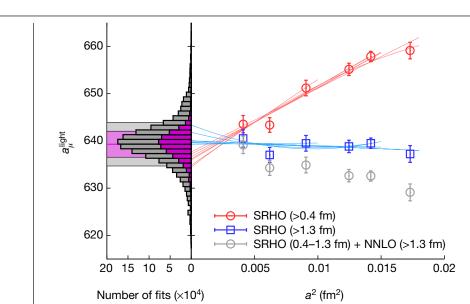
State-of-the-art lattice calculation of $a_{\mu}^{\text{HVP, LO}}$ based on

- current-current correlator, summed over all distances, integrated in time with appropriate kernel function (TMR)
- using staggered fermions on an L ~ 6 fm lattice (L ~ 11fm used for finite volume corrections)
- at (and around) physical quark masses
- including isospin-breaking effects

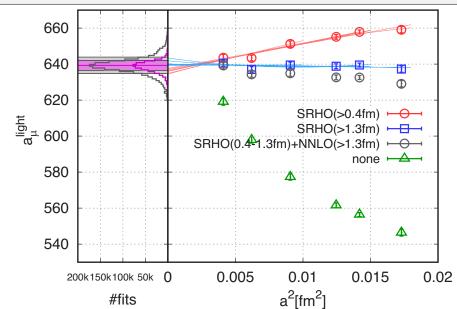
Data-driven Lattice

The BMW result Borsanyi et al. Nature 2021 Isospin-symmetric Connected light Connected strange Connected charm Disconnected 633.7(2.1)_{stat}(4.2)_{sust} 53.393(89)_{stat}(68)_{syst} 14.6(0)stat(1)syst -13.36(1.18)etat(1.36)etat QED isospin breaking: valence Strong-isospin breaking Connected Disconnected Connected -1.23(40)_{stat}(31)_{sust} Disconnected -0.55(15)_{stat}(10)_{syst} 6.60(63)_{stat}(53)_{svst} -4.67(54)_{stat}(69)_{syst} QED isospin breaking: sea Other Bottom; higher-order; perturbative 0.11(4)... Disconnected -0.040(33)_{stat}(21)_{syst} Connected 0.37(21)_{stat}(24)_{syst} QED isospin breaking: mixed Finite-size effects Isospin-symmetric 18.7(2.5)_{tot} Isospin-breaking 0.0(0.1)_{tot} Disconnected 0.011(24)_{stat}(14)_{syst} -0.0093(86)_{stat}(95)_{syst} Connected a^{LO-HVP} (×10¹⁰) = 707.5(2.3)_{stat}(5.0)_{syst}(5.5)_{tot}

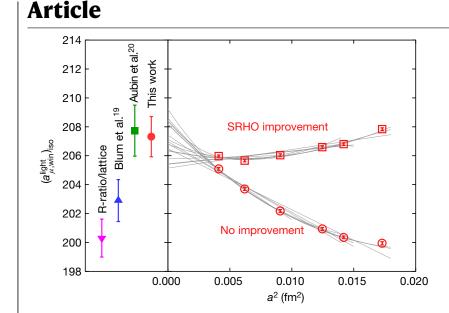
Borsanyi et al. Nature 2021



Borsanyi et al. Nature 2021

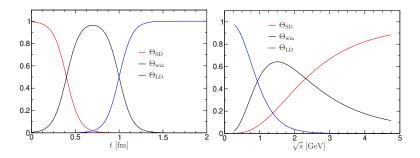


Borsanyi et al. Nature 2021

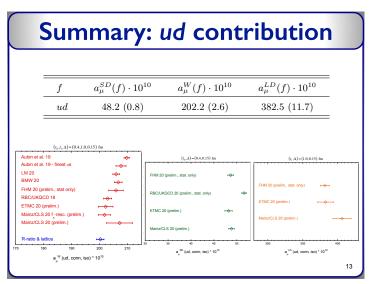


Borsanyi et al. Nature 2021

Weight functions for window quantities



Borsanyi et al. Nature 2021

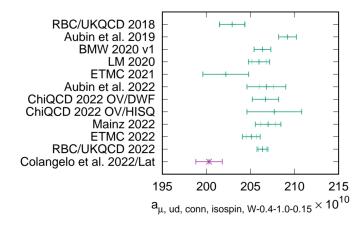


D. Giusti, talk at Lattice 2021

Data-driven Lattice

Present status of the window quantities

Several lattice calculations now confirm BMW's result



R-ratio: GC, El-Khadra, Hoferichter, Keshavarzi, Lehner, Stoffer, Teubner (22)

Plot by C. Lehner, Edinburgh 2022

Individual-channel contributions to a_{μ}^{win}

Channel	total	window
$\pi^+\pi^-$	504.23(1.90)	144.08(49)
$\pi^+\pi^-\pi^0$	46.63(94)	18.63(35)
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	13.99(19)	8.88(12)
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	18.15(74)	11.20(46)
$\kappa^+\kappa^-$	23.00(22)	12.29(12)
K _S KL	13.04(19)	6.81(10)
$\pi^{0}\gamma$	4.58(10)	1.58(4)
Sum of the above	623.62(2.27)	203.47(78)
[1.8, 3.7] GeV (without cc)	34.45(56)	15.93(26)
$J/\psi, \psi(2S)$	7.84(19)	2.27(6)
$[3.7,\infty)$ GeV	16.95(19)	1.56(2)
WP(20) / GC, El-Khadra et al. (22)	693.1(4.0)	229.4(1.4)
BMWc Mainz/CLS	707.5(5.5)	236.7(1.4) 237.3(1.5)
ETMc		235.0(1.1)
RBC/UKQCD		235.6(0.8)
		=====(0,0)

