Space-time domain decomposition

of optimal control problems for linear hyperbolic systems

Introduction

Problem formulation

Let $y(t,x) \in \mathbf{R}^d$, $t \in I_k$, $x \in [0,L]$, denote the state and let

$$\Lambda = diag(\lambda_1, \dots, \lambda_m, \lambda_{m+1}, \dots, \lambda_d) \in \mathbf{R}^{d \times d}$$

with

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m > 0 > \lambda_{m+1} \geq \cdots \geq \lambda_d.$$

We use the block-matrix abbreviation

$$\Lambda := diag\left(\Lambda^{+}, \Lambda^{-}\right),$$

with $\Lambda^+ := diag(\lambda_1, \dots, \lambda_m)$ and $\Lambda^- := diag(\lambda_{m+1}, \dots, \lambda_d)$.

Boundary conditions

We denote the first m components of the state by y^+ and the remaining d-m components by y^- such that $y = (y^+, y^-)$. We consider here separated boundary conditions. Define the block matrix K

$$K := \begin{bmatrix} K^{00} & K^{01} \\ K^{10} & K^{11} \end{bmatrix},$$

$$K^{00} = 0 \in \mathbf{R}^{m \times m}, \quad K^{01} \in \mathbf{R}^{m \times d - m}, K^{10} = 0 \in \mathbf{R}^{d - m \times m}, \quad K^{11} \in \mathbf{R}^{d - m \times d - m}.$$

Let B_d signify the input operator for distributed controls u.

Hyperbolic system (P)

$$\partial_t y + \Lambda \partial_x y = B_d u_d, (t, x) \in [0, T] \times (0, L),$$

$$\begin{pmatrix} y^+(t, 0) \\ y^-(t, L) \end{pmatrix} = K \begin{pmatrix} y^+(t, L) \\ y^-(t, 0) \end{pmatrix} t \in [0, T],$$

$$y(0, x) = y_0(x), x \in (0, L),$$

The optimal control problem

$$J(u_d, y) := \frac{\kappa}{2} \int_{0}^{T} \int_{0}^{1} ||y - y_d||^2 dt + \frac{\nu}{2} \int_{0}^{T} \int_{0}^{1} ||u_d||^2 dt$$

The considered control problem is thus given by

$$\min_{u,y} J(u,y)$$
 s.t. (u,y) satisfies P.

Adjoint boundary conditions and optimality condition

The boundary matrix \tilde{K} is given by

$$\tilde{K} := diag((\Lambda^{+})^{-1}, |(\Lambda^{-})^{-1}|)K^{\top}diag(\Lambda^{+}, |\Lambda^{-}|),$$

By taking the directional derivative of $\mathcal{L}(u, y, p)$ w.r.t. u_d in the direction $\tilde{u_d}$

$$u_d(t,x) = \frac{1}{\nu} B_d^{\mathsf{T}} p(t,x),$$
 $(t,x) \in (0,T) \times (0,L).$

Optimality system

We obtain the following optimality conditions governing the adjoint variable p:

$$\partial_t p + \Lambda \partial_x p = \kappa(y - y_d), \qquad (t, x) \in (0, T) \times (0, L),$$
$$\binom{p^+(t, L)}{p^-(t, 0)} = \tilde{K} \begin{pmatrix} p^+(t, 0) \\ p^-(t, L) \end{pmatrix}, \qquad t \in (0, T),$$
$$p(T, x) = 0, \qquad x \in (0, L).$$

Derivation of the second order problem

We take the adjoint equation, first multiply by Λ and differentiate wrt x and secondly differentiate wrt to t:

$$\Lambda \partial_{xt} p + \Lambda^2 \partial_{xx} = \kappa (\frac{1}{\nu} B_d B_d^T p - \partial_t y - \Lambda \partial_x y_d)$$
$$\partial_{tt} p + \Lambda \partial_{xt} p = \kappa (\partial_t y - \partial_t y_d).$$

The second equation yields

$$\kappa \partial_t y = \partial_{tt} p + \Lambda \partial_{xt} p + \kappa \partial_t y_d$$

which used in the first equation of to obtain

$$\partial_{tt}p + 2\Lambda\partial_{tx}p + \Lambda^2\partial_{xx}p - \frac{\kappa}{\nu}B_dB_d^Tp = \kappa(\Lambda\partial_x y_d + \partial_t y_d) =: -\kappa f.$$
 (SOE)

Standard div-grad formulation

We introduce the block matrix

$${\cal A}:= egin{pmatrix} I & \Lambda \ \Lambda & \Lambda^2 \end{pmatrix},$$

which is symmetric and positive semi-definite.

