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Introduction

Modelling two-phase flows

Class Typical Geometry Configuration FExamples
regimes
Separated | Film flow Liquid filmin gas | Film condensation
flows Gas film in liquid | Film boiling
Annular Liquid coreand | Film boiling
flow gas film Boilers
Gas core and
liquid film
Jet flow Liquid jet in gas Atomization
Gasjetin liquid | Jet condenser
Mixedor | Cap, Shug Gas pocket in Sodium boiling in
Transitional | or Churn- liquid forced convection
flows turbulent
low
Bubbly Gas bubbles in Evaporators with
annular liquid film with wall nucleation
flow gas core.
Droplet Gas core with Steam generator
annular droplets and liquid
flow film
Bubbly Gas core with Boiling nuclear
droplet droplets and liquid | reactor channel
annular film with gas
flow bubbles
Dispersed | Bubbly Gas bubbles in Chemical reactors
flows flow liquid
Droplet Liquid droplets in | Spray cooling
flow gas
Particulate Solid particlesin | Transportation of
flow gas or liquid powder

Figure: Ishii 1975, classification of two-phase flow
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Introduction
Modelling of dispersed two-phase flows

@ One need to introduce two new unknowns: volume fractions, measuring
how much space does one phase occupy at a given position in space.

@ — In order to have a closed system, two extra equations are needed.
@ In 1986, Baer and Nunziato proposed a model for which the volume
fractions verify
Py —P

Orat+ + v - Vag = ¥7 (1)

o Later, Kapila et al. in 2001 proposed the following equations
ar +oa- =1,
{ P+ = P,, (2)

@ Clearly, the PDE closure equations (1) can be interpreted as a

pressure-relaxed version of the algebraic closure equations (2).
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Modelling of dispersed two-phase flows

@ One need to introduce two new unknowns: volume fractions, measuring
how much space does one phase occupy at a given position in space.

@ — In order to have a closed system, two extra equations are needed.
@ In 1986, Baer and Nunziato proposed a model for which the volume
fractions verify
Py —P

Orat+ + v - Vag = ¥7 (1)

o Later, Kapila et al. in 2001 proposed the following equations
ar +oa- =1,
{ P+ = P,, (2)

@ Clearly, the PDE closure equations (1) can be interpreted as a

pressure-relaxed version of the algebraic closure equations (2).

— In our works, it is this singular limit that we wish to justify rigorously.
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Introduction
Why? Importance of relaxation procedure

@ Numerically: reduce the number of constraints imposed on a system and
therefore simplifies its numerical study.

@ Theoretically: establish relationship between different system (possibly
under specific scaling)

o If one gets can get an explicit convergence rate of the singular limit
process — one can use strong relaxation type argument and may obtain
new properties:

u=u"+(u—u")
where u is the solution of the relaxation system and u™ of the limit system.

@ See the works of Danchin on the incompressible limit of the Navier-Stokes
equations or Titi et al. on the primitive equation.
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Why? Importance of relaxation procedure

@ Numerically: reduce the number of constraints imposed on a system and
therefore simplifies its numerical study.

@ Theoretically: establish relationship between different system (possibly
under specific scaling)

o If one gets can get an explicit convergence rate of the singular limit
process — one can use strong relaxation type argument and may obtain
new properties:

u=u"+(u—u")

where u is the solution of the relaxation system and u™ of the limit system.

@ See the works of Danchin on the incompressible limit of the Navier-Stokes
equations or Titi et al. on the primitive equation.

@ Maybe in the future for the compressible Euler with nonlinear damping
and doubly non-linear equation as Giesselmann and Egger have already
established a convergence rate.

Crin-Barat Timothée Well-posedness and pressure-relaxation of multifluid systems



Introduction
System

We consider the following damped Baer-Nunziato system with linear damping

Bucrs + - Vo = £220 (P, (1) — P (o)),
O (axpx) +div(arpru) =0,

O(pu) + div(pu ® u) + VP — vAu+ npu =0, (BN)
p=0aipr +a—p—,

P =aiPi(ps) + P (p-)

A4 O—
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Introduction
System

We consider the following damped Baer-Nunziato system with linear damping

Orax +u-Vax =+ (P+ (p+) = P (p-)),

O (axpx) +div(arpru) =0,

O(pu) + div(pu ® u) + VP — vAu+ npu =0, (BN)
p=0aipr +a—p—,

P =ayPi(ps) +a-P-(p-)

e Rigorous derivation of (BN) in the one-dimensional setting by
Bresch-Burtea-Lagoutiere in 2021, key ingredients: homogenisation
procedure from the mesoscopic scale to the macroscopic one using Young
measures to study the propagation of oscillation. (Serre '92).