Numbers for the channels refer to KNT19 - thanks to Alex Keshavarzi for providing them

 $\Delta a_{\mu}^{\text{HVP, LO}} = 14.4(6.8)(2.1\sigma),$

$$\Delta a_{\mu}^{
m win} \sim 6.5(1.5) \, (\sim 4.3\sigma)$$

Consequences of the BMW result

A shift in the value of $a_{\mu}^{\text{HVP, LO}}$ would have consequences:

$$\blacktriangleright \Delta a_{\mu}^{\text{HVP, LO}} \quad \Leftrightarrow \quad \Delta \sigma (e^+e^- \rightarrow \text{hadrons})$$

- ► $\Delta \alpha_{had}(M_Z^2)$ is determined by an integral of the same $\sigma(e^+e^- \rightarrow hadrons)$ (more weight at high energy)
- changing a^{HVP, LO} necessarily implies a shift in Δα_{had}(M²_Z): size depends on the energy range of Δσ(e⁺e⁻ → hadrons)
- a shift in $\Delta \alpha_{had}(M_Z^2)$ has an impact on the EW-fit
- ► to save the EW-fit $\Delta\sigma(e^+e^- \rightarrow hadrons)$ must occur below \sim 1 (max 2) GeV

Crivellin, Hoferichter, Manzari, Montull (20)/Keshavarzi, Marciano, Passera, Sirlin (20)/Malaescu, Schott (20)

or the need for BSM physics would be moved elsewhere

 $\sigma(e^+e^-
ightarrow \pi^+\pi^-)$ and $F_{\pi}^V(s)$

- ▶ Below 1 2 GeV only one significant channel: $\pi^+\pi^-$
- Strongly constrained by analyticity and unitarity $(F_{\pi}^{V}(s))$
- ► $F_{\pi}^{V}(s)$ parametrization which satisfies these \Rightarrow small number of parameters GC, Hoferichter, Stoffer (18)
- ► $\Delta a_{\mu}^{\text{HVP, LO}}$ \Leftrightarrow shifts in these parameters analysis of the corresponding scenarios GC, Hoferichter, Stoffer (21)

Vector form factor of the pion

$$\langle \pi^i({
m
ho}')|V^k_\mu(0)|\pi^l({
m
ho})
angle=i\epsilon^{ikl}({
m
ho}'+{
m
ho})_\mu F^V_\pi({
m s})\qquad {
m s}=({
m
ho}'-{
m
ho})^2$$

Analyticity:

$$e^{-i\delta(s)}F_{\pi}^{V}(s) \in \mathbb{R}$$
 for $s + i\varepsilon$, $4M_{\pi}^{2} \leq s < \infty$
Exact solution:

Omnès (58)

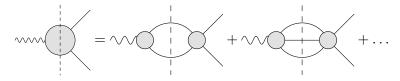
$$\mathcal{F}^V_\pi(s) = \mathcal{P}(s) \Omega(s) = \mathcal{P}(s) \exp\left\{rac{s}{\pi} \int_{4M_\pi^2}^\infty rac{ds'}{s'} rac{\delta(s')}{s'-s}
ight\} \;\;,$$

P(s) a polynomial ⇔ behaviour of $F_{\pi}^{V}(s)$ for $s \to \infty$ (or zeros) ► normalization fixed by gauge invariance:

$$F_{\pi}^{V}(0) = 1$$
 $\stackrel{\text{no zeros}}{\Longrightarrow}$ $P(s) = 1$

• $e^+e^- \rightarrow \pi^+\pi^-$ data \Rightarrow free parameters in $\Omega(t)$

Omnès representation including isospin breaking



Omnès representation including isospin breaking

Omnès representation

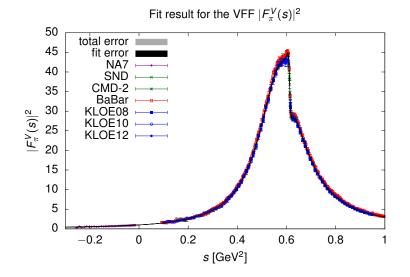
$$F_{\pi}^{V}(s) = \exp\left[rac{s}{\pi}\int_{4M_{\pi}^{2}}^{\infty}ds'rac{\delta(s')}{s'(s'-s)}
ight] \equiv \Omega(s)$$

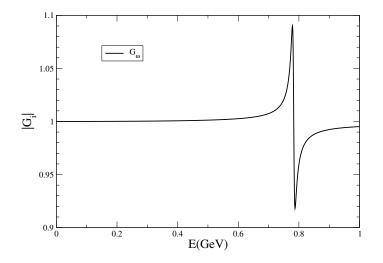
Split elastic ($\leftrightarrow \pi\pi$ phase shift, δ_1^1) from inelastic phase