Then (SOE) turns into a degenerate Poisson equation in divergence form

$$-\mathrm{div}\mathcal{A}\nabla p + \frac{\kappa}{\nu}B_dB_d^T p = \kappa f.$$

Boundary conditions

Notice that $\mathcal{A} \in \mathbb{R}^{2d \times 2d}$, such that each block of $\mathcal{A} =: (a_{ij})_{i,j=1}^2$ is in $\mathbb{R}^{d \times d}$. We denote the trace of p by $\gamma(p)(x), x \in \partial\Omega := (0,T) \times (0,L)$. Then, understanding that the indices i, j = 1, 2 relate to the direction t, x, respectively, we have

$$\partial_{\nu_{\mathcal{A}}} p(t,x) := \sum_{i,j=1}^{2} a_{ij} \gamma(\partial_{j} p(t,x)) \nu_{i}(t,x), \ (t,x) \in \partial \Omega$$

Using this definition, we can write the co-normal derivative explicitly as follows

$$\partial_{\nu_{\mathcal{A}}} p(t,0) = -\Lambda(\partial_{t} p(t,0) + \Lambda \partial_{x} p(t,0)), \qquad t \in (0,T)$$

$$\partial_{\nu_{\mathcal{A}}} p(t,L) = \Lambda(\partial_{t} p(t,L) + \Lambda \partial_{x} p(t,L)), \qquad t \in (0,T)$$

$$\partial_{\nu_{\mathcal{A}}} p(0,x) = -(\partial_{t} p(0,x) + \Lambda \partial_{x} p(0,x)), \qquad x \in (0,L)$$

$$\partial_{\nu_{\mathcal{A}}} p(T,x) = \partial_{t} p(T,x) + \Lambda \partial_{x} p(T,x), \qquad x \in (0,L)$$

Final system

We obtain a system of semi-elliptic boundary value problems in Ω :

$$-\operatorname{div}\mathcal{A}\nabla p + \frac{\kappa}{\nu}B_{d}B_{d}^{T}p = -\kappa\left(\partial_{t}y_{d} + \Lambda\partial_{x}y_{d}\right) =: \kappa f \qquad (t, x) \in \Omega$$

$$\mathcal{B}_{11}\partial_{\nu_{\mathcal{A}}}p(t, x) = -\kappa\mathcal{B}_{11}y_{d}(t, x), \ \mathcal{B}_{10}p(t, x) = 0, \qquad (t, x) \in \Gamma_{1}$$

$$\mathcal{B}_{21}\partial_{\nu_{\mathcal{A}}}p(t, x) = -\kappa\mathcal{B}_{21}y_{d}(t, x), \ \mathcal{B}_{20}p(t, x) = 0, \qquad (t, x) \in \Gamma_{2}$$

$$B_{31}\partial_{\nu_{\mathcal{A}}}p(t, x) = \kappa(y_{0}(x) - y_{d}(t, x), \qquad (t, x) \in \Gamma_{3}$$

$$B_{40}p(t, x) = 0, \qquad (t, x) \in \Gamma_{4}.$$

Transmission conditions

If we we now define $p_i := p|_{\Omega_i}$, i = 1, ..., 4 and use the decomposition of $\Omega = \bigcup_{i=1}^4 \Omega_i$ in Green identity, then after taking proper variations in ϕ , we obtain along the interfaces Γ_{ij} , ij = 1, 2, 3, 4 the transmission conditions

$$\begin{aligned} \partial_{\nu_{A_1}} p_1|_{\Gamma_{12}} + \partial_{\nu_{A_2}} p_2|_{\Gamma_{21}} &= 0, p_1|_{\Gamma_{12}} = p_2|_{\Gamma_{21}} \\ \partial_{\nu_{A_1}} p_1|_{\Gamma_{14}} + \partial_{\nu_{A_4}} p_4|_{\Gamma_{14}} &= 0, p_1|_{\Gamma_{12}} = p_2|_{\Gamma_{21}} \\ \partial_{\nu_{A_1}} p_2|_{\Gamma_2} + \partial_{\nu_{A_3}} p_3|_{\Gamma_{23}} &= 0, p_2|_{\Gamma_{23}} = p_3|_{\Gamma_{32}} \\ \partial_{\nu_{A_3}} p_3|_{\Gamma_{34}} + \partial_{\nu_{A_4}} p_4|_{\Gamma_{43}} &= 0, p_3|_{\Gamma_{34}} = p_4|_{\Gamma_{43}} \end{aligned}$$

P.L. Lions-type domain decomposition

- 1. Given $p_i^n, \partial_{\nu_{\mathcal{A}_i}} p_i^n$ on $\Gamma_{ij}, i \neq j \in \mathcal{I}$
- 2. compute p_i^{n+1} , $i \in \mathcal{I}$ according to

$$-\operatorname{div} \mathcal{A}_{i} \nabla p_{i}^{n+1} + \frac{\kappa}{\nu} B_{d} B_{d}^{T} p_{i}^{n+1} = \kappa f_{i} \text{ in } \Omega$$

$$\mathcal{B}_{i1} \partial_{\nu_{\mathcal{A}_{i}}} p_{i}^{n+1} = 0, \ \mathcal{B}_{i0} p_{i}^{n+1} = 0, \text{ on } \Gamma_{i,ext}$$

$$\partial_{\nu_{\mathcal{A}_{i}}} p_{i}^{n+1} + \beta_{ij} p_{i}^{n} = -\partial_{\nu} p_{j}^{n} + \beta_{ij} p_{j}^{n} := \lambda_{ij}^{n}, \text{ on } \Gamma_{ij}, \ j \in \mathcal{I}_{i}.$$

3. $n \rightarrow n + 1$ go to ii.)

Convergence analysis

Error equations

Introduce the errors $\tilde{p}_i^n := p_i^n - p_i, n \in \mathbb{N}, i \in \mathcal{I}$. Then, \tilde{p}_i^n satisfies the system:

$$-\operatorname{div} \mathcal{A}_{i} \nabla \tilde{p}_{i}^{n+1} + \frac{\kappa}{\nu} \tilde{p}_{i}^{n+1} = 0 \text{ in } \Omega$$

$$\mathcal{B}_{i1} \partial_{\nu_{\mathcal{A}_{i}}} \tilde{p}_{i}^{n+1} = 0, \ \mathcal{B}_{i0} \tilde{p}_{i}^{n+1} = 0, \text{ on } \Gamma_{i,ext}$$

$$\partial_{\nu_{\mathcal{A}_{i}}} \tilde{p}_{i}^{n+1} + \beta_{ij} \tilde{p}_{i}^{n} = -\partial_{\nu_{\mathcal{A}_{j}}} \tilde{p}_{j}^{n} + \beta_{ij} \tilde{p}_{j}^{n} := \lambda_{ij}^{n}, \text{ on } \Gamma_{ij}, \ j \in \mathcal{I}_{i}.$$

The fixed point Ansatz: fixed point map

We introduce the space

$$\mathcal{X} := \prod_{i=1}^{N} L^2(\gamma_i)^d$$

with

$$||X||^2 = \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{I}_i} \frac{1}{2\beta_{ij}} \int_{\Gamma_{ij}} |\lambda_{ij}|_{\mathbb{R}^d}^2 d\gamma,$$

where $X = (\lambda_i)_{i \in \mathcal{I}}$, $\lambda_i := (\lambda_{ij})_{j \in \mathcal{I}_i}$. We now introduce the operator