A4 O—
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p=0aipr +a—p—,
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o Notice that the pressure-relaxation coefficient depends on the viscosity!

A4 O—
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System

We consider the following damped Baer-Nunziato system with linear damping

s +u-Vaz =+ (P () = P_ (o),
O (axpx) +div(arpru) =0,

O(pu) + div(pu ® u) + VP — vAu+ npu =0, (BN)
p=0aipr +a—p—,

P =aiPi(ps) + P (p-)

e Rigorous derivation of (BN) in the one-dimensional setting by
Bresch-Burtea-Lagoutiere in 2021, key ingredients: homogenisation
procedure from the mesoscopic scale to the macroscopic one using Young
measures to study the propagation of oscillation. (Serre '92).

o Notice that the pressure-relaxation coefficient depends on the viscosity!

@ Goal: study the well-posedness of (BN) close to constant equilibrium and
the pressure-relaxation and vanishing viscosity limit v — 0 (and 1 — ).

A4 O—
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System

We consider the following damped Baer-Nunziato system with linear damping

Bucrs + - Vo = £220 (P, (1) — P (o)),
O (axpx) +div(arpru) =0,

O(pu) + div(pu ® u) + VP — vAu+ npu =0, (BN)
p=0aipr +a—p—,

P =aiPi(ps) + P (p-)

e Rigorous derivation of (BN) in the one-dimensional setting by
Bresch-Burtea-Lagoutiere in 2021, key ingredients: homogenisation
procedure from the mesoscopic scale to the macroscopic one using Young
measures to study the propagation of oscillation. (Serre '92).

o Notice that the pressure-relaxation coefficient depends on the viscosity!

@ Goal: study the well-posedness of (BN) close to constant equilibrium and
the pressure-relaxation and vanishing viscosity limit v — 0 (and 1 — ).

@ When v — 0 (BN) converges formally to the Kapila system:

A4 O—

ar +a_ =1,
Ot (a+p+) +div(a+p+u) =0,
Oc(pu) + div(pu @ u) + VP + npu =0, (K)

p=aips +a—p—,
P =P (p+)=P-(p-),
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Infinite damping limit
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Introduction
Infinite damping limit

Q. +oa_ = 17
O (Olipi) + div (aipiu) =0,
O(pu) + div(pu @ u) + VP + npu =0, (K)

p=0aipr +a—p—,
P=Pi(ps)=P-(p-)-

When 1 — oo, one expects that the solution of (K), under the following
rescaling:

(p",v")(t, x) £ (p,nv)(nt,x),

converges to the coupled porous media type equations:

ar+a_ =1,
. QO+ 0+
Os(a —div [ ————————VIN | =0,
(asos) — aiv (225 vn) -
VI +pov=0

M= P (o) = P(o-).
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Introduction
Infinite damping limit

Q. +oa_ = 17
O (Olipi) + div (aipiu) =0,
O(pu) + div(pu @ u) + VP + npu =0, (K)

p=0aipr +a—p—,
P=Pi(ps)=P-(p-)-

When 1 — oo, one expects that the solution of (K), under the following
rescaling:

(p",v")(t, x) £ (p,nv)(nt,x),

converges to the coupled porous media type equations:

oy o = 17
. o+ 04+
Os(a —div { —————— VI ) =0,
(asos) — aiv (225 vn) -
VI +pov=0

N = Pi(o+) = P-(0-)-
— Similar to the convergence from compressible Euler with damping to the
porous media equation (that we get "for free” here as our estimate are uniform
in 7).



Introduction
Sum-up of the relaxation processes

time-rescale

System (BN) System (K)

time-rescale n— 0

IS

ﬁ n—+00, v< h
System (BN) System (PM)

Figure: Relaxation limits diagram.
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Introduction
Equilibrium/Behaviour at infinity

We are concerned with solutions (aut, p+, u) close to a constant equilibrium
— . . .
(&i,ﬁi, 0 ) with far field behaviour

ax (t,x) = ax, pr(t,x) = pe, u(tx) = 0 as x| 500, (3)
where
0<a+ <1, 0<pt
with
ar+a_=1 (4)
while , P+(p+) = Aj[pli and
P.(p+) = P-(p-) "= P. (5)

Where the last assumption is there to avoid the apparition of initial time-layers.
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Introduction
Difficulties

Back to the Baer-Nunziato system:

Brar + u- Vax = 252 (P, (p2) — P_ (p-)),
Ot (a+p+) +div(a+p+u) =0,

O(pu) + div(pu @ u) + VP — vAu+ npu =0, (BN)
p=aipr +a—p—,

P =Py (p+) +a-P- (p-)

Difficulties:
o Lack of symmetry/symmetrizability
@ The system (BN) is not a system of conservation laws.