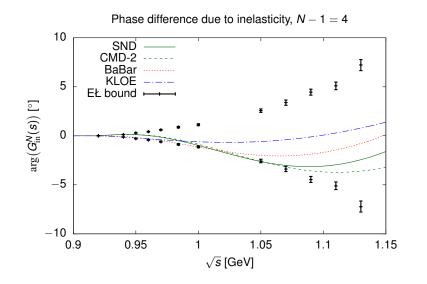
$$\delta = \delta_1^1 + \delta_{\mathrm{in}} \quad \Rightarrow \quad F_{\pi}^V(s) = \Omega_1^1(s)\Omega_{\mathrm{in}}(s)$$

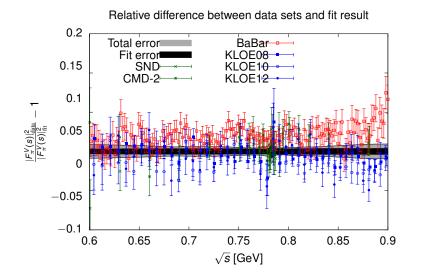
Eidelman-Lukaszuk: unitarity bound on δ_{in}

$$\begin{split} \sin^2 \delta_{\text{in}} &\leq \frac{1}{2} \Big(1 - \sqrt{1 - r^2} \Big) , \ r = \frac{\sigma_{e^+e^- \to \neq 2\pi}^{l=1}}{\sigma_{e^+e^- \to 2\pi}} \Rightarrow s_{\text{in}} = (M_\pi + M_\omega)^2 \\ \rho - \omega - \text{mixing} & F_V(s) = \Omega_{\pi\pi}(s) \cdot \Omega_{\text{in}}(s) \cdot G_\omega(s) \\ G_\omega(s) &= 1 + \epsilon \frac{s}{s_\omega - s} & \text{where} & s_\omega = (M_\omega - i \Gamma_\omega/2)^2 \end{split}$$



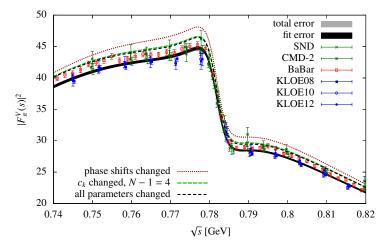






Data-driven Lattice

Change $\sigma(e^+e^- \rightarrow \pi^+\pi^-)_{\mid_{\sqrt{s}<16eV}}$ to agree w/ BMW

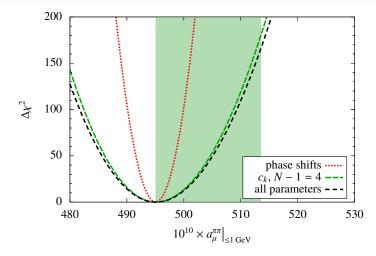


GC, Hoferichter, Stoffer (21)

Tension [BMW20 vs e^+e^- data] stronger for KLOE than for BABAR

Data-driven Lattice

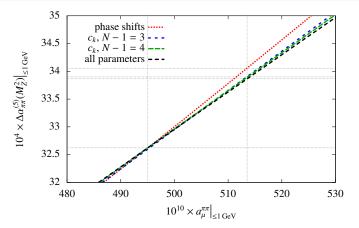
Change $\sigma(e^+e^- \to \pi^+\pi^-)_{|_{\sqrt{s}<1GeV}}$ to agree w/ BMW



GC, Hoferichter, Stoffer (21)

Data-driven Lattice

Change $\sigma(e^+e^- \to \pi^+\pi^-)_{|_{\sqrt{s}<1GeV}}$ to agree w/ BMW

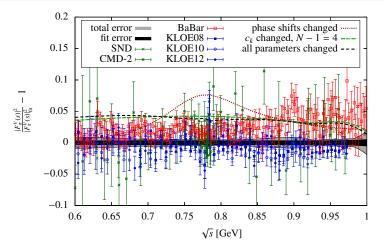


GC, Hoferichter, Stoffer (21)

$$10^{4} \Delta \alpha_{\rm had}^{(5)}(M_{Z}^{2}) = \begin{cases} 272.2(4.1) & \text{EW fit} \\ 276.1(1.1) & \sigma_{\rm had}(s) \end{cases}$$

Data-driven Lattice

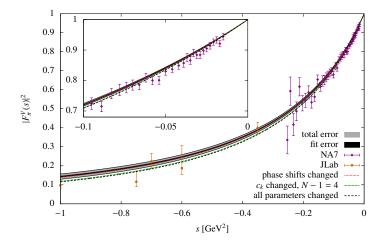
Change $\sigma(e^+e^- \to \pi^+\pi^-)_{|_{\sqrt{s}<16e^V}}$ to agree w/ BMW



GC, Hoferichter, Stoffer (21)

Data-driven Lattice

Change $\sigma(e^+e^- o \pi^+\pi^-)_{|_{\sqrt{s}<1GeV}}$ to agree w/ BMW



GC, Hoferichter, Stoffer (21)

How does the change in $(2\pi, < 1 \text{GeV})$ affect a_{μ}^{win} ?