$$\mathcal{T}: \mathcal{X} \to \mathcal{X}$$

$$(\mathcal{X})_{ij}: \left(-\partial_{\nu_{\mathcal{A}_j}} \tilde{p}_j + \beta_{ij} \tilde{p}_j\right)|_{\Gamma_{ij}},$$

$$(\mathcal{T}\mathcal{X})_i = \{(\mathcal{T}\mathcal{X}_{ij}|j \in \mathcal{I}_i\}$$

$$\mathcal{T}X = \{(\mathcal{T}X)_i|i \in \mathcal{I}\}.$$

The iterates and their norms

Then the iteration is equivalent to the fixed point iteration

$$x^{n+1} = \mathcal{T}X^n, n = 0, 1, \dots$$

We compute, omitting the iteration index for a while,

$$||X||_{\mathcal{X}}^{2} = \sum_{i=1}^{N} \sum_{j \in \mathcal{I}_{i}} \frac{1}{2\beta_{ij}} \int_{\Gamma_{ij}} |\partial_{\nu_{\mathcal{A}_{i}}} p_{i} + \beta_{ij} p_{i}|_{\mathbb{R}^{d}}^{2} d\gamma$$

$$= \sum_{i=1}^{N} \sum_{j \in \mathcal{I}_{i}} \int_{\Gamma_{ij}} \left(\frac{1}{2\beta_{ij}} |\partial_{\nu_{\mathcal{A}_{i}}} p_{i}|_{\mathbb{R}^{d}}^{2} + \partial_{\nu_{\mathcal{A}_{i}}} p_{i} p_{i} + \frac{\beta_{ij}}{2} |p_{i}|_{\mathbb{R}^{d}}^{2} \right)$$

$$||\mathcal{T}X||_{\mathcal{X}}^{2} = \sum_{i=1}^{N} \sum_{j \in \mathcal{I}_{i}} \frac{1}{2\beta_{ij}} \int_{\Gamma_{ij}} |-\partial_{\nu_{\mathcal{A}_{i}}} p_{j} + \beta_{ij} p_{j}|_{\mathbb{R}^{d}}^{2} d\gamma$$

$$= \sum_{i=1}^{N} \sum_{j \in \mathcal{I}_{i}} \int_{\Gamma_{ij}} \left(\frac{1}{2\beta_{ij}} |\partial_{\nu_{\mathcal{A}_{j}}} p_{j}|_{\mathbb{R}^{d}}^{2} - \partial_{\nu_{\mathcal{A}_{i}}} p_{j} p_{j} + \frac{\beta_{ij}}{2} |p_{j}|_{\mathbb{R}^{d}}^{2} \right)$$

Towards non-expansiveness

This gives

$$\|\mathcal{T}X\|_{\mathcal{X}}^2 - \|X\|_{\mathcal{X}}^2 = -2\sum_{i=1}^N \sum_{j\in\mathcal{I}_{i_{\Gamma_{i_j}}}} \int_{\mathcal{U}_{\mathcal{A}_i}} p_i p_i d\gamma.$$

We go back to the notation of errors and use the Green's identity on the subdomain Ω_i .

$$0 = \int_{\Omega_{i}} \left(-\operatorname{div} \mathcal{A}_{i} \nabla \tilde{p}_{i} + \frac{\kappa}{\nu} \tilde{p}_{i} \right) \tilde{p}_{i} d\omega$$

$$= -\int_{\partial \Gamma_{ij}} \partial_{\nu_{\mathcal{A}_{i}}} \tilde{p}_{i}(t, x) \tilde{p}_{i} d\gamma + \int_{\Omega_{i}} |\partial_{t} \tilde{p}_{i} + \Lambda \partial_{x} \tilde{p}_{i}|_{\mathbb{R}^{d}}^{2} d\omega + \int_{\Omega_{i}} \frac{\kappa}{\nu} \tilde{p}_{i} \tilde{p}_{i} d\omega$$

$$= -\int_{\partial \Gamma_{ij}} \partial_{\nu_{\mathcal{A}_{i}}} \tilde{p}_{i}(t, x) \tilde{p}_{i} d\gamma + a_{i}(\tilde{p}_{i}, \tilde{p}_{i}).$$

