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Introduction
✦Anomalous magnetic moments of electron and muon are two 

of the most precisely measured quantities in physics

✦E821 at BNL published its final value for the muon in 2006

✦FNAL E989 announced its initial result in April, 2021


• spectacular agreement with E821


• continues to run


• New experiment E34 planned at J-PARC


✦There is ≈4.2 σ difference between data driven standard model 
(SM) calculation and experiment


✦BMWc 2021 value lies between SM value and experiment

✦It is important to improve the precision of other lattice QCD 

calculations
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Theory Overview

✦ SM contributions come from QED (electron & muon), 
electroweak contributions, and hadronic contributions 
that involve quarks

• all forces save gravity contribute 


✦ Current situation summarized by Muon g-2 Theory 
Initiative

• T. Aoyama et al., Phys. Rept. 887 (2020), 2006.04822 [hep-ph]


✦ Next plot shows how the hadronic corrections dominate 
the error
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Error vs. Contribution
• QED in blue has very 

small error


• Electroweak in green 
has larger error, but 
small contribution


• Hadronic 
contributions are all in 
red

• LO Hadronic vacuum 

polarization largest 
error and 2nd largest 
contribution


• HLBL 2nd largest error


• This talk on LO HVP 
4
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µµ

Hadronic Vacuum Polarization

• HVP diagram looks like 2 
loop QED diagram, 
except that red blob 
includes all QCD 
corrections to the quark 
loop, and there are also 
‘disconnected’ 
contributions with two 
quark loops that can 
exchange gluons


• Contribution written as 
integral over 4-
momentum-squared 
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HVP Calculation
✦Hadronic part of the current-current two-point function must be 

integrated over the loop momentum. Rest of diagram uses 
known photon and muon propagators.


✦Two approaches:

✦Using dispersion relations and optical theorem, can convert 

integral to one involving 



• This approach relies on careful use of experimental data and is currently the 
most precise method.


✦Ab initio lattice QCD non-perturbatively calculates the current-
current two-point function for Euclidean time or spacelike .


• Challenge is to get accurate values at large Euclidean time or small .

R = σ(e+e− → hadrons)/σ(e+e− → μ+μ−)

Q2

Q2
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Lowest Order HVP

✦ HVP is calculated as sum of several contributions: light 
quark connected, strange connected, …, light 
disconnected, …, strong isospin breaking, 
electromagnetic, etc.


✦  light quark connected is biggest 

contribution, by far

✦ FNAL/HPQCD/MILC: PRD 101, 034512 (2020), 

1902.04223 [hep-lat]

• briefly recap

αll
μ (conn.)
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Lattice Ensembles

✦ In 2020, we used Nf=2+1+1 HISQ ensembles from the 
MILC collaboration with physical light quark masses


✦ Have retuned 0.12 fm and added statistics for current 
analysis.  Still adding configurations for 0.06 fm.

8

⇡ a (fm) amsea
l /amsea

s /amsea
c w0/a M⇡5 (MeV) (L/a)3 ⇥ (T/a) Nconf.

0.15 0.00235/0.0647/0.831 1.13670(50) 133.04(70) 323 ⇥ 48 997
0.15 0.002426/0.0673/0.8447 1.13215(35) 134.73(71) 323 ⇥ 48 9362
0.12 0.00184/0.0507/0.628 1.41490(60) 132.73(70) 483 ⇥ 64 998
0.09 0.00120/0.0363/0.432 1.95180(70) 128.34(68) 643 ⇥ 96 1557
0.06 0.0008/0.022/0.260 3.0170(23) 134.95(72) 963 ⇥ 192 1230

<latexit sha1_base64="8QVaefKPj0Kp23AyWRqPPW6grMA="></latexit>
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Blinding

✦ To avoid confirmation bias in analysis, correlators are all 
blinded by multiplication by an unknown factor.


✦ Once all aspects of analysis are completed, the 
collaboration will decide to unblind and actual result will 
be available.


✦Collaboration looked at many variations on the 
analysis and decided on Tuesday, September 13 that 
we were ready to unblind.


✦This is the first presentation of our unblinded results 
for the Euclidean time windows  and W W2

9
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Windows Analysis
✦ The statistical noise at large Euclidean time is 

challenging

• RBC/UKQCD suggested using windows to achieve higher 

precision and allow better comparison of different calculations

• PRL 121, 022003 (2018)


• FNAL/HPQCD/MILC recently advocated one-sided windows 
with longer time extent than SD defined in PRL above.


• 2207.04765 [hep-lat] (use such windows as part of this study)


✦ We have considered multiple windows and concentrate 
on just two here 

Θ (t, t0, t1, Δ) =
1
2 [tanh ( t − t0

Δ ) − tanh ( t − t1
Δ )]
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Windows Considered
✦We fix  fm.


✦For the one-sided (O.S.), 


✦Here, we only present  and  (Aubin et al. 2204.12256 [hep-lat])


✦Each window has its own blinding factor, so can unblind independently.

Δ = 0.15

t1 = 1, 1.5, 2, 3.

W W2

11



S. Gottlieb, LatticeNET, Benasque

Effect of Window

12

✦ Left:  integrand in blue;  window factor in green; 

 in red


✦ Right: integrand after multiplication by window factor


✦ note effect of staggering on  

aμ W

W2

W
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Corrections

✦ Three corrections are applied: volume, mass mistuning, 
and taste breaking.  (Latter is optional, see below.)


