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Woavefront manipulation via metasurfaces
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Light Propagation with Phase
Discontinuities: Generalized Laws of
Reflection and Refraction

Nanfang Yu," Patrice Genevet,™* Mikhail A. Kats,* Francesco Aieta,™ Jean-Philippe Tetienne,**

Federico Capasso,** Zeno Gaburro™>*

Conventional optical components rely on gradual phase shifts accumulated during light
propagation to shape light beams. New degrees of freedom are attained by introducing abrupt
phase changes over the scale of the wavelength. A two-dimensional array of optical resonators
with spatially varying phase response and subwavelength separation can imprint such phase
discontinuities on propagating light as it traverses the interface between two media. Anomalous
reflection and refraction phenomena are observed in this regime in optically thin arrays of metallic
antennas on silicon with a linear phase variation along the interface, which are in excellent
agreement with generalized laws derived from Fermat’s principle. Phase discontinuities provide

great flexibility in the design of light beams, as illustrated by the generation of optical vortices
through use of planar designer metallic interfaces.

optical components such as lenses and

prisms, as well as diffractive elements such
as gratings and holograms, relies on gradual phase
changes accumulated along the optical path. This
approach is generalized in transformation optics
(1, 2), which uses metamaterials to bend light
in unusual ways, achieving such phenomena as
negative refraction, subwavelength-focusing, and
cloaking (3, 4) and even to explore unusual ge-
ometries of space-time in the early universe (5).
A new degree of freedom of controlling wave-
fronts can be attained by introducing abrupt phase
shifts over the scale of the wavelength along the
optical path, with the propagation of light gov-
erned by Fermat’s principle. The latter states that
the trajectory taken between two points A and B
by a ray of light is that of the least optical path,
[Bn(P)dr, where n(7) is the local index of re-
fraction, and readily gives the laws of reflection
and refraction between two media. In its most
general form, Fermat’s principle can be stated as
the principle of stationary phase (6—8); that is,
the derivative of the phase fﬁd ¢@(7) accumu-
lated along the actual light path will be zero with
respect to infinitesimal variations of the path. We
show that an abrupt phase shift ®(7%) over the
scale of the wavelength can be introduced in the
optical path by suitably engineering the interface

Thc shaping of the wavefront of light with
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between two media; ®(7%5) depends on the co-
ordinate 7; along the interface. Then, the total
phase shift ®(7%) + [5% - d7 will be stationary
for the actual path that light takes; % is the wave
vector of the propagating light. This provides a
generalization of the laws of reflection and re-
fraction, which is applicable to a wide range of
subwavelength structured interfaces between two
media throughout the optical spectrum.
Generalized laws of reflection and refraction.
The introduction of an abrupt phase shift, de-
noted as phase discontinuity, at the interface be-
tween two media allows us to revisit the laws of
reflection and refraction by applying Fermat’s
principle. Consider an incident plane wave at an
angle 0;. Assuming that the two paths are infi-
nitesimally close to the actual light path (Fig. 1),
then the phase difference between them is zero

[koni sin(6;)dx + (® + d®)] —
[kon;sin(B)dx + @] = 0 (1)

where 0, is the angle of refraction; ® and ®+dd
are, respectively, the phase discontinuities at the
locations where the two paths cross the interface;
dx is the distance between the crossing points; #;
and n, are the refractive indices of the two media;
and k, = 2m/A,, where A, is the vacuum wave-
length. If the phase gradient along the interface is
designed to be constant, the previous equation
leads to the generalized Snell’s law of refraction

Ao dP 2)

2m dx
Equation 2 implies that the refracted beam can
have an arbitrary direction, provided that a suit-
able constant gradient of phase discontinuity along
the interface (d®/dx) is introduced. Because of
the nonzero phase gradient in this modified Snell’s
law, the two angles of incidence +6; lead to dif-
ferent values for the angle of refraction. As a
consequence, there are two possible critical an-

sin(0)r; — sin(0;)n; =
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gles for total internal reflection, provided that

ny < nj:
. ny Ao dd
0. = £ e 27 3
arCSIH< ni 21t}’li dx) ( )

Similarly, for reflection we have
Ao dP
2nn; dx

sin(8,) — sin(6;) = (4)
where O, is the angle of reflection. There is a
nonlinear relation between 6, and 6;, which is
markedly different from conventional specular re-
flection. Equation 4 predicts that there is always a
critical angle of incidence

) ®

above which the reflected beam becomes
evanescent.

In the above derivation, we have assumed that
@ is a continuous function of the position along
the interface; thus, all the incident energy is trans-
ferred into the anomalous reflection and refraction.
However, because experimentally we use an array
of optically thin resonators with subwavelength
separation to achieve the phase change along
the interface, this discreteness implies that there
are also regularly reflected and refracted beams,
which follow conventional laws of reflection
and refraction (d®/dx = 0 in Eqs. 2 and 4). The
separation between the resonators controls
the amount of energy in the anomalously re-
flected and refracted beams. We have also
assumed that the amplitudes of the scattered
radiation by each resonator are identical, so that
the reflected and refracted beams are plane waves.
In the next section, we will show with simulations
which represent numerical solutions of Maxwell’s

A

d®
dx

ho
27n;

6'C = arcsin(l -

B

Fig. 1. Schematics used to derive the generalized
Snell’s law of refraction. The interface between the
two media is artificially structured in order to in-
troduce an abrupt phase shift in the light path,
which is a function of the position along the in-
terface. ® and @ + d® are the phase shifts where
the two paths (blue and red) cross the boundary.
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Steering light via sub-wavelength control over amplitude and phase manipulation
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see e.g. review by Huang, Zhang and Zentgraf,
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* digitization of holographic diffraction patterns via sub-wavelength
nanoantennas enables reconstruction of high-resolution images with wide
field of view

* superposition of independent transverse polarizations in a sub-wavelength
distance with minimal cross talk
= result of highly anisotropic scattering response of hanoantenna

Beginnings of metasurface holography

Opposite
handedness CP
CGH hologram

plate

* metasurfaces enable abrupt (dispersionless) interfacial phase changes and
hence control over the local wave front on sub-wavelength scales
= encoding of phase information into surface structures acting as
point sources in the context of computer-generated holography

* uniform scattering amplitudes enable very simple generation of phase-only
polarization-based metasurface holograms of diffuse-reflecting surfaces
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Increasing information capacity via multiplexing
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We focus on enhancing information-storage capabilities via the
orbital angular momentum degree of freedom
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Optical vortices and metasurfaces
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Preserving orbital angular momentum
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Change from quasi-continuous to topological-charge-dependent sampling period enables OAM-

pixelated holographic images
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Selecting for a specific orbital angular momentum
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OAM-conserving hologram + spiral phase plate of phase distribution Ip converts
OAM of topological charge -l into fundamental mode
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Phase-only OAM multiplexing holography
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Superposition of multiple OAM-selective hologrames:
Different OAM modes carry independent information channels

« Complex-amplitude metasurfaces for holography and fiber optics implemented via direct laser writing



Lensless reconstruction of holographic images
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Realization of OAM-preserving holograms via GaN nanopillars of fixed height and varying radii
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Selectivity and multiplexing
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djustment of CCD pixel sensitivity commensurate with OAM-dependent sampling constants
aids mode selectivity
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Complex-amplitude metasurface holography
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Height and in-plane rotation of birefringent polymer nanopillars allow
independent control over amplitude and phase
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Flowchart for holographic video encoding

OAM diffuser array ~ Complex-amplitude hologram OAM diffuser array ~ Complex-amplitude hologram
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Complex-amplitude modulation via polymer nanopillars
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3D laser-printed complex-amplitude metasurface