Non-expansiveness

$$\|\mathcal{T}X\|_{\mathcal{X}}^{2} - \|X\|_{\mathcal{X}}^{2} = -2\left\{\sum_{i=1}^{N} \int_{\Omega_{i}} |\partial_{t}\tilde{p}_{i} + \Lambda \partial_{x}\tilde{p}_{i}|_{\mathbb{R}^{d}}^{2} d\omega + \int_{\Omega_{i}} \frac{\kappa}{\nu} \tilde{p}_{i}\tilde{p}_{i}d\omega\right\}.$$

In other words

$$\|\mathcal{T}X\|_{\mathcal{X}}^{2} - \|X\|_{\mathcal{X}}^{2} = -2\left\{\sum_{i=1}^{N} a_{i}(\tilde{p}_{i}, \tilde{p}_{i})\right\}.$$

Under-relaxation

we introduce the following under-relaxation.

$$X^{n+1} = (1 - \epsilon)\mathcal{T}X^n + \epsilon X^n, \ \epsilon \in [0, 1).$$

Hence,

$$||X^{n+1}||_{\mathcal{X}}^{2} = ((1-\epsilon)^{2} + \epsilon^{2})||X^{n}||_{\mathcal{X}}^{2} - 2(1-\epsilon)^{2} \sum_{i=1}^{N} a_{i}(\tilde{p}_{i}, \tilde{p}_{i}) + 2\epsilon(1-\epsilon)(X^{n}, \mathcal{T}X^{n})_{\mathcal{X}}.$$

With the definition

$$E^{n} := \sum_{i=1}^{N} \sum_{j \in \mathcal{I}_{i}} \frac{1}{2\beta_{ij}} \int_{\Gamma_{ij}} |\partial_{\nu_{\mathcal{A}_{i}}} \tilde{p}_{i}^{n}|_{\mathbb{R}^{d}}^{2} + \beta_{ij} |\tilde{p}_{i}^{n}|_{\mathbb{R}^{d}}^{2} d\gamma$$

Crucial, energy'-estimate

we obtain

$$||X^{n}||_{\mathcal{X}}^{2} = E^{n} + \sum_{i=1}^{N} a_{i}(\tilde{p}_{i}, \tilde{p}_{i}) =: E^{n} + \mathcal{F}^{n}$$
$$||\mathcal{T}X^{n}||^{2} = E^{n} - \mathcal{F}^{n}.$$

A straightforward calculation shows

$$(\mathcal{X}^n, \mathcal{T}\mathcal{X}^n) \leq E^n$$

and moreover

$$E^{n+1} \le E^n - \sum_{i=1}^N \left[(1 - 2\epsilon) a_i(\tilde{p}_i^n, \tilde{p}_i^n) + a_i(\tilde{p}_i^{n+1}, \tilde{p}_i^{n+1}) \right].$$

Convergence: almost last step

With the coefficients $c_1(\epsilon) := 1 - 2\epsilon$, $c_{n+1}(\epsilon) = 1$, $c_l(\epsilon) = 2(1 - \epsilon)$, $l = 2, \ldots, n$, we obtain the crucial inequality

$$E^{n+1} + \sum_{l=1}^{n+1} c_l(\epsilon) \sum_{i=1}^{l} a_i(\tilde{p}_i^n, \tilde{p}_i^n) \le E^1.$$

This inequality implies

$$\sum_{i=1}^{N} a_i(\tilde{p}_i^n, \tilde{p}_i^n) \to 0$$

$$E^n \leq C,$$

Convergence....

$$\sum_{i=1}^{N} \left\{ \int_{\Omega_i} |\partial_t \tilde{p}_i + \Lambda \partial_x \tilde{p}_i|_{\mathbb{R}^d}^2 d\omega + \int_{\Omega_i} \frac{\kappa}{\nu} \tilde{p}_i \tilde{p}_i d\omega \right\} \to 0.$$

However, the form $a_i(\cdot, \cdot)$ is not elliptic but rather positive semi-definite. Nevertheless, we may conclude

$$\tilde{p_i}^n \to 0$$
, strongly in $L^2(\Omega_i)^d$,

while

$$\partial_t \tilde{p}_i + \Lambda \partial_x \tilde{p}_i \to 0$$
, strongly in $L^2(\Omega_i)^d$

Opial's lemma

- this does not imply $\tilde{p}_i^n \to 0$ strongly in $H^1(\Omega_i)$.
- as E^n is bounded, we can extract sub-sequences from $\partial_{\nu_{\mathcal{A}_i}} \tilde{p}_i^n, \tilde{p}_i^n$ on Γ_{ij} such that $\partial_{\nu_{\mathcal{A}_i}} \tilde{p}_i^n \rightharpoonup q$, $\tilde{p}_i^n|_{\Gamma_{ij}} \rightharpoonup r$, weakly in $L^2(\gamma_i)^d$.
- We may use Green's identity with a test function ϕ on Ω_i to conclude q = r = 0. But this holds on subsequences which may not contain to consecutive indices n, n+1 as required in the iteration.
- We take now advantage of the under-relaxation parameter $\epsilon \in (0, 1)$.

Proposition[Opial]. Let \mathcal{T} be nonexpansive with at least one fixed point. Then for each $\epsilon \in (0,1)$ the sequence $\{\mathcal{T}_{\epsilon}^n X\}$ is weakly convergent to a fixed point.

Here we have set $\mathcal{T}_{\epsilon} := \epsilon I + (1 - \epsilon)\mathcal{T}$. As we have seen, our map \mathcal{T} is nonexpansive and 0 is in fact the unique fixed point. Thus, we may conclude that entire sequences converge to zero and, moreover, $X^n \to 0$ and $\mathcal{T}X^n \to 0$.

Schaefer's theorem

Now, in order to prove strong convergence of $\|\mathcal{T}X^n - X^n\|_{\mathcal{X}} \to 0$, we are going to apply Schaefer's theorem. To this end we recall the definition of an asymptotic regular map \mathcal{T} . Let $\mathcal{C} \subset \mathcal{X}$ closed and convex and \mathcal{T} nonexpansive. Then \mathcal{T} is said to be asymptotically regular if for any $X \in \mathcal{C}$ the sequence $\{\mathcal{T}^{n+1}X - \mathcal{T}^nX\}$ tends to zero as $n \to \infty$.

Proposition[Schaefer:1957]. If \mathcal{T} has at least one fixed point in \mathcal{C} , then the mapping \mathcal{T}_{ϵ} is asymptotically regular.

From this, we infer

$$\|\mathcal{T}X^n - X^n\|_{\mathcal{X}}^2 = 2E^n - 2(\mathcal{T}X^n, X^n) \to 0.$$

Strong convergence

We calculate the second term

$$\begin{split} (\mathcal{T}X^n, X^n) &= \sum_{i=1}^N \sum_{j \in \mathcal{I}_i} \frac{1}{2\beta_{ij}} \int\limits_{\Gamma_{ij}} (-\partial_{\nu_{\mathcal{A}_j}} \tilde{p}_j^n + \beta_{ij} \tilde{p}_j^n) (\partial_{\nu_{\mathcal{A}_i}} \tilde{p}_i^n + \beta_{ij} \tilde{p}_i^n) d\gamma \\ &= \sum_{i=1}^N \sum_{j \in \mathcal{I}_i} \frac{1}{2\beta_{ij}} \int\limits_{\Gamma_{ij}} \left\{ -\partial_{\nu_{\mathcal{A}_j}} \tilde{p}_j^n \partial_{\nu_{\mathcal{A}_i}} \tilde{p}_i^n + \beta_{ij}^2 \tilde{p}_i^n \tilde{p}_i^n + \beta_{ij} (\partial_{\nu_{\mathcal{A}_i}} \tilde{p}_i^n \tilde{p}_j^n - \partial_{\nu_{\mathcal{A}_j}} \tilde{p}_j^n \tilde{p}_i^n) \right\} d\gamma \\ &= \sum_{i=1}^N \sum_{j \in \mathcal{I}_i} \frac{1}{2\beta_{ij}} \int\limits_{\Gamma_{ij}} \left\{ -\partial_{\nu_{\mathcal{A}_j}} \tilde{p}_j^n \partial_{\nu_{\mathcal{A}_i}} \tilde{p}_i^n + \beta_{ij}^2 \tilde{p}_i^n \tilde{p}_i^n \right\} d\gamma \end{split}$$

