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• Beyond a 2D layer construction: 
Obstructed 3D CI in B. J. Wieder, Phys. Rev. Research 2, 042010 (2020) Ԧ𝐶2 = Ԧ𝐶1𝑑𝑧

Obstructed 3D CI 
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Photonic 3D CI by cubic supercell



3D CI in a reduced magnetization



3D CI surface states



Topological char. via Wilson loops



Fermi arcs and Fermi loops



Lattice mismatch


