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Introduction
Problem formulation

Let y(t,z) € R%, t € I}, x € [0, L], denote the state and let
A =diag (M1, ... Ay Aot 1y - - -5 Ag) € R¥C

with
MZ2XA2 2 A, >0>Ap401 2 2 Ag.

We use the block-matrix abbreviation
A = diag (A+, A_) ,

with AT := diag(M1, ..., \pn) and A~ := diag(Apms1, ..., Ad).




Boundary conditions

We denote the first m components of the state by y™ and the remaining d — m

components by y~ such that y = (y™,y~). We consider here separated boundary
conditions. Define the block matrix K

KOO K()l'
Kl() Kll 9

KOO — (0 Rme’ KOl c Rde_m,Klo — (0 Rd—me’ Kll c Rd—mxd—m‘

K =

Let B, signify the input operator for distributed controls w.



Hyperbolic system (P)

6’ty =+ Aﬁxy = Baug, (t7 ZIZ‘) = [07 T] > (07 L),
y"(,0)\ _ . (yT (¢t L)
(y_ (2, L)) - (y_ (2, O)) t e |0,T],

y(()?w) — yO(x)v T (O7L)7



The optimal control problem

T 1 T 1
K l/
J(ud,y) 335//Hy_yd‘|2dt I 5 //HUCZHZdt
O O O O

The considered control problem is thus given by

min J(u,y) s.t. (u,y) satisfies P .
U,y



Adjoint boundary conditions and optimality condition

The boundary matrix K is oiven by
K := diag((A*)™" [(AT) ) K " diag(A™*,|A7]),
By taking the directional derivative of L(u,y,p) w.r.t. uq in the direction wuy

wg(t, z) = %Bg{ p(t. ) (t.z) € (0,T) x (0, L)



Optimality system

We obtain the following optimality conditions governing the adjoint variable p:

Osp + NOyp = k(Y — Ya), (t,z) € (0,T) x (0, L),
pt(t,L)\ _ 5~ (p*(t0)
(p(t,())) - (p(t,L)) ’ t € (0,7),

p(T,z) =0, r € (0,L).



Derivation of the second order problem

We take the adjoint equation, first multiply by A and differentiate wrt = and
secondly differentiate wrt to ¢:

1
Aﬁa:tp = Azama;‘ — K(;Bngp — aty — Aaa;‘yd)

OptD + NOypp = K(Ory — Orya).
The second equation yields
KOy = Oup + ANOypip + KOt Y4

which used in the first equation of to obtain

0D + 2000 + A2y /;Bngp = k(AOryq + Oryq) =: —Kf. (SOE)



Standard div-grad formulation

We introduce the block matrix

I A
A = (A A2>’

which is symmetric and positive semi-definite.
Then (SOE) turns into a degenerate Poisson equation in divergence form

—divAVp A I;Bngp = K f.



Boundary conditions

Notice that A € R??*2¢ guch that each block of A =: (aij); j—; is in R4*4 We
denote the trace of p by v(p)(x),x € 02 := (0,T) x (0, L). Then, understanding
that the indices 7,7 = 1, 2 relate to the direction ¢, x, respectively, we have

2

Oup(t, ) == )  aijy(0;p(t,x)vi(t,x), (t,x) € O

1,7=1

Using this definition, we can write the co-normal derivative explicitly as follows

Oy 4p(t,0) = —A(9p(t,0) 4+ Ad.p(t,0)), t € (0,T)
Oy ,p(t, L) = A(Osp(t, L) + AO,p(t, L)), t € (0,T)
Oy 4P(0,2) = —(0:p(0, ) + AD.p(0, x)), x € (0, L)
Oy (T, ) = Opp(T', x) + AOp(T, x), z € (0, L)



Final system

We obtain a system of semi-elliptic boundary value problems in {2:

—divAVp /ZBngp = —Kk (Ohyq + AOLyq) =: K f (t,x) €
B110,,p(t,x) = —xB11ya(t, ), Biop(t,z) = 0, (t,x) € I'y
BQlal/Ap(t7$) — —ﬁ521yd(t7$)7 BQOp(tvaj) — 07 (t7$) - FQ
B310VAp(t7 x) = k(yo(x) — ya(t, z), (t,x) € I's

B40p(t, QIZ‘) = (), (t, $) cly.



Transmission conditions

If we we now define p; := p|q,,2 = 1,...,4 and use the decomposition of 2 =
J?_,€; in Green identity, then after taking proper variations in ¢, we obtain
along the interfaces I';;,77 = 1,2, 3,4 the transmission conditions

3VA1P1 12 5’u,42p2 ry: = U, P1|ry, = P2y

0VA11?1 [y T 5’VA4]04 iy = U, P1ir, = P2(Tsy

3VA1]?2\F2 + &/Agps Iy = U, P2|1y3 = P3|,

3%43]03\&4 + 3VA4P4\F43 =0, p3|rs, = P4|T4s



P.L. Lions-type domain decomposition

1. Given pi', 0y, p; onl'j;, 1 #j €

41

2. compute p; ", 1 € Z according to

—divA; Vp! %Bngp?’H = K f; in {2

Bz’lavAz.sz_l — O Bz()p?_'_l — O OIl Fz ext
_avp] _I_ﬁljpj . AZ? Ol F’L]? j < IZ
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3. n—>n-+1go toii.)



Convergence analysis

Error equations

Introduce the errors p' := pi* —p;,n € N,i € Z. Then, p' satisfies the system:

K
—diV.Af,;Vﬁ?_l_l | ﬁ?_H =0 in
1%
BilﬁuAiﬁ?_l_l = 0, Bi()ﬁ?_l_l =0, on Fi,eazt

Ova, Py + Bighi = —0uu P} + Bijp} = \jj, on Ty, j €I



The fixed point Ansatz: fixed point map

We introduce the space
N
X = || L?()°
i=1

with

€L gEL;

1
2= 323 o [ Pl
26;
53%

where X = (\;)iez, A\i := (\ij)iez,- We now introduce the operator
T X —- X
CXMW(—@MJ%+f%ﬁ»

(TX): ={(TXi;|5 € Li}
TX ={(TX);|t € Z}.

F¢j7



The 1terates and their norms

Then the iteration is equivalent to the fixed point iteration
" =TX" n=0,1,....

We compute, omitting the iteration index for a while,

1
X% =33 5 / O, i+ Bigpi
1=1 jEZi *J Fig
Bis
1=1 jEZLF ]

TR 5 / = Oy + Busp

i=1 j€T;

- Bij 2
= Z Z / (2513 ‘8%4 py‘Rd _ VAz'pjpj | 23 |pj‘]Rid

Z_l ] GIZF



Towards non-expansiveness

This gives

N
ITXI% ~ X0 = =23 3 [ O pimd.

We go back to the notation of errors and use the Green’s identity on the sub-
domain ),.

O:/ (—diV.A@'Vﬁq; | Kf%) D;dw
1%
$2;
¥

__ / By Filt, &)y + / 0B + Ny B + / " i
Q.

(2

6F7;j Qz

or'; ;



Non-expansiveness

N
- - K . _
ITXI5 = X% = =28 3 [ 10+ 80upifBude + [ Spipd
1=1 2 O,

In other words

ITX[% — X7 = —2 {Z Cli(ﬁuﬁz’)} -

1=1



Under-relaxation

we introduce the following under-relaxation.
X" =(1-e)TX"+eX™, €€]0,1).

Hence,

N
[ X" % = (A=’ +) X5 —2(1—¢)* > ai(Bi, i) +2e(1—€) (X", TX") 5 .
1=1

With the definition

N
(4 1 ~T ~T
=30 g [ 100 R+ Byl e
Fij

1=1 7€,




Crucial ,energy‘-estimate

we obtaln

N
| X"|% = E" + Zai(ﬁi,ﬁi) =: E" +F"
i=1
|TX"||*=FE" - F™

A straightforward calculation shows

and moreover

N

B < B ST (1 26)ai (50,57 + aa (@ 5]
1—=1



Convergence: almost last step

With the coefficients ¢y (€) := 1—2¢,c11(€) = 1,¢(e) = 2(1—€),l =2,...,n,
we obtain the crucial inequality

n+1 [
E" 4y "ale)d ailpypp) < B
[=1 1=1



Convergence.....

K

/ |8tﬁ@ + A@xﬁz\%ddw -+ / ;ﬁ@ﬁzdw — 0.
Q).

N
—1 1 Qz

[/

However, the form a;(-, ) is not elliptic but rather positive semi-definite. Nev-
ertheless, we may conclude

p;" — 0, strongly in L*(€2;)%,

while
Oup; + AOyp; — 0, strongly in L?(£2;)"



Opial’s lemma

e this does not imply p?* — 0 strongly in H'(£2;).

e as £ is bounded, we can extract sub-sequences from 0, A, DDy oon L'y such
that 0y, pi — q, p;'|r,;, — r, weakly in L?(v;)¢.

e We may use Green’s identity with a test function ¢ on §2; to conclude ¢ = r =
0. But this holds on subsequences which may not contain to consecutive indices

n,n + 1 as required in the iteration.
e We take now advantage of the under-relaxation parameter € € (0, 1).

Proposition|Opial|. Let 7 be nonexpansive with at least one fixed point. Then
for each € € (0,1) the sequence {7 X} is weakly convergent to a fixed point.

Here we have set 7. := el+(1—¢)7T. As we have seen, our map 7 is nonexpansive
and 0 is in fact the unique fixed point. Thus, we may conclude that entire
sequences converge to zero and, moreover, X" — 0 and 7 X" — 0.



Schaefer’s theorem

Now, in order to prove strong convergence of |7 X" —X"||x — 0, we are going to
apply Schaefer’s theorem. To this end we recall the definition of an asymptotic
regular map 7. Let C C X closed and convex and 7 nonexpansive. Then 7 is
said to be asymptotically regular if for any X € C the sequence {71 X -T"X}
tends to zero as n — 00.

Proposition|Schaefer:1957|. If 7 has at least one fixed point in C, then the
mapping 7. is asymptotically regular.

From this, we infer

I TX" — X"||5 =2E" —2(TX"™, X"™) = 0.



Strong convergence

We calculate the second term

(TX",X") = . / Oy B+ BB D, B+ Big )y

1= 1361 % |

! LTt ~TL =T ~7, ~N
25 {_aVAj V‘A p@ /szpzpz —|_/6Z]( VA, pzp] 8I/‘A p]pz)}dﬁy
1 7/]1_‘
1 ~1, ~T,
— Z Z 26 {_8’/«43- VA pz 6szz D; } Y
i=1 5z, %



Strong convergence

We obtain from this

X =Y Y [ (510001 + s 3 + 8l ~ 51
ij

1=1 9€i; ,]>7T

In conclusion, we obtain for all 7,7 : 7 € Z,

Ov4, D + 0y D 07 | 2(r,,) — 0, n — 00

|p2 _meQ(Fw) %O n — OO



Theorem

Let € € |[0,1) be given. Then the iteration defined in (??7) converges in the
following sense

1. e=0

Op" + AOLp — 0, strongly in L?(Q;)%, n — oo
pr — 0, strongly in L?(£;)%, n — oo.
On a subsequence we have
Ova, Pi — 0, weakly in L*(T;;)%n — oo

pr — 0, weakly in L*(T';;)% n — oo

2. €€ (0,1) In addition to the first case, (i) we have

Ovu, Di + @,/Ajﬁ? — 0, strongly in LQ(Fij)d, n — oo

py — p — 0, strongly in L*(T';;)* n — oo

Thus, the iterates pI* converge to the restriction of solution p|q, in the Algorithm-
DDM in the sense of i.) and ii.), respectively.



Theorem (a posteriori estimate)

Let the iterates pI*,i = 1,2 be the solutions of the iteration for € € (0,1) and let
p; solve the original optimality system. Then we have

n-+1 n n+1 n %
IPy ™ = pillpzei)e + P2 — P2llrz,ye < Clpy " — Palre pya-

Proof: The proof is analogous to the one by Otto and Lube 1999 for scalar
elliptic problems.



Interpretation In the original formulation

We have first from transmission condition for p

—A(atPZ + AaxPZ) + B12p2 = _A(atpl + A(?mpl) + S12p1
A(Otp1 + AOzp1) + Boip1 = A(Owp2 + ADyp2) + B21p2,

which translates at the breakpoint x = x; (of the continuous matching) to the
1teration

—ﬁA+(y§r)n+1 + 512(20;)”le — _“AJr(ny)n T 512(??)72’ — )‘;171
—’fA_(yz_)nH T 512(1?2_)n+1 — —“A_(yf)n + 512(pl_)n — )‘2_1n
AT (y)" T+ Bar(p)™" T = kAT (y3 )" + Ba1(p3)" = A5
RAT (Y0 )"+ Bar(py )" = KA (55 )" + Bar(py )" = A"



Interpretation for the original system

We introduce S;; = 1,5 € I and S;; = kA, j € ZF. Moreover, we introduce the
signs €;; = 1,7 € Z7 it j signifies the domain (); right to {2, whereas ¢;; = —1 1f
(); 1s left to it. Similarly, for the upper and lower neighbours of (2;. With this
notation, the optimality system can be written as

1
Oyl ™ + A0yt = —pi Tt in ()
U
Ol + AOppl T = k(YT — Yia) in Q,
€ Si U T+ Bipl T = —€i Syl + Bijpl = A7, on I';;, Vy € 1,



The corresponding virtual control problem

With the virtual controls h;; € L*(T';;)% j € Z;, we obtain the equivalent
optimal control problem
v 2
| U, dw
[l
2

T Z / 25@3 ‘h13‘2+‘)‘ |2)

J EIzF

min J(wq;, Yi, hij) : /Hyz Yd,i

subject to
Ory; + NOpy; = uy, 1n ()
€ij9ijYi = Ai; + hij, on 'y, j €1,




Thank you for your attention!
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