Strong convergence

We obtain from this

$$2E^n - 2(\mathcal{T}X^n, X^n) = \sum_{i=1}^{N-1} \sum_{j \in \mathcal{I}_i, j > i_{\Gamma_{ij}}} \int \left(\frac{1}{\beta_{ij}} |\partial_{\nu_{\mathcal{A}_i}} \tilde{p}_i^n + \partial_{\nu_{\mathcal{A}_j}} \tilde{p}_j^n|^2 + \beta_{ij} |\tilde{p}_i^n - \tilde{p}_j^n|^2 \right) d\gamma$$

In conclusion, we obtain for all $i, j : j \in \mathcal{I}_i$

$$|\partial_{\nu_{\mathcal{A}_{i}}} \tilde{p}_{i}^{n} + \partial_{\nu_{\mathcal{A}_{j}}} \tilde{p}_{j}^{n}|_{L^{2}(\Gamma_{ij})} \to 0, \ n \to \infty$$
$$|\tilde{p}_{i}^{n} - \tilde{p}_{j}^{n}|_{L^{2}(\Gamma_{ij})} \to 0, \ n \to \infty$$

Theorem

Let $\epsilon \in [0,1)$ be given. Then the iteration defined in $(\ref{eq:converges})$ converges in the following sense

1. $\epsilon = 0$

$$\partial_t \tilde{p}_i^n + \Lambda \partial_x \tilde{p}_i^n \to 0$$
, strongly in $L^2(\Omega_i)^d$, $n \to \infty$
 $\tilde{p}_i^n \to 0$, strongly in $L^2(\Omega_i)^d$, $n \to \infty$.

On a subsequence we have

$$\partial_{\nu_{\mathcal{A}_i}} \tilde{p}_i^n \rightharpoonup 0$$
, weakly in $L^2(\Gamma_{ij})^d n \to \infty$
 $\tilde{p}_i^n \rightharpoonup 0$, weakly in $L^2(\Gamma_{ij})^d n \to \infty$

2. $\epsilon \in (0,1)$ In addition to the first case, (i) we have

$$\partial_{\nu_{\mathcal{A}_i}} \tilde{p}_i^n + \partial_{\nu_{\mathcal{A}_j}} \tilde{p}_j^n \to 0$$
, strongly in $L^2(\Gamma_{ij})^d$, $n \to \infty$
 $\tilde{p}_i^n - \tilde{p}_j^n \to 0$, strongly in $L^2(\Gamma_{ij})^d$ $n \to \infty$

Thus, the iterates p_i^n converge to the restriction of solution $p|_{\Omega_i}$ in the Algorithm-DDM in the sense of i.) and ii.), respectively.

Theorem (a posteriori estimate)

Let the iterates p_i^n , i = 1, 2 be the solutions of the iteration for $\epsilon \in (0, 1)$ and let p_i solve the original optimality system. Then we have

$$||p_1^{n+1} - p_1||_{L^2(\Omega_1)^d} + ||p_2^n - p_2||_{L^2(\Omega_2)^d} \le C|p_1^{n+1} - p_2^n|_{L^2(\Gamma)^d}^{\frac{1}{2}}.$$

Proof: The proof is analogous to the one by Otto and Lube 1999 for scalar elliptic problems.

