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Cybernetics, Norbert Wiener, 1948
The science of control and communication in animals and machines

Let n,m 2 N⇤ and T > 0 and consider the following linear
finite-dimensional system

x
0(t) = Ax(t) + Bu(t), t 2 (0,T ); x(0) = x

0. (1)

In (1), A is a n ⇥ n real matrix, B is of dimensions n ⇥m and x
0 is the

initial sate of the sytem in Rn. The function x : [0,T ] �! Rn represents
the state and u : [0,T ] �! Rm the control.
Can we control the state x of n components with only m controls, even if
n >> m?

Theorem

(1958, Rudolf Emil Kálmán (1930–2016 )) System (1) is controllable iff

rank [B , AB , · · · ,An�1
B] = n.
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An example: Nelson’s car.

Two controls suffice to control a four-dimensional dynamical system.

E. Sontag, Mathematical control theory, 2nd ed.,Springer-Verlag,
NewYork,1998.
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Computational implementation (Y. Privat)
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Virtuoso solution
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Turnpike Control (time matters!)
Although the idea goes back to John von Neumann in 1945, Lionel W.
McKenzie traces the term to Robert Dorfman, Paul Samuelson, and
Robert Solow’s "Linear Programming and Economics Analysis" in 1958,
referring to an American English word for a Highway:2 3 4

... There is a fastest route between any two points; and if the

origin and destination are close together and far from the

turnpike, the best route may not touch the turnpike. But if the

origin and destination are far enough apart, it will always pay to

get on to the turnpike and cover distance at the best rate of

travel, even if this means adding a little mileage at either end.

2Porretta, A., Z., E. (2013). SIAM J. Control and Optimization, 51(6), 4242-4273.
3Trélat, E., Z., E. (2015). J. Differential Equations, 258(1), 81-114.
4A. J. Zaslavski, Springer, New York, 2006.
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Turnpike pattern
Applications in:

Sustainable economic growth planning.
Chronic deseases.

0 T" T � "
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But... oscillatory patterns in heat controlSome PDE examples of lack of turnpike

The heat equation
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Typical controls for the heat equation exhibit unexpected oscillatory and
concentration e↵ects. This was observed by R. Glowinski and J. L. Lions
in the 80’s in their works in the numerical analysis of controllability
problems for heat and wave equations.
Why?
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Observed by R. Glowinski and J. L. Lions in the 80’s in their works in the
numerical analysis of controllability problems for heat and wave
equations: Typical controls for the heat equation exhibit unexpected

oscillatory and concentration effects.

Why? Lazy controls? Turnpike theory does not apply in the PDE
context?
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Heat-diffusion control : A closer look
Let n � 1 and T > 0, ⌦ be a simply connected, bounded domain of Rn

with smooth boundary �, Q = (0,T )⇥ ⌦ and ⌃ = (0,T )⇥ �:
8
<

:

yt ��y = f 1! in Q

y = 0 on ⌃
y(x , 0) = y

0(x) in ⌦.
(2)

1! = the characteristic function of ! of ⌦ where the control is active.
We know that y0

2 L
2(⌦) and f 2 L

2(Q) so that (2) admits a unique
solution

y 2 C
�
[0,T ] ; L2(⌦)

�
\ L

2
�
0,T ;H1

0
(⌦)

�
.

y = y(x , t) = solution = state, f = f (x , t) = control

Goal: Drive the dynamics to equilibrium by means of a suitable choice of
the control

y(·,T ) ⌘ y
⇤(x).
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We address this problem from a classical optimal control / least square
approach:

min
1
2

"Z T

0

Z

!
|f |

2
dxdt +

Z

⌦
|y(x ,T )� y

⇤(x)|2dx

#
.

According to Pontryagin’s Maximum Principle the Optimality System
(OS) reads

yt ��y = p1! in Q

�pt ��p = 0 in Q

y = 0 on ⌃

y(x , 0) = y
0(x) in ⌦

p(x ,T ) = y(x ,T )� y
⇤(x) in ⌦

p = 0 on ⌃.

And the optimal control is:

f (x , t) = p(x , t) in! ⇥ (0,T ).
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Remedy: Better balanced controls
Let us now consider the control f minimising a compromise between the
norm of the state and the control among the class of admissible controls:

min
1
2

"Z T

0

Z

⌦
|y |

2
dxdt +

Z T

0

Z

!
|f |

2
dxdt +

Z

⌦
|y(x ,T )� y

⇤(x)|2
#
.

Then the Optimality System reads

yt ��y = �p1! in Q

�pt ��p = y in Q

y = p = 0 on ⌃

y(x , 0) = y
0(x) in ⌦

p(x ,T ) = y(x ,T )� y
⇤(x) in ⌦

We now observe a coupling between p and y on the adjoint state
equation!
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Conclusion
The turnpike principle holds for PDEs as well but under the condition
that:

Controls are characterized as minima of control functionals
penalizing sufficiently the control and the state.
The system is controllable, so that all trajectories might get to the
turnpike (steady optimal) gate.

Under these conditions the time-depending controls and controlled
trajectories remain most of the time in a steady optimal configuration.

0 T" T � "
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Supervised Learning
First Goal: Find an approximation of a function f⇢ : Rd

! Rm from a
dataset �

~xi , ~yi
 N

i=1
⇢ Rd⇥N

⇥ Rm⇥N .

Classification: match points (images) to respective labels (cat, dog).

Popular method: training a neural network. For instance using
Cybenko’s ansatz, with � a sigmoidal activation function or a ReLU:

f (x) =
NX

j=1

↵j�(yj · x + ↵j).
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Residual neural networks
[1] K. He, X Zhang, S. Ren, J Sun, 2016: Deep residual learning for image recognition
[2] E. Weinan, 2017. A proposal on machine learning via dynamical systems.
[3] R. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud, 2018.
[4] E. Sontag, H. Sussmann, 1997.

ResNets: for all items (= initial data), 1  i  N

(
x
k+1

i = x
k
i + hA

k�(wk
x
k
i + b

k) for k 2 {0, . . . ,Nlayers � 1}

x
0

i = ~xi
(3)

� globally Lipschitz & �(0) = 0. layer = timestep; h = T/Nlayers for
given T > 0.
Neural ODEs: for all items (= initial data), 1  i  N

(
ẋi (t) = A(t)�(w(t)xi (t) + b(t)) for t 2 (0,T )

xi (0) = ~xi .
(nODE)

A giant simultaneous control problem: each item xi (0) needs to the
driven to the corresponding destination (label) with the same control.
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Our contributions

The ensemble or simultaneous control property holds 56

D. Ruiz-Balet & E. Z., Neural ODE control for classification,
approximation and transport, arXiv:2104.05278.
Consequently, the turnpike phenomenon holds as well, under the
condition of penalizing trajectories all along time:

B. Geshkovski, C. Esteve, D. Pighin, E. Z., Turnpike in Lipschitz
nonlinear optimal control, Nonlinearity, 35 (2022), 1652-1701.

B. Geshkovski, E. Z. Turnpike in optimal control of PDEs, ResNets,
and beyond, Acta Numerica, 2022, pp. 135-263.

5Agrachev, A., Sarychev, A. (2021). Control on the Manifolds of Mappings with a
View to the Deep Learning. Journal of Dynamical and Control Systems, 1-20.

6Li, Q., Lin, T., Shen, Z. (2022). Deep learning via dynamical systems: An
approximation perspective. Journal of the European Mathematical Society.

19 / 27



Thank you for this honor Origins Turnpike Supervised Learning

Special features of the control of ResNets

Nonlinearities are unusual in Mechanics: � is flat in half of the phase
space.
We need to control many trajectories (one per item to be classified)
with the same control!

The very features of the activation function � allow to achieve this
monster simultaneous control goal. The fact that � leaves half of the
phase space invariant while deforming the other one, allows for dynamics
that are not encountered in the classical ODE systems in mechanics for
which such kind of simultaneous control property is unlikely or even
impossible.
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ResNets in action (Borjan Geshkovski)

21 / 27



Thank you for this honor Origins Turnpike Supervised Learning

What is the ResNet doing? Basic control actions

ẋ(t) = W (t)�(A(t)x(t) + b(t)).

b(t) induces a time-dependent translation of the Euclidean space. It
plays an important role to determine the center of the action of the
sigmoid.
A(t) compresses, expands, and induces rotations in the euclidean
space.
(A(t), b(t)) determine a hyperplane in the space, the equator, diving
space into the active and the inactive half-spaces.
W (t) determines the direction and intensity with which the flow will
evolve in the active hemisphere.

An intelligent piecewise constant choose of controls, by induction, assures
the needed simultaneous control property.
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Some canonical flows induced by nODE
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Classifying / controlling one datum
x(1)

�axis

x(1) = x(1)
N + r
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Classification by control

Theorem (Classification, Domènec Ruiz-Balet EZ, 2021)
a

Let � be the ReLU, d � 2, and N,M � 2. Let {xi}
N
i=1

⇢ Rd
be data to

be classified into disjoint open non-empty subsets Sm,m = 1, ...,M with

labels m = m(i), i = 1, ...,N.

Then, for every T > 0, there exist control functions

A,W 2 L
1

\ BV
�
(0,T );Rd

�
and b 2 L

1
\ BV ((0,T ),R) such that

the flow associated to the Neural ODE, when applied to all initial data

{xi}
N
i=1

, classifies them simulatenously, i.e.

�T (xi ;A,W , b) 2 Smi , 8i = 1, ...,N.

Furthermore,

Controls are piecewise constant with a maximal finite number of

switches of the order of O(N). They also lie in BV .

The control time T > 0 can be made arbitrarily small (scaling).

The complexity of controls diminishes when initial data are

structured in clusters or the control requirement is relaxed.

aRelated results for smooth sigmoids using Lie bracket control techniques: A.
Agrachev and A. Sarychev, arXiv:2008.12702, (2020); Li, Q., Lin, T., Shen, Z. (2022).
Journal of the European Mathematical Society.
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Neural transport equations

Note that the differential equation
(
ẋ = W (t)�(A(t)x + b(t))

x(0) = x0

corresponds to the characteristics of the transport equation:
(
@t⇢+ divx

⇥
(W (t)�(A(t)x + b(t)))⇢

⇤
= 0

⇢(0) = ⇢0

Atomic initial data can be driven to atomic final targets.

This establishes a link to the Theory of Optimal Transport: Neural
Transport?
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Conclusions and Perspectives

Control Theory and Machine Learning share in part origins and goals.
Mutual cross-fertilization offers great opportunities.
Some of the problems are rather challenging.

We can understand analytically how and why algorithms work in the
ResNet context. But we can hardly explain and anticipate the optimal
configurations and strategies that emerge computationally.

Plenty to be done better understand the fully nonlinear discrete dynamics
of deep neural networks.

Thank you SIAM, thank you all!
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