Channel	total	window
$\pi^+\pi^-$	504.23(1.90)	144.08(49)
$\pi^+\pi^-\pi^0$	46.63(94)	18.63(35)
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	13.99(19)	8.88(12)
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	18.15(74)	11.20(46)
$\kappa^+\kappa^-$	23.00(22)	12.29(12)
K _S KL	13.04(19)	6.81(10)
$\pi^0 \gamma$	4.58(10)	1.58(4)
Sum of the above	623.62(2.27)	203.47(78)
[1.8, 3.7] GeV (without cc)	34.45(56)	15.93(26)
$J/\psi, \psi(2S)$	7.84(19)	2.27(6)
$[3.7,\infty)$ GeV	16.95(19)	1.56(2)
WP(20) / GC, El-Khadra et al. (22)	693.1(4.0)	229.4(1.4)
BMWc	707.5(5.5)	236.7(1.4)
Mainz/CLS		237.3(1.5)
ETMc		235.0(1.1)
RBC/UKQCD		235.6(0.8)

Numbers for the channels refer to KNT19 - thanks to Alex Keshavarzi for providing them

 $\Delta a_{\mu}^{\text{HVP, LO}} = 14.4(6.8)(2.1\sigma),$

$$\Delta a_{\mu}^{
m win} \sim$$
 6.5(1.5) (\sim 4.3 σ)

How does the change in $(2\pi, < 1 \text{GeV})$ affect a_{μ}^{win} ?

Channel	total	window
$\pi^+\pi^-$	518.6	148
$\pi^{+}\pi^{-}\pi^{0}$	46.63(94)	18.63(35)
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	13.99(19)	8.88(12)
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	18.15(74)	11.20(46)
$\kappa^+\kappa^-$	23.00(22)	12.29(12)
K _S KL	13.04(19)	6.81(10)
$\pi^{0}\gamma$	4.58(10)	1.58(4)
Sum of the above	638.0	207.5
[1.8, 3.7] GeV (without cc)	34.45(56)	15.93(26)
$J/\psi, \psi(2S)$	7.84(19)	2.27(6)
[3.7, ∞) GeV	16.95(19)	1.56(2)
WP(20) / GC, El-Khadra et al. (22)	707.5	233.4
BMWc Mainz/CLS ETMc RBC/UKQCD	707.5(5.5)	236.7(1.4) 237.3(1.5) 235.0(1.1) 235.6(0.8)

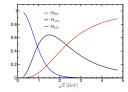
Numbers for the channels refer to KNT19 - thanks to Alex Keshavarzi for providing them

$$\Delta a_{\mu}^{ ext{HVP, LO}} = 0, \qquad \Delta a_{\mu}^{ ext{win}} \sim 2.5$$

What does this tell us about \sqrt{s} -range of $\Delta \sigma(e^+e^-)$?

- ∆σ(e⁺e⁻) all < 1 GeV does not allow one to satisfy simultaneously Δa^{HVP, LO}_μ = 0 and Δa^{win}_μ = 0
- $\Delta \sigma(e^+e^-)$ must happen < 2 GeV (EWFit)

Weight function \in (0.5, 0.65)



► assume reasonable shape of $\Delta \sigma(e^+e^-)$ (no negative shifts) ⇒ at least 40% of $\Delta a_u^{\text{HVP, LO}} = 14.4$ from above 1 GeV

What does this tell us about \sqrt{s} -range of $\Delta \sigma(e^+e^-)$?

Channel	total	window
$\pi^+\pi^-$	504.23(1.90)	144.08(49)
$\pi^+\pi^-\pi^0$	46.63(94)	18.63(35)
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	13.99(19)	8.88(12)
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	18.15(74)	11.20(46)
$\kappa^+\kappa^-$	23.00(22)	12.29(12)
$\frac{K_S K_L}{\pi^0 \gamma}$	13.04(19)	6.81(10)
$\pi^{0}\gamma$	4.58(10)	1.58(4)
Sum of the above	623.62(2.27)	203.47(78)
[1.8, 3.7] GeV (without cc)	34.45(56)	15.93(26)
$J/\psi, \psi(2S)$	7.84(19)	2.27(6)
$[3.7,\infty)$ GeV	16.95(19)	1.56(2)
WP(20) / GC, El-Khadra et al. (22)	693.1(4.0)	229.4(1.4)
BMWc Mainz/CLS ETMc RBC/UKQCD	707.5(5.5)	236.7(1.4) 237.3(1.5) 235.0(1.1) 235.6(0.8)

Numbers for the channels refer to KNT19 - thanks to Alex Keshavarzi for providing them

Outline

Introduction: $(g-2)_{\mu}$ in the Standard Model

Hadronic Vacuum Polarization contribution to $(g-2)_{\mu}$ Data-driven approach Lattice approach: BMW result and its consequences

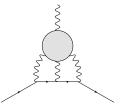
Hadronic light-by-light contribution to $(g - 2)_{\mu}$ Dispersive approach to the hadronic light-by-light tensor Short-distance constraints and axial vectors

Conclusions and Outlook

Calculating the HLbL contribution

The HLbL contribution is a very complex quantity

4-point function of em currents in QCD



early on, it has been calculated with models

Hayakawa-Kinoshita-Sanda/Bijnens-Pallante-Prades (96), Knecht, Nyffeler (02), Melnikov, Vainshtein (04)

a data-driven approach, like for HVP, has only recently been developed and used

GC, Hoferichter, Procura, Stoffer=CHPS (14,15,17), Hoferichter, Hoid, Kubis, Leupold, Schneider (18)

Iattice QCD is becoming competitive

RBC/UKQCD (20), Mainz (21)

Different model-based evaluations of HLbL

					Jegerlehner-Nyffeler 2009		
Contribution	BPaP(96)	HKS(96)	KnN(02)	MV(04)	BP(07)	PdRV(09)	N/JN(09)
π^0, η, η'	85±13	82.7±6.4	83±12	114±10	_	114±13	99±16
π, K loops	-19 ± 13	-4.5 ± 8.1	-	-	-	-19 ± 19	-19 ± 13
" " + subl. in <i>N_c</i>	-	-	_	0±10	-	-	-
axial vectors	2.5±1.0	1.7 ± 1.7	_	22 ± 5	_	15 ± 10	22 ± 5
scalars	-6.8 ± 2.0	_	_	_	_	-7 ± 7	-7 ± 2
quark loops	21 ± 3	9.7±11.1	-	-	-	2.3	21 ± 3
total	83±32	89.6±15.4	80±40	136±25	110±40	105±26	116±39
	Legenda: B=Bijnens Pa=Pallante P=Prades H=Hayakawa K=Kinoshita S=Sanda Kn=Knecht N=Nyffeler M=Melnikhov V=Vainshtein dR=de Rafael J=Jegerlehner						

- large uncertainties (and differences among calculations) in individual contributions
- pseudoscalar pole contributions most important
- second most important: pion loop, *i.e.* two-pion cuts (Ks are subdominant)
- heavier single-particle poles decreasingly important

Advantages of the dispersive approach

- model independent
- unambiguous definition of the various contributions
- makes a data-driven evaluation possible (in principle)
- if data not available: use theoretical calculations of subamplitudes, short-distance constraints etc.
- First attempts:

GC, Hoferichter, Procura, Stoffer (14), Pauk, Vanderhaeghen (14)

[Schwinger sum rule: Hagelstein, Pascalutsa (17)]

HLbL contribution: Master Formula

$$a_{\mu}^{\text{HLbL}} = \frac{2\alpha^3}{48\pi^2} \int_0^{\infty} dQ_1 \int_0^{\infty} dQ_2 \int_{-1}^{1} \sqrt{1-\tau^2} \sum_{i=1}^{12} T_i(Q_1, Q_2, \tau) \bar{\Pi}_i(Q_1, Q_2, \tau)$$

 Q_i^{μ} are the Wick-rotated four-momenta and τ the four-dimensional angle between Euclidean momenta:

$$Q_1 \cdot Q_2 = |Q_1| |Q_2| \tau$$

The integration variables $Q_1 := |Q_1|, Q_2 := |Q_2|$.

GC, Hoferichter, Procura, Stoffer (15)

- T_i: known kernel functions

Improvements obtained with the dispersive approach

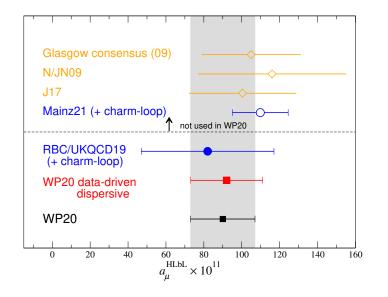
Contribution	PdRV(09) Glasgow consensus	N/JN(09)	J(17)	WP(20)
π^0, η, η' -poles π, K -loops/boxes S-wave $\pi\pi$ rescattering	114(13) -19(19) -7(7)	99(16) -19(13) -7(2)	95.45(12.40) -20(5) -5.98(1.20)	93.8(4.0) -16.4(2) -8(1)
subtotal	88(24)	73(21)	69.5(13.4)	69.4(4.1)
scalars tensors axial vectors u, d, s-loops / short-distance	 15(10) 	 22(5) 21(3)	1.1(1) 7.55(2.71) 20(4)	} - 1(3) 6(6) 15(10)
<i>c</i> -loop	2.3	_	2.3(2)	3(1)
total	105(26)	116(39)	100.4(28.2)	92(19)

significant reduction of uncertainties in the first three rows

CHPS (17), Masjuan, Sánchez-Puertas (17) Hoferichter, Hoid et al. (18), Gerardin, Meyer, Nyffeler (19)

- 1 2 GeV resonances affected by basis ambiguity and large uncertainties Danilkin, Hoferichter, Stoffer (21)]
- asymptotic region recently addressed, Melnikov, Vainshtein (04), Nyffeler (09), WP still work in progress
 Bijnens et al. (20,21), Cappiello et al. (20), Leutgeb, Rebhan (19,21)

Situation for HLbL



Longitudinal SDCs: a few definitions

The longitudinal SDC only concerns one function: Π_1

Split π^0 -pole from the rest in general kinematics ($q_4^2 = 0, q_4^{\mu} \neq 0$):

$$\Pi_{1}(s,t,u) = \frac{F_{\pi\gamma^{*}\gamma^{*}}(q_{1}^{2},q_{2}^{2})F_{\pi\gamma\gamma^{*}}(q_{3}^{2})}{s - M_{\pi}^{2}} + G(s,t,u)$$