✦ 


✦ 


✦ 


✦ 


✦ Correction terms calculated on each ensemble using 
several models

aμ(L∞, mπphys
) = aμ(Llatt, mπlatt,ξ1

, ⋯, mπlatt,ξ16
) + ΔFV + Δmπ

+ ΔTB

ΔFV = aμ(L∞, mπlatt,ξ1
, ⋯, mπlatt,ξ16

) − aμ(Llatt, mπlatt,ξ1
, ⋯, mπlatt,ξ16

)

Δmπ
= aμ(L∞, mπphys,ξ1

, ⋯, mπphys,ξ16
) − aμ(L∞, mπlatt,ξ1

, ⋯, mπlatt,ξ16
)

ΔTB = aμ(L∞, mπphys
, ⋯, mπphys

) − aμ(L∞, mπphys,ξ1
, ⋯, mπphys,ξ16

)
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Correction Models
✦ We consider several models


• Chiral Perturbation Theory (ChiPT NLO, NNLO)


• Meyer-Lellouch-Lüscher-Gournaris-Sakurai (MLLGS)


• Chiral Model (CM, and CM’ variation)


• Hansen and Patella (HP) 

•  last is used only for finite volume correction


✦ We also try neglecting  at each lattice spacing and 
allowing continuum limit to eliminate taste breaking


✦ Don’t need to use the same model for all correction 
terms.

• many, many variations

ΔTB
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Finite Volume Correction

• FV correction for  (top) 
and  (bottom) 
windows, shows much 
better consistency for 
the window at larger time 
advocated by Aubin et 
al.


• FV correction is so small 
at smallest volume 
(coarsest ensemble) 
because taste breaking 
is larger there.

W
W2

15

L = 4.85fmL = 5.83fm

L = 5.62fm

L = 5.46fm
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To Correct TB or Not?
• We can allow 

continuum limit to 
remove taste break-
ing or remove on 
each ensemble.


• We see some 
differences as 

 depending 
on model & whether 
we include coarsest 
ensemble.


• Blinded result in 
range 190—195

a → 0

16

 window W
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Blinded Result for W

17
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To Correct TB or Not? II

• Lattice spacing 
dependence is quite 
different for window 
at larger time.


• Model corrections 
can differ quite a bit, 
but as  
results are more 
consistent, than in 
previous case.


• Error is also larger.

a → 0

18

 window W2
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Bayesian Model Averaging

✦ Introduced by Jay and Neil, PRD 103, 114502 (2021).

✦ Useful when considering multiple models (or parameter 

values like  in fits).





gives the weight of each model in the average.





is the average over the models.

tmin

pr(M ∣ D) ≡ exp [−
1
2 (χ2

aug (a⋆) + 2k + 2Ncut)]

⟨aμ⟩ = ∑
i

⟨aμ⟩i
pr (Mi ∣ D)
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Bayesian Model Averaging II

✦ Many variations in how the fit is done:

• choice of model for each correction FV, mistuning, TB


• also no taste breaking correction


• apply corrections to a reduced region of time


• remove opposite parity contributions to vector-correlator that 
come from using staggered quarks


• dropping coarsest ensemble


• variations in the number of powers of  and  in continuum fit


• inclusion of sea-quark mistuning term 

a2 αs

20
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BMA for W

• (L) Four panels show many aspects of the various fits: histogram of 
2,160 fits; examples of fits using CM and NLO chiral perturbation 
theory; 50 best fits; p-value for data contribution to .


• (R) Model average using only subsets of the models.

χ2

21
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BMA for W2

• Similar to previous slide but for the window suggested by Aubin et al.

22
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Unblinded Result for aW
μll(conn.)

• 


• Our result is in 
excellent agreement 
with recent results.


• Our error is not quite 
as small as RBC/
UKQCD-22, but 
comparable to best 
of the rest.

206.1(1.2) × 1010

23
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Error Budget for W
✦ Continuum extrapolation is dominant source of error

✦ Scale setting, current renormalization, and finite volume 

are all close in size

24
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Error Budget for W2

✦ This window is at larger time, so limited statistical 
precision is dominant source of error.


✦ Scale setting, continuum extrapolation, and mass 
adjustment are also considerable.

25
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Staggered Opposite Parity

• Well known that 
staggered hadronic 
propagators often 
couple to opposite 
parity state resulting 
in  terms


• We have explored 
some ways to 
eliminate these 
terms


• Fit and eliminate the 
opposite parity part

(−1)t

26
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Staggered Opposite Parity II

• Removing the 
opposite parity 
contribution 
explicitly makes little 
difference


• Here we use a chiral 
model for the finite 
volume correction.

27
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Staggered Opposite Parity III

• Improved parity 
averaging (IPA) and 
interpolation of even 
only and odd only 
times are not useful 
approaches

28
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Towards a Complete Calculation
✦ Ultimate goal is , so we need:


• better scale setting

• extending range of ensembles with gauge flow data


•  baryon mass (Yin Lin)


• better statistical accuracy at large time

• Michael Lynch’s Lattice ’22 poster on low-mode improvement

• Shaun Lahert’s work on two pion states (not presented here)


– now analyzing 0.12 fm ensemble


• strong isospin breaking

• Curtis Peterson’s analysis (not presented here)


• electromagnetic corrections

• Gaurav Ray’s work was presented at Lattice 2022

aμ

Ω
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Conclusions

✦ Contributions to  from various windows in Euclidean 

time provide valuable benchmarks for lattice QCD 
calculations on the way to complete HVP calculation


✦ This is our first announced window result

• We expect a paper on arXiv in a couple of weeks


✦ The lattice community needs to continue to work hard 
on the full set of hadronic contributions to 


• The tension between the data driven (dispersive) approach and 
lattice QCD is of critical importance and must be resolved or 
explained

aμ

aμ
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One sided windows

• Difference between 
lattice and R-ratio 
determination for 
various one-sided 
windows.


• From 2207.04765, 
using data from 
2020.


• We have analyzed 
several windows 
with our updated 
data set 
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