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Introduction

Modelling two-phase flows

Figure: Ishii 1975, classification of two-phase flow
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Introduction

Modelling of dispersed two-phase flows

One need to introduce two new unknowns: volume fractions, measuring
how much space does one phase occupy at a given position in space.

→ In order to have a closed system, two extra equations are needed.

In 1986, Baer and Nunziato proposed a model for which the volume
fractions verify

∂tα± + vI · ∇α± =
P± − P∓

ε
, (1)

Later, Kapila et al. in 2001 proposed the following equations{
α+ + α− = 1,
P+ = P−.

(2)

Clearly, the PDE closure equations (1) can be interpreted as a
pressure-relaxed version of the algebraic closure equations (2).

→ In our works, it is this singular limit that we wish to justify rigorously.
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Introduction

Why? Importance of relaxation procedure

Numerically: reduce the number of constraints imposed on a system and
therefore simplifies its numerical study.

Theoretically: establish relationship between different system (possibly
under specific scaling)

If one gets can get an explicit convergence rate of the singular limit
process → one can use strong relaxation type argument and may obtain
new properties:

u = u∗ + (u − u∗)

where u is the solution of the relaxation system and u∗ of the limit system.

See the works of Danchin on the incompressible limit of the Navier-Stokes
equations or Titi et al. on the primitive equation.

Maybe in the future for the compressible Euler with nonlinear damping
and doubly non-linear equation as Giesselmann and Egger have already
established a convergence rate.
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Introduction

System

We consider the following damped Baer-Nunziato system with linear damping
∂tα± + u · ∇α± = ±α+α−

ν
(P+ (ρ+)− P− (ρ−)),

∂t (α±ρ±) + div (α±ρ±u) = 0,
∂t(ρu) + div(ρu ⊗ u) +∇P − ν∆u + ηρu = 0,
ρ = α+ρ+ + α−ρ−,
P = α+P+ (ρ+) + α−P− (ρ−)

(BN)

Rigorous derivation of (BN) in the one-dimensional setting by
Bresch-Burtea-Lagoutière in 2021, key ingredients: homogenisation
procedure from the mesoscopic scale to the macroscopic one using Young
measures to study the propagation of oscillation. (Serre ’92).
Notice that the pressure-relaxation coefficient depends on the viscosity!
Goal: study the well-posedness of (BN) close to constant equilibrium and
the pressure-relaxation and vanishing viscosity limit ν → 0 (and η → ∞).
When ν → 0 (BN) converges formally to the Kapila system:

α+ + α− = 1,
∂t (α±ρ±) + div (α±ρ±u) = 0,
∂t(ρu) + div(ρu ⊗ u) +∇P + ηρu = 0,
ρ = α+ρ+ + α−ρ−,
P = P+ (ρ+) = P− (ρ−),

(K)
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Infinite damping limit


α+ + α− = 1,
∂t (α±ρ±) + div (α±ρ±u) = 0,
∂t(ρu) + div(ρu ⊗ u) +∇P + ηρu = 0,
ρ = α+ρ+ + α−ρ−,
P = P+ (ρ+) = P− (ρ−) .

(K)

When η → ∞, one expects that the solution of (K), under the following
rescaling:

(ρη, vη)(t, x) ≜ (ρ, ηv)(ηt, x),

converges to the coupled porous media type equations:

α+ + α− = 1,

∂s(α±ϱ±)− div

(
α±ϱ±

α+ϱ+ + α−ϱ−
∇Π

)
= 0,

∇Π+ ϱv = 0

Π = P+(ϱ+) = P−(ϱ−).

(PM)

→ Similar to the convergence from compressible Euler with damping to the
porous media equation (that we get ”for free” here as our estimate are uniform
in η).
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Sum-up of the relaxation processes

System (BN) System (K) System (K̃)

System (PM)System (B̃N)

ν → 0+

uniformly in η

time-rescale

η → ∞time-rescale

η → ∞, ν ≤ 1

η

Figure: Relaxation limits diagram.
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Equilibrium/Behaviour at infinity

We are concerned with solutions (α±, ρ±, u) close to a constant equilibrium(
ᾱ±, ρ̄±,