For g-2 kinematics $(q_4^\mu
ightarrow 0, \Rightarrow \ s=q_3^2, \ t=q_2^2, \ u=q_1^2)$:

$$\begin{split} \bar{\Pi}_1(q_3^2,q_2^2,q_1^2) &= \frac{F_{\pi\gamma^*\gamma^*}(q_1^2,q_2^2)F_{\pi\gamma\gamma^*}(q_3^2)}{q_3^2 - M_\pi^2} + G(q_3^2,q_2^2,q_1^2) \\ &= \frac{F_{\pi\gamma^*\gamma^*}(q_1^2,q_2^2)}{q_3^2 - M_\pi^2} \left[F_{\pi\gamma\gamma^*}(M_\pi^2) + \bar{F}_{\pi\gamma\gamma^*}(q_3^2)\right] + G(q_3^2,q_2^2,q_1^2) \end{split}$$

with $ar{F}_{\pi\gamma\gamma^*}(q_3^2)\equiv F_{\pi\gamma\gamma^*}(q_3^2)-F_{\pi\gamma\gamma^*}(M_\pi^2)$

Longitudinal SDCs: a few definitions

The longitudinal SDC only concerns one function: Π_1

Split π^0 -pole from the rest in general kinematics ($q_4^2 = 0, q_4^{\mu} \neq 0$):

$$\Pi_{1}(s,t,u) = \frac{F_{\pi\gamma^{*}\gamma^{*}}(q_{1}^{2},q_{2}^{2})F_{\pi\gamma\gamma^{*}}(q_{3}^{2})}{s - M_{\pi}^{2}} + G(s,t,u)$$

For g-2 kinematics $(q_4^\mu
ightarrow 0, \Rightarrow \ s=q_3^2, \ t=q_2^2, \ u=q_1^2)$:

$$\begin{split} \bar{\Pi}_1(q_3^2,q_2^2,q_1^2) &= \frac{F_{\pi\gamma^*\gamma^*}(q_1^2,q_2^2)F_{\pi\gamma\gamma^*}(q_3^2)}{q_3^2 - M_\pi^2} + G(q_3^2,q_2^2,q_1^2) \\ &= \frac{F_{\pi\gamma^*\gamma^*}(q_1^2,q_2^2)}{q_3^2 - M_\pi^2} \left[F_{\pi\gamma\gamma^*}(M_\pi^2) + \bar{F}_{\pi\gamma\gamma^*}(q_3^2)\right] + G(q_3^2,q_2^2,q_1^2) \end{split}$$

with $ar{F}_{\pi\gamma\gamma^*}(q_3^2)\equiv F_{\pi\gamma\gamma^*}(q_3^2)-F_{\pi\gamma\gamma^*}(M_\pi^2)$

The longitudinal SDCs

Two different kinematic configurations for large q_i^2 :

1. All momenta large

Melnikov-Vainshtein (04), Bijnens et al (19)

$$\bar{\Pi}_1(q^2,q^2,q^2) \stackrel{q^2 \to \infty}{=} -\frac{4}{9\pi^2 q^4} + \mathcal{O}(q^{-6})$$

2.
$$q^2 \equiv q_1^2 \sim q_2^2 \gg q_3^2, q^2 \gg \Lambda_{\text{QCD}}^2$$
:

Melnikov-Vainshtein (04)

$$\bar{\Pi}_1(q_3^2,q^2,q^2) \stackrel{q^2 \to \infty}{=} -\frac{1}{9\pi^2 q^2} w_L(q_3^2) + \mathcal{O}(q^{-4})$$

with $w_L(q_3^2)$ the longitudinal amplitude in $\langle VVA \rangle$, the anomaly

The longitudinal SDCs

Two different kinematic configurations for large q_i^2 :

1. All momenta large

Melnikov-Vainshtein (04), Bijnens et al (19)

$$\bar{\Pi}_1(q^2,q^2,q^2) \stackrel{q^2 \to \infty}{=} -\frac{4}{9\pi^2 q^4} + \mathcal{O}(q^{-6})$$

2.
$$q^2 \equiv q_1^2 \sim q_2^2 \gg q_3^2, q^2 \gg \Lambda_{\rm QCD}^2$$
:

Melnikov-Vainshtein (04)

$$\bar{\Pi}_1(q_3^2,q^2,q^2) \stackrel{q^2 \to \infty}{=} -\frac{1}{9\pi^2 q^2} \frac{6}{q_3^2} + \mathcal{O}(q^{-4})$$

In the chiral (and large- N_c) limit $w_L(q_3^2)$ is known exactly

$$w_L(q_3^2) = rac{6}{q_3^2} \; \Rightarrow \; G(q_3^2, q^2, q^2) \Big|_{m_q=0} \stackrel{q \to \infty}{=} rac{2F_\pi}{3q^2} rac{ar{F}_{\pi\gamma\gamma^*}(q_3^2)}{q_3^2} \Big|_{m_q=0} + \mathcal{O}(q^{-4})$$

No individual dispersive contribution satisfies these constraints

The longitudinal SDCs

Two different kinematic configurations for large q_i^2 :

1. All momenta large

Melnikov-Vainshtein (04), Bijnens et al (19)

$$\bar{\Pi}_1(q^2,q^2,q^2) \stackrel{q^2 \to \infty}{=} -\frac{4}{9\pi^2 q^4} + \mathcal{O}(q^{-6})$$

2.
$$q^2 \equiv q_1^2 \sim q_2^2 \gg q_3^2, q^2 \gg \Lambda_{\text{QCD}}^2$$
:

Melnikov-Vainshtein (04)

$$\bar{\Pi}_1(q_3^2,q^2,q^2) \stackrel{q^2 \to \infty}{=} -\frac{1}{9\pi^2 q^2} \frac{6}{q_3^2} + \mathcal{O}(q^{-4})$$