@ The entropy that is naturally associated with this system is only positive
semi-definite. Thus, it is not clear if or how the entropy variables can be
used to study the well-posedness of the system (BN).

@ The associated quasilinear system does not satisfy the (SK) condition as it
admits the eigenvalue 0.

@ What are the dissipated components?
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Strategy

o Lack of symmetry can be treated by constructing bi-linear energy
functional, an idea used for instance in Bona-Collin-Guillopé 2013, Burtea
2015, 2016.

@ The eigenspace associated to the eigenvalue 0 is of dimension 1 so it
essentially means that only one mode.unknown is undamped.

s

@ In our analysis this mode will correspond to the mass fraction Y, =
p

verifying:
BtY++u-VY+:0

@ Separating this mode from the other, we get a partially dissipative system
verifying the (SK) condition (ensuring the well-posedness of partially
dissipative systems).
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Introduction
Strategy

o Lack of symmetry can be treated by constructing bi-linear energy
functional, an idea used for instance in Bona-Collin-Guillopé 2013, Burtea
2015, 2016.

@ The eigenspace associated to the eigenvalue 0 is of dimension 1 so it
essentially means that only one mode.unknown is undamped.

s

@ In our analysis this mode will correspond to the mass fraction Y, =
p

verifying:
BtY++u-VY+:0

@ Separating this mode from the other, we get a partially dissipative system
verifying the (SK) condition (ensuring the well-posedness of partially
dissipative systems).

@ But what are the others unknowns one should consider?
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Finding good unknowns by hand

Guiding principles that we followed:
@ keep the velocity unchanged u;
@ keep the mass fraction unchanged y;
@ a third variable should be a positive multiple of the pressure difference
w = (?)(Py = P-);
@ "the pressure should not be written as a function of the mass fraction”;
we are looking for a pressure that is linear w.r.t. w and a fourth variable.

@ The contribution coming from the damping in the fourth variable, which
we call R, should be at least quadratic w.r.t. w/v
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Introduction
Reformulation of the system

We consider the following change of variables

Py (p+) = P (p-)

=1 (ar, pi,po) =

o=
a;a++a7 oy
R = &2 (o, py,p-) = ai%a; Py + = P- (6)
Y+ a—p Y+ Y=
Y = &3 (o, pi,y p e o
(s pss p-) aspr +a_p_
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Introduction
Reformulation of the system

We consider the following change of variables

Py (p+) = P (p-)

=1 (ar, pi,po) =

TS
a;a++a7 oy
R = &2 (o, py,p-) = ai%a; Py + = P- (6)
?)z—p Y+ -
Y =& (ap, pi,p) = —F
(s pss p-) aspr +a_p_

The Jacobian of the transformation computed at (&, pt, p—) is
, A PL() P (7o)
(a+:70:7-) = " 2 T 0=
Q4 a_—

> 0.
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Introduction
Reformulation of the system

We consider the following change of variables

P (p+) ~ P— (p-)

=1 (ar, pi,po) =

TS
a;a++a7 oy
R = &2 (o, py,p-) = ai%a; Py + = P- (6)
?)z—p Y+ -
Y =& (ap, pi,p) = —F
(s pss p-) aspr +a_p_

The Jacobian of the transformation computed at (&, pt, p—) is
, A PL() P (7o)
(a+:70:7-) = " 2 T 0=
Q4 a_—

> 0.

W.r.t. to these variables we obtain the system (Hy, A, A5 > 0)
Oty +u-Vy =0,
otw +u-Vw+ (I:Il + Hi(w,r, y)) divu + (I:Ig + Ha(w, r,y))

w =0,
Y
Or+u-Vr+ (I:I3 + Hs(w,r,y)) divu = (I:I4 + Ha(w,r,y)) Wj,
1 1
atu—i—u-Vu—&—nu—&—;Vr—i—(’n—’y,);VW:O.
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Introduction
Handling the lack of symmetry

Much better dissipative structure, but it still lacks symmetry. We treat it by
constructing weighted energy functionals:
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Introduction
Handling the lack of symmetry

Much better dissipative structure, but it still lacks symmetry. We treat it by
constructing weighted energy functionals:

Op+ uVp+ pdivu =0,
/
Oru~+ uVu + pTEp)Vp =0.
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Introduction
Handling the lack of symmetry

Much better dissipative structure, but it still lacks symmetry. We treat it by
constructing weighted energy functionals:

Op+ uVp+ pdivu =0,
/
Oru~+ uVu + pTEp)Vp =0.