Demonstration of 2000x2000 pixels video reconstruction in two separate image planes
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Application in high-security encryption

OAM-based holagraﬁhic decryption
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Meta-optics for optical fibre applications
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Complex-amplitude metasurfaces for fiber optics

Achromatic metafiber
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3D-printed tower
Achromatic metalens

Design of an achromatic metalens for the telecommunication range:
radially arranged phase profile for focusing and group delay profile for arrival time compensation
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Achromatic focusing and broadband imaging
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Record bandwidth of 400 nm over the whole telecommunications range
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Ultrahigh numerical aperture meta-fibre for trapping

Light: Science & Applications 10:57 (2021)
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2 um silica sphere E. coli bacterium
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Focusing and trapping in context

Working Fabrication method Lens Fibre type Wavelength Measured NA Trapping Reference
principle material application
Refractive Two-photon lithography ~ Polymer 4 SMF bundle 1070 nm 1.15 water Red blood/ ref, °"
microprism (theor) tumour cells
Diffractive fs direct laser writing Polymer 1 SMF + MMF 660 nm 0.882 2 um beads/ This work
meta-lens spliced water E. coli
Refractive Glue Sio, 1 SMF 4+ MMF 980 nm 0.875 0.2 um beads/ ref, °%°3
ball lens spliced water yeast cells
Digital holography Spatial light modulator - 1 MMF 1064 nm >0.8 1.5 um beads ref. '

water
Diffractive fs direct laser Polymer 2 SMFs + spacer 808 nm 0.7 1 um/ ref. 22
meta-lens writing printed water 0.5 um beads
Plasmonic Focused ion beam milling  Au 1 PCF 1550 nm 0.37 = ref, '®
nanorods air
Refractive Stack & draw Sio, 1 SMF + 976 nm 0.16 2 um beads ref, >
GRIN lens + glue spacer glued air (on the surface)
Refractive Laser exposure Polymer 1 SMF + MMF 980 nm ? 8 um beads/ ref. >°
microlens spliced yeast cells

(on the surface)

Diffractive Focused ion beam milling ~ SiO, 1 SMF + MMF 980 nm ? 8 um beads/ ref. !’
Fresnel plate spliced yeast cells

(on the surface)

Diffractive UV-nanoimprint Polymer 1 SMF 660 nm ? - ref,
Fresnel plate lithography

Refractive HF chemical etching SiO, 1 SMF 633 nm ? - ref, '°
microaxicon

No trapping with single fibres alone due to low NA
(additional surfaces required to overcome axial scattering force)
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Design of a trapping metafibre

Single-mode fiber, L ~ oo 4{
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* diverging light from fibre end facet is compensated via metalens with * limitations: aliasing (discretization sets upper bound on achievable phase
discretized hyperbolic phase profile (kinoform-type phase distribution, change between pixels), coherence of laser source
circular grating diffracting at Bragg angle) * resolution constraints of direct laser writing (300 nm) still enable
* additional compensation of curved wave fronts (spherical aberration) diffraction-limited focusing with NA = 0.9 at wavelength 660 nm
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Implementation via direct laser writing
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constant pitch, varying height < 3 um,

excellent agreement with desigh, NA = 0.9 S o
= = write time |h, transmission > 50%
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Full 3D optical trapping with a single device

Trapped E. coli

LED o CAM
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* trapping in water requires NA of at least 0.8 * excellent trapping dynamics over timescales > | min
* laser diode operating at 660 nm with 37 mW * displacement probability of silica sphere test object follows closely the
* motion of trapped objects recorded via Koehler illum imaging at 455 nm focal spot intensity distribution
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Determination of trap stiffness
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* power spectral density evaluation and mean-square-displacement analysis  * ratio of transverse to axial trap stiffness as expected for elongated focus
for determination of trap stiffness of representative displacement datasets ¢ no particle drift on time scales > | min visible
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Thank you for your attention
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