In the chiral (and large- N_c) limit $w_L(q_3^2)$ is known exactly

$$w_L(q_3^2) = rac{6}{q_3^2} \; \Rightarrow \; G(q_3^2, q^2, q^2) \Big|_{m_q=0} \stackrel{q o \infty}{=} rac{2F_\pi}{3q^2} rac{ar{F}_{\pi\gamma\gamma^*}(q_3^2)}{q_3^2} \Big|_{m_q=0} + \mathcal{O}(q^{-4})$$

The π -pole for g - 2 kinematics does

Melnikov-Vainshtein (04)

Recent activity on SDCs (mainly post WP)

calculation of (non-)perturbative corrections to the OPE

Bijnens, Hermansson-Truedsson, Laub, Rodríguez-Sánchez (20.21)

tower of excited pseudoscalars (Regge model)

GC, Hagelstein, Hoferichter, Laub, Stoffer (19)

tower of axial-vectors (holographic QCD model)

Leutgeb, Rebhan (19), Cappiello, Catà, D'Ambrosio, Greynat, Iver (20)

solution based on interpolants

Lüdtke, Procura (20)

general considerations, comparison of model solutions

Knecht (20), Masjuan, Roig, Sánchez-Puertas (20), GC, Hagelstein, Hoferichter, Laub, Stoffer (21)

Recent activity on SDCs (mainly post WP)

calculation of (non-)perturbative corrections to the OPE

Bijnens, Hermansson-Truedsson, Laub, Rodríguez-Sánchez (20.21)

tower of excited pseudoscalars (Regge model)

GC, Hagelstein, Hoferichter, Laub, Stoffer (19)

tower of axial-vectors (holographic QCD model)

Leutgeb, Rebhan (19), Cappiello, Catà, D'Ambrosio, Greynat, Iver (20)

solution based on interpolants

Lüdtke, Procura (20)

general considerations, comparison of model solutions

Knecht (20), Masjuan, Roig, Sánchez-Puertas (20), GC, Hagelstein, Hoferichter, Laub, Stoffer (21)

DR for HLbL SDC

Melnikov-Vainshtein and holographic QCD

Melnikov-Vainshtein model:

Melnikov-Vainshtein (04)

$$\begin{split} w_L^{\mathsf{MV}}(q_3^2) &= \frac{6}{q_3^2 - M_\pi^2} + \mathcal{O}(M_\pi^2) \\ G^{\mathsf{MV}}(q_i^2) &= -\frac{F_{\pi\gamma^*\gamma^*}(q_1^2, q_2^2)\bar{F}_{\pi\gamma\gamma^*}(q_3^2)}{q_3^2} + \mathcal{O}(M_\pi^2) \end{split}$$

hQCD (HW2) model:

Leutgeb, Rebhan (19), Cappiello et al. (20)

$$egin{aligned} w^{ ext{HW2}}_L(q^2_3) &= rac{6}{q^2_3 - M^2_\pi} \left[1 + rac{M^2_\pi ar{F}_{\pi\gamma\gamma^*}(q^2_3)}{q^2_3 F_{\pi\gamma\gamma}}
ight] \ G^{ ext{HW2}}(q^2_i) &= -rac{F_{\pi\gamma^*\gamma^*}(q^2_1, q^2_2)ar{F}_{\pi\gamma\gamma^*}(q^2_3)}{q^2_3} - rac{F^2_{\pi\gamma\gamma}}{q^2_3}\Delta G(q^2_i) \end{aligned}$$

DR for HLbL SDC

Melnikov-Vainshtein and holographic QCD

Melnikov-Vainshtein model:

Melnikov-Vainshtein (04)

$$egin{aligned} w^{\mathsf{MV}}_L(q^2_3) &= rac{6}{q^2_3 - M^2_\pi} + \mathcal{O}(M^2_\pi) \ G^{\mathsf{MV}}(q^2_i) &= -rac{F_{\pi\gamma^*\gamma^*}(q^2_1, q^2_2)ar{F}_{\pi\gamma\gamma^*}(q^2_3)}{q^2_3} + \mathcal{O}(M^2_\pi) \end{aligned}$$

hQCD (HW2) model:

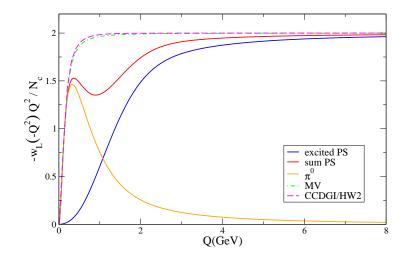
Leutgeb, Rebhan (19), Cappiello et al. (20)

$$\begin{split} w_{L}^{\mathsf{HW2}}(q_{3}^{2}) &= \frac{6}{q_{3}^{2} - M_{\pi}^{2}} \left[1 + \frac{M_{\pi}^{2} \bar{F}_{\pi\gamma\gamma^{*}}(q_{3}^{2})}{q_{3}^{2} F_{\pi\gamma\gamma}} \right] \\ G^{\mathsf{HW2}}(q_{i}^{2}) &= -\frac{F_{\pi\gamma^{*}\gamma^{*}}(q_{1}^{2}, q_{2}^{2}) \bar{F}_{\pi\gamma\gamma^{*}}(q_{3}^{2})}{q_{3}^{2}} - \frac{F_{\pi\gamma\gamma}^{2}}{q_{3}^{2}} \Delta G(q_{i}^{2}) \\ &\equiv MV(q_{i}^{2}) + NF(q_{i}^{2}) \end{split}$$

DR for HLbL SDC

Numerical comparison for w_L

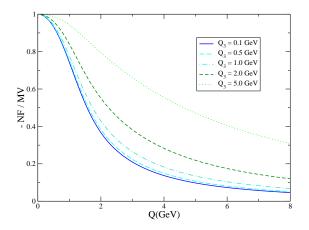
GC, Hagelstein, Hoferichter, Laub, Stoffer (21)



DR for HLbL SDC

Numerical comparison for *G*

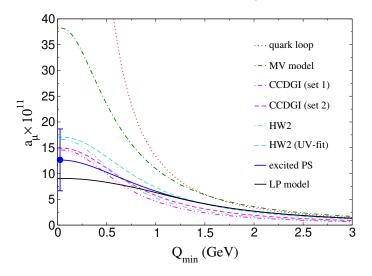
GC, Hagelstein, Hoferichter, Laub, Stoffer (21)



DR for HLbL SDC

Numerical comparison for a_{μ}^{HLbL}

GC, Hagelstein, Hoferichter, Laub, Stoffer (21)



 $22(5) \times 10^{-11}$

 $6.4(2.0) \times 10^{-11}$

 $7.6(2.7) \times 10^{-11}$

 $0.8(^{+3.5}_{-0.8}) \times 10^{-11}$

Comments on the contribution of axial vectors

- like all resonances besides pseudoscalars, axial vectors affected by basis ambiguity
- ► model calculations: large spread, ⇒ axial-vector contributions might potentially be large (transverse SDC) a^{xials}[a₁, f₁, f'₁]
 - Melnikov, Vainshtein (04)
 - Pauk, Vanderhaeghen (14)(only f_1, f'_1)
 - Jegerlehner (17)
 - Roig, Sánchez-Puertas (20)
 - $\begin{array}{ll} \ hQCD \ models \ (contribution \ only \ to \ T \ amplitudes) \\ Leutgeb, \ Rebhan \ (19,21) & \sim 17 \times 10^{-11} \\ Cappiello \ et \ al. \ (20) & \sim 14 \times 10^{-11} \end{array}$
- model-independent treatment of axials particularly urgent

Recent work on axial-vector contributions

New basis free of kinematic singularities for axials

GC, Hagelstein, Hoferichter, Laub, Stoffer (21)

Asymptotic behaviour of TFF of axial vectors

Hoferichter, Stoffer (20)

 Analysis of phenomenological and asymptotic constraints on a VMD model for TFF of axial vectors

Zanke, Hoferichter and Kubis (21)

► hQCD models with $m_q \neq 0$, including phenomenological and asymptotic constraints Leutgeb, Rebhan (21) Large contributions confirmed. hQCD models successful so far \Rightarrow this needs to be understood

Outline

Introduction: $(g-2)_{\mu}$ in the Standard Model

Hadronic Vacuum Polarization contribution to $(g - 2)_{\mu}$ Data-driven approach Lattice approach: BMW result and its consequences

Hadronic light-by-light contribution to $(g - 2)_{\mu}$ Dispersive approach to the hadronic light-by-light tensor Short-distance constraints and axial vectors

Conclusions and Outlook

Conclusions

- The WP provides the current status of the SM evaluation of (g - 2)_μ: 4.2σ discrepancy with experiment (BNL+FNAL)
- ► Evaluation of the HVP contribution based on the dispersive approach: 0.6% error ⇒ dominates the theory uncertainty
- Recent lattice calculation (BMW(20)) has reached a similar precision but differs from the dispersive one (=from e⁺e[−] data). If confirmed ⇒ discrepancy with experiment ∖ below 2σ
- For the intermediate window BMW has now been confirmed by several other lattice collaborations (Aubin et al., Mainz, ETMc, RBC/UKQCD)
- Evaluation of the HLbL contribution based on the dispersive approach: 20% accuracy. Two recent lattice calculations [RBC/UKQCD(20), Mainz(21)] agree with it

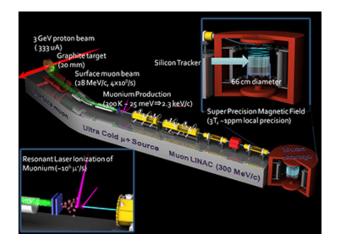
Outlook

- ► The Fermilab experiment aims to reduce the BNL uncertainty by a factor four \Rightarrow potential 7σ discrepancy
- Improvements on the SM theory/data side:
 - HVP data-driven:

Other e^+e^- experiments are available or forthcoming: SND, BaBar, Belle II, BESIII, CMD3 \Rightarrow Error reduction MuonE will provide an alternative way to measure HVP

- ► HVP lattice: calculations with precision ~ BMW for $a_{\mu}^{\text{HVP, LO}}$ are awaited For a_{μ}^{win} , the difference to the data-driven evaluation is a puzzle and must be understood
- HLbL data-driven: goal of ~ 10% uncertainty within reach
- ► HLbL lattice: RBC/UKQCD ⇒ similar precision as Mainz. Good agreement with data-driven evaluation.

Future: Muon g - 2/EDM experiment @ J-PARC



Credit: J-PARC