Apply o € N¥, o = |k| derivatives to the above equation

0:(Dp) + uV(D“p) + pdiv Du = By,
8:(Du) + uV(D*u) + ”T(”)V(Dap) =B,

where B; and B, are commutator terms.
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Introduction
Handling the lack of symmetry

Much better dissipative structure, but it still lacks symmetry. We treat it by
constructing weighted energy functionals:

Op+ uVp+ pdivu =0,
/
Oru~+ uVu + pTEp)Vp =0.

Apply o € N¥, o = |k| derivatives to the above equation
0:(Dp) + uV(D“p) + pdiv Du = By,

9:(D*u) + uV (D u) + #V(D“p) = B,

where B; and B, are commutator terms. Omitting these commutators one has
d [1 [P(P) na 2 a2 o [p'(p) o |2
— D D = — D
{5 [P0 v iomap = [ 5 {22 0
— The terms that would cause a loss of derivative were cancelled thanks to the
quasi-linear weight. The extra term appearing is absorbed with bounds on
(Otu, 8tp)
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Recovering dissipation

The linear system we are interested in reads:

otw +u-Vw+divu + ﬂ707
W

Or +u - Vr+d|vu—7

Ou+u-Vu+nu+Vr+Vw =0.

@ The equation of w and u are purely dissipative. To recover dissipation on
r we need to use the coupling between the equations.
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Recovering dissipation

The linear system we are interested in reads:

otw +u-Vw+divu + =0,

w
¥
w
Or +u - Vr+d|vu—7
Ou+u-Vu+nu+Vr+Vw =0.

@ The equation of w and u are purely dissipative. To recover dissipation on

r we need to use the coupling between the equations.
@ Example in 1d and w = 0: consider the following perturbed functional

[’2 = ”(ra u, 8xra8xu)||i2 +/ uoxr,
R

which allows to recover dissipation properties on all the components.
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Introduction
Recovering dissipation

The linear system we are interested in reads:

otw +u-Vw+divu + =0,

w
¥
w
Or +u - Vr+d|vu—7
Ou+u-Vu+nu+Vr+Vw =0.

@ The equation of w and u are purely dissipative. To recover dissipation on
r we need to use the coupling between the equations.

@ Example in 1d and w = 0: consider the following perturbed functional
[’2 = ”(ra u, 8xra 8X”)Hi2 + / uoxr,
R

which allows to recover dissipation properties on all the components.
Indeed, one obtains

d .
dtz +lulze + [10er, Oxu)llz <0 L7+ min(1,€7)L° <0

And since £? ~ ||(r, u, Oxr, Oxu)||?2, one can derive time-decay estimates
depending on the frequencies! — need to consider two different
frequency-regime.
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Statement of first main result
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Statement of first main result

Theorem

Let d > 2. There exists a constant ¢; > 0 independent of the parameters v
(and n) such that if the initial data verify:

(@0 = @, pro = e o)l g -1 g0 < €15

nB
then System (BN) admits a unique global-in-time solution (o, p+, u) such
that

(0 — G, px — P, u) € Co(Ry; BE1 N BEHY),

P —P_(p
= (’”2)#+ s () ¢ (R, ;B3 BY) and ue (R, BB,

Moreover, the following estimate holds true uniformly with respect to the
viscosity coefficient v (and the friction parameter 1))

[(ax — @+, p+ — px, u)|l g1 da +ull

L®(R4;B2 'NB27) Ll(R+;B%mB%+1)

1
[ — — . _ < .
2M+>\”P+ (p+) —P-(p )HLl(R%B%flmB%) < Ca
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Second result : convergence rate for the vanishing viscosity and
pressure-relaxation

Theorem (Burtea, C-B, Tan)

Let d > 3 and assume the same hypothesis on the parameters as in Theorem 1.

Let (o, a”, pY, p4,u”) and (a4, a—, p+, p—, u) be the solutions to the Cauchy
problem (BN) and (K) associated with the initial data (a4 o, p%0, Ug)-

Then, there exists a constant C > 0 independent of v and n such that

(ot — o, p% = paey 2 =y 0" =)l gy, + 0% = pll , g3,
o =l g3y < € (Ilg-3 -3 V7).

And a similar result hold for n — 0.
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Thank you for your attention!
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