Interpretation in the original formulation

We have first from transmission condition for p

$$-\Lambda(\partial_t p_2 + \Lambda \partial_x p_2) + \beta_{12} p_2 = -\Lambda(\partial_t p_1 + \Lambda \partial_x p_1) + \beta_{12} p_1$$
$$\Lambda(\partial_t p_1 + \Lambda \partial_x p_1) + \beta_{21} p_1 = \Lambda(\partial_t p_2 + \Lambda \partial_x p_2) + \beta_{21} p_2,$$

which translates at the breakpoint $x = x_1$ (of the continuous matching) to the iteration

$$-\kappa\Lambda^{+}(y_{2}^{+})^{n+1} + \beta_{12}(p_{2}^{+})^{n+1} = -\kappa\Lambda^{+}(y_{1}^{+})^{n} + \beta_{12}(p_{1}^{+})^{n} = \lambda_{21}^{+,n}$$

$$-\kappa\Lambda^{-}(y_{2}^{-})^{n+1} + \beta_{12}(p_{2}^{-})^{n+1} = -\kappa\Lambda^{-}(y_{1}^{-})^{n} + \beta_{12}(p_{1}^{-})^{n} = \lambda_{21}^{-,n}$$

$$\kappa\Lambda^{+}(y_{1}^{+})^{n+1} + \beta_{21}(p_{1}^{+})^{n+1} = \kappa\Lambda^{+}(y_{2}^{+})^{n} + \beta_{21}(p_{2}^{+})^{n} = \lambda_{12}^{+,n},$$

$$\kappa\Lambda^{-}(y_{1}^{-})^{n+1} + \beta_{21}(p_{1}^{-})^{n+1} = \kappa\Lambda^{-}(y_{2}^{-})^{n} + \beta_{21}(p_{2}^{-})^{n} = \lambda_{12}^{-,n}.$$

Interpretation for the original system

We introduce $S_{ij} = I, j \in \mathbb{I}_i^t$ and $S_{ij} = \kappa \Lambda, j \in \mathcal{I}_i^x$. Moreover, we introduce the signs $\epsilon_{ij} = 1, j \in \mathcal{I}_i^x$ if j signifies the domain Ω_j right to Ω , whereas $\epsilon_{ij} = -1$ if Ω_j is left to it. Similarly, for the upper and lower neighbours of Ω_i . With this notation, the optimality system can be written as

$$\partial_t y_i^{n+1} + \Lambda \partial_x y_i^{n+1} = \frac{1}{\nu} p_i^{n+1} \qquad \text{in } \Omega_i$$

$$\partial_t p_i^{n+1} + \Lambda \partial_x p_i^{n+1} = \kappa (y_i^{n+1} - y_{id}) \qquad \text{in } \Omega_i$$

$$\epsilon_{ij} S_{ij} y_i^{n+1} + \beta_{ij} p_i^{n+1} = -\epsilon_{ji} S_{ji} y_j^n + \beta_{ij} p_i^n = \lambda_{ij}^n, \qquad \text{on } \Gamma_{ij}, \ \forall j \in \mathcal{I}_i,$$

The corresponding virtual control problem

With the virtual controls $h_{ij} \in L^2(\Gamma_{ij})^d$, $j \in \mathcal{I}_i$, we obtain the equivalent optimal control problem

$$\begin{cases}
\min J(u_{di}, y_i, h_{ij}) := \frac{\kappa}{2} \int_{\Omega_i} ||y_i - y_{d,i}||^2 d\omega + \frac{\nu}{2} \int_{\Omega_i} ||u_{di}||^2 d\omega \\
+ \sum_{j \in \mathcal{I}_{i_{\Gamma_{ij}}}} \int_{1} \frac{1}{2\beta_{ij}} \left(|h_{ij}|^2 + |\lambda_{ij}^n|^2\right) d\gamma \\
\text{subject to} \\
\partial_t y_i + \Lambda \partial_x y_i = u_i, \text{ in } \Omega_i \\
\epsilon_{ij} S_{ij} y_i = \lambda_{ij}^n + h_{ij}, \text{ on } \Gamma_{ij}, j \in \mathcal{I}_i
\end{cases}$$

Thank you for your attention!

 Reference: G. Leugering, Space-Time-Domain Decomposition for Optimal Control Problems governed by Linear Hyperbolic Systems

JOURNAL OF OPTIMIZATION, DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS (JODEA) Volume 29, Issue 2, December 2021, pp. 1–25, DOI