−→
0

)
with far field behaviour

α± (t, x) → ᾱ±, ρ± (t, x) → ρ̄±, u (t, x) → −→
0 as |x | → ∞, (3)

where
0 < ᾱ± < 1, 0 < ρ̄±

with
ᾱ+ + ᾱ− = 1 (4)

while , P±(ρ±) = A±ρ
γ±
± and

P+ (ρ̄+) = P− (ρ̄−)
not.
= P̄.. (5)

Where the last assumption is there to avoid the apparition of initial time-layers.
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Difficulties

Back to the Baer-Nunziato system:
∂tα± + u · ∇α± = ±α+α−

ν
(P+ (ρ+)− P− (ρ−)),

∂t (α±ρ±) + div (α±ρ±u) = 0,
∂t(ρu) + div(ρu ⊗ u) +∇P − ν∆u + ηρu = 0,
ρ = α+ρ+ + α−ρ−,
P = α+P+ (ρ+) + α−P− (ρ−)

(BN)

Difficulties:

Lack of symmetry/symmetrizability

The system (BN) is not a system of conservation laws.

The entropy that is naturally associated with this system is only positive
semi-definite. Thus, it is not clear if or how the entropy variables can be
used to study the well-posedness of the system (BN).

The associated quasilinear system does not satisfy the (SK) condition as it
admits the eigenvalue 0.

What are the dissipated components?
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Strategy

Lack of symmetry can be treated by constructing bi-linear energy
functional, an idea used for instance in Bona-Collin-Guillopé 2013, Burtea
2015, 2016.

The eigenspace associated to the eigenvalue 0 is of dimension 1 so it
essentially means that only one mode.unknown is undamped.

In our analysis this mode will correspond to the mass fraction Y+ =
α+ρ+
ρ

verifying:
∂tY+ + u · ∇Y+ = 0

Separating this mode from the other, we get a partially dissipative system
verifying the (SK) condition (ensuring the well-posedness of partially
dissipative systems).

But what are the others unknowns one should consider?
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Finding good unknowns by hand

Guiding principles that we followed:

keep the velocity unchanged u;

keep the mass fraction unchanged y ;

a third variable should be a positive multiple of the pressure difference
w = (?) (P+ − P−);

”the pressure should not be written as a function of the mass fraction”;
we are looking for a pressure that is linear w.r.t. w and a fourth variable.

The contribution coming from the damping in the fourth variable, which
we call R, should be at least quadratic w.r.t. w/ν

Crin-Barat Timothée Well-posedness and pressure-relaxation of multifluid systems
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Reformulation of the system

We consider the following change of variables

w = Φ1 (α+, ρ+, ρ−) =
P+ (ρ+)− P− (ρ−)

γ+

α+
+

γ−
α−

,

R = Φ2 (α+, ρ+, ρ−) =

α−
γ−

α+

γ+
+

α−
γ−

P+ +

α+

γ+
α+

γ+
+

α−
γ−

P−

Y = Φ3 (α+, ρ+, ρ−) =
α+ρ+

α+ρ+ + α−ρ−
.

(6)

The Jacobian of the transformation computed at (ᾱ+, ρ̄+, ρ̄−) is

J|(ᾱ+,ρ̄+,ρ̄−) =
ρ̄+ρ̄−
ρ̄2

· P
′
+ (ρ̄+)P

′
− (ρ̄−)

γ+
ᾱ+

+
γ−
ᾱ−

> 0.

W.r.t. to these variables we obtain the system (H̄1, H̄2, H̄3 > 0)

∂ty + u · ∇y = 0,

∂tw + u · ∇w +
(
H̄1 + H1(w , r , y)

)
div u +

(
H̄2 + H2(w , r , y)

) w

ν
= 0,

∂tr + u · ∇r +
(
H̄3 + H3(w , r , y)

)
div u =

(
H̄4 + H4(w , r , y)

) w 2

ν
,

∂tu + u · ∇u + ηu +
1

ρ
∇r + (γ+ − γ−)

1

ρ
∇w = 0.
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Handling the lack of symmetry

Much better dissipative structure, but it still lacks symmetry. We treat it by
constructing weighted energy functionals:

 ∂tρ+ u∇ρ+ ρ div u = 0,

∂tu + u∇u +
p′ (ρ)

ρ
∇ρ = 0.

