
On optimal potential problems with changing sing
data

Faustino Maestre

Departamento de Ecuaciones Diferenciales y Análisis Numérico
Universidad de Sevilla. Spain.

IX Partial differential equations, optimal design and
numerics

Mass optimization problems and homogenization
Benasque, España. 2022

Joint work: Giuseppe Buttazzo, Università di Pisa,
Juan Casado, Universidad de Sevilla,
Bozhidar Velichkov, Università di Pisa.

F. Maestre (Universidad de Sevilla) Optimal Potentials IX PDE Benasque 1 / 44



1 Introduction
Statement of the problem
Capacitary measures

2 Existence results
The admissible class of potentials and its relaxation
Optimality conditions
Saturation of the Constraint

3 Unbounded domain
Existence Result

4 Numerical experiments
Bounded domain
Unbouded domain

F. Maestre (Universidad de Sevilla) Optimal Potentials IX PDE Benasque 2 / 44



On optimal potential problems

1 Introduction
Statement of the problem
Capacitary measures

2 Existence results
The admissible class of potentials and its relaxation
Optimality conditions
Saturation of the Constraint

3 Unbounded domain
Existence Result

4 Numerical experiments
Bounded domain
Unbouded domain

F. Maestre (Universidad de Sevilla) Optimal Potentials IX PDE Benasque 3 / 44



On optimal potential problems

1 Introduction
Statement of the problem
Capacitary measures

2 Existence results
The admissible class of potentials and its relaxation
Optimality conditions
Saturation of the Constraint

3 Unbounded domain
Existence Result

4 Numerical experiments
Bounded domain
Unbouded domain

F. Maestre (Universidad de Sevilla) Optimal Potentials IