Upper and lower bounds for

some shape functionals

Giuseppe Buttazzo
Dipartimento di Matematica
Universita di Pisa
buttazzo@dm.unipi.it
http://cvgmt.sns.it

“IX Partial differential equations, optimal design and numerics”
Centro de Ciencias de Benasque Pedro Pascual
August 21-September 2, 2022



We study two quantities occurring in elliptic
PDEs. The first quantity is usually called
torsional rigidity and is defined as

T(2) = /Q u dx

where v is the solution of the Poisson equa-
tion

~Au=1in €, uw € H3(Q).

In the thermal diffusion model T'(2)/|2| is
the average temperature (after a long time)
of a conducting medium €2 with uniformly
distributed heat sources (f = 1).



The second quantity is the first eigenvalue
of the Dirichlet Laplacian

A(S2) = min {fﬁk'zvug'fljx Cwe H(%(Q)\{O}}

In the thermal diffusion model, by the Fourier
analysis,

u(t,z) = > e M ug, up)uy (@),
k>1

so A(£2) represents the decay rate in time of
the temperature when an initial temperature
IS given and no heat sources are present.
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Under the measure constraint |2| = m, the
highest T'(2) is given by a ball (Saint Venant
inequality); similarly, the smallest A(2) is
given by a ball (Faber-Krahn inequality). We
then want to study if

M) ~ T7H(),
or more generally, for a suitable ¢ > 0O
A(€2) ~T79(S2),
where by A(2) ~ B(2) we mean
0<c1 <A(Q)/B(R2) <co <400 for all Q.
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We also aim to study the so-called Blaschke-
Santalé diagram for A(2) and T(£2). This
consists in identifying the subset E C R?

E={(z,y) 1 2 =T(Q), y= M)}

where 2 runs among the admissible sets. In
this way, minimizing a quantity like

F<T(Q), A(Q))
is reduced to the optimization problem in R?

min {F(:I:,y) : (:c,y)EE}.



The difficulty consists in the fact that char-
acterizing the set E is hard. Here we only
give some bounds by studying the inf and
sup of AM(2)T1(2) when |Q2| = m.

Since the two quantities scale as:

T(tQ) = t4T27(Q), AEQ) = t72NN)
we may remove the constraint |2 = 1 and
consider the scaling free shape functional

A(2)T9(£2)
Fq( ) — _
|Q|(dq+2q 2)/d
that we consider on various classes of admis-
sible domains.
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T he Blaschke-Santald diagram has been stud-
ied for other pairs of quantities:

e for \1(2) and X (2) by D. Bucur, G.B., L.
Figueiredo (SIAM J. Math. Anal. 1999);

e for A\1(2) and Per(2) by I. Ftouhi, J. Lam-
boley (on HAL);

e for T'(2) and cap(€2) by M. van den Berg,
G.B. (on arxiv and cvgnmt);

e for T'(2) and Per(2) by L. Briani, G.B., F.
Prinari (on arxiv and cvgmt).



We start by considering the class of all do-
mains (with |€2| = 1). The crucial thresholds
are:

e g = 2/(d+ 2) in which the minimum of
A(Q)T1(2) is reached when € is a ball (Kohler-
Jobin 1978);

e ¢ = 1 in which (Pdlya inequality)

0 < AM)T () < 1.

Actually, we have supA(Q2)T(2) = 1 and a
maximizing sequence is made by finely per-

forated domains.
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The finely perforated domains:
e = distance between holes 1. :radigs of a hole
re ~v edd=2) if 4> 2, ro~e 1/ ifd=2.

11



Summarizing: for all domains we have

General domains 2

0<qg<2/(d+2)|minF,(Q) = F,(B) | sup F,(2) = +o0

2/(d+2)<qg<1|infF,(Q)=0 sup F,(2) = 400

g=1 inf F,(Q2) =0 sup F,(Q) =1

qg>1 inf F,(Q2) =0 sup F, () < +o00
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The Blaschke-Santald diagram with d = 2, for x =
A(B)/A(2) and y = T(2)/T(B) is contained in the
colored region.
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In the Blaschke-Santalo diagram with d = 2, the col-
ored region can be reached by domains {2 made by
union of disjoint disks.
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The full Blaschke-Santald diagram in the case d = 1,

where z = 72 /A\(2) and y = 12T(£2).
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T he case {2 convex

If we consider only convex domains €2, the
Blaschke-Santald diagram is clearly smaller.
For the dimension d = 2 the conjecture is

2 2

T < AT (2) < 7

24 — 12| — 12
where the left side corresponds to €2 a thin

triangle and the right side to €2 a thin rect-
angle.

for all €2
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If the Conjecture for convex domains is true, the
Blaschke-Santald diagram is contained in the colored
region.
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At present the only available inequalities are
the ones of [BFNT2016]: for every Q C R?
convex

2 ANDT(R
0.2056 ~ —— < (€)T(€2) < 0.9999
48 12|
instead of the bounds provided by the con-

jecture, which are

72/24 ~ 0.4112 from below
72/12 =~ 0.8225 from above.
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In dimensions d > 3 the conjecture is
72 S MDT(Q) _ 2
2(d+1)(d+2) — 2] — 12
e the right side asymptotically reached by a
thin slab

ng{(:c’,t) : O<t<6}

with =’ € A., being A: a d — 1 dimensional
ball of measure 1/e

e the left side asymptotically reached by a thin
cone based on A: above and with height de.
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T he convexity assumption on the admissible
domains provides a strong extra compact-
ness that allows to prove the existence of
optimal domains in the cases:

max {)\(Q)Tq(fz) . Q convex, Q2] = 1} ifg>1
min {A(Q)TQ(Q) . Q2 convex, |2 = 1} if ¢ < 1.
This is obtained by showing that maximizing

(resp. minimizing) sequences <2, are not too
thin, in the sense that

inradius($2,)

diameter(Q2,) —
where Cd,q > O depends only on d and gq.

Cd,q >
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Summarizing: for convex domains we have

Convex domains €2

q <1 |minF,(Q) >0 sup Fy(€) = o0
¢g=1|inf H(Q)=C; >0|supF(Q)=C; <1
qg>1|inf F () =0 max Fy,(€2) < +o00
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The only case in which the conjecture has
been proved (van den Berg-B.-Pratelli) is the
case of thin domains, that is

Qe ={(s,t) : s€A, eh (s) <t<chy(s)}

where ¢ is a small positive parameter and
h_,hy are two given functions (h = hy —h_
is the local thickness function).

By using the asymptotics (as € — 0):
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—2_2

AMQe) ~ © ;T [Borisov-Freitas 2010]
17700
83 3

T(Q0) ~ E/h (s)ds |9~ 5/h(s) ds.

the problem is reduced to the optimization
of a quantity depending on h:

ANQ2)T(2) w2 [h3(s)ds
2] 12 [|h|[20 [ hds
The proof then uses the convexity of 2.

(concavity of A) and a kind of reverse Holder
inequality.
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We can show that the Blaschke-Santald di-
agram is the region between two graphs:

the function y = 2(4+2)/2 from below (Kohler-
Jobin bound);

a suitable function y = h(x) from above,
where h : [0, 1] — [0, 1] is increasing and with

x(d—|—2)/2<'w—d/2} 4 (x—d/Q _ [x_d/QD(cHz)/d)

zd(d + 2)2
+ (d+2)X(B)

< h <
< h(z) < 2xd
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This is obtained by using the so-called Con-
tinuous Steiner Symmetrization, developed
by F. Brock (1995). This consists in de-
forming a set {2 obtaining a family €2; with
t € [0, 1], with the properties:

Qo = 2, 21 = B, |Qt| = |Q| YVt

A(L2;) decreasing, T(£24) increasing.

Unfortunately, the map ¢t — ()\(Qt),T(Qt)) is
not continuous in general (only if €2 is con-
vex) because this phenomenon may occur.
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Discontinuities occur when an internal ‘“fracture” appears.
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It would be very interesting to obtain a de-
formation t — €2; really continuous, that we
(A. Pratelli and I) believe possible. Never-
theless, we can show that this is true for a
dense family of sets, namely for every poly-
hedral domain 2.

This is enough to conclude that the Blaschke-

Santald diagram FE is the region between two
graphs, because we can prove that:

E is convex horizontally
E is convex vertically
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Horizontal and vertical convexity of the Blaschke-Santald diagram.
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Open questions

e characterize sup A(2)T9(2) when g > 1;
Q=1

e prove (or disprove) the conjecture for con-
vex sets;

e Simply connected domains or star-shaped
domains? The bounds may change;

e full Blaschke-Santalo diagram;
e p-Laplacian instead of Laplacian?

e cfficient experiments (random domains?).
30



The case p = oco. We have as p — o

K(Tp(Q)>1jp—> /QdistaQ dz
(Ap(2) " = |l distag |15t

so that for the limit shape functional we have

N\

A (SDTHL(Q)\ 1/p distso dx
2P 12| distpq |leo

Problem Is it true that (when d = 2)
log 3

1 1
sup F Q:—/ dr = — ~ 0.608
Qp oo( ) |E| E|CU| x 3‘|‘

where E is the regular unitary exagon?
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A planar domain that should asymptotically give the supremum of F.
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