Apply α ∈ Nd , α = |k| derivatives to the above equation ∂t(D
αρ) + u∇(Dαρ) + ρ divDαu = B1,

∂t(D
αu) + u∇(Dαu) +

p′ (ρ)

ρ
∇(Dαρ) = B2,

where B1 and B2 are commutator terms. Omitting these commutators one has

d

dt

{
1

2

∫
p′ (ρ)

ρ2
|Dαρ|2 + |Dαu|2

}
=

∫
∂

∂t

{
p′ (ρ)

ρ2

}
|Dαρ|2

→ The terms that would cause a loss of derivative were cancelled thanks to the
quasi-linear weight. The extra term appearing is absorbed with bounds on
(∂tu, ∂tρ).
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where B1 and B2 are commutator terms. Omitting these commutators one has

d

dt

{
1

2

∫
p′ (ρ)

ρ2
|Dαρ|2 + |Dαu|2

}
=

∫
∂

∂t

{
p′ (ρ)

ρ2

}
|Dαρ|2

→ The terms that would cause a loss of derivative were cancelled thanks to the
quasi-linear weight. The extra term appearing is absorbed with bounds on
(∂tu, ∂tρ).
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Recovering dissipation

The linear system we are interested in reads:
∂tw + u · ∇w + div u +

w

ν
= 0,

∂tr + u · ∇r + div u =
w 2

ν
,

∂tu + u · ∇u + ηu +∇r +∇w = 0.

The equation of w and u are purely dissipative. To recover dissipation on
r we need to use the coupling between the equations.

Example in 1d and w = 0: consider the following perturbed functional

L2 = ∥(r , u, ∂x r , ∂xu)∥2L2 +
∫
R
u∂x r ,

which allows to recover dissipation properties on all the components.
Indeed, one obtains

d

dt
L2 + ∥u∥2L2 + ∥(∂x r , ∂xu)∥2L2 ≤ 0

d

dt
L2 +min(1, ξ2)L2 ≤ 0

And since L2 ∼ ∥(r , u, ∂x r , ∂xu)∥2L2 , one can derive time-decay estimates
depending on the frequencies! → need to consider two different
frequency-regime.
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Statement of first main result

Theorem

Let d ≥ 2. There exists a constant c1 > 0 independent of the parameters ν
(and η) such that if the initial data verify:

∥(α±0 − ᾱ±, ρ±0 − ρ̄±, u0)∥
B

d
2
−1∩B

d
2
+1 ≤ c1,

then System (BN) admits a unique global-in-time solution (α±, ρ±, u) such
that (α± − ᾱ±, ρ± − ρ̄±, u) ∈ Cb(R+;B

d
2
−1 ∩ B

d
2
+1),

P+ (ρ+)− P− (ρ−)

2µ+ λ
∈ L1(R+;B

d
2
−1 ∩ B

d
2 ) and u ∈ L1(R+;B

d
2 ∩ B

d
2
+1).

Moreover, the following estimate holds true uniformly with respect to the
viscosity coefficient ν (and the friction parameter η)

∥(α± − ᾱ±, ρ± − ρ̄±, u)∥
L∞(R+;B

d
2
−1∩B

d
2
+1

)
+ ∥u∥

L1(R+;B
d
2 ∩B

d
2
+1

)

1

2µ+ λ
∥P+ (ρ+)− P− (ρ−)∥

L1(R+;B
d
2
−1∩B

d
2 )

≤ Cc1.
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Second result : convergence rate for the vanishing viscosity and
pressure-relaxation

Theorem (Burtea, C-B, Tan)

Let d ≥ 3 and assume the same hypothesis on the parameters as in Theorem 1.
Let (αν

+, α
ν
−, ρ

ν
+, ρ

ν
+, u

ν) and (α+, α−, ρ+, ρ−, u) be the solutions to the Cauchy
problem (BN) and (K) associated with the initial data (αν

±+0, ρ
ν
±0, u

ν
0 ).

Then, there exists a constant C > 0 independent of ν and η such that

∥(αν
± − α±, ρ

ν
± − ρ±, ρ

ν
− − ρ−, u

ν − u)∥
L∞(B

d
2
− 1

2 )
+ ∥ρν± − ρ±∥

L2(B
d
2
− 1

2 )

+ ∥uν − u∥
L1(B

d
2
− 1

2 )
≤ C

(
∥U0∥

B
d
2
− 3

2 ∩B
d
2
− 1

2
+

√
ν
)
.

And a similar result hold for η → 0.
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Thank you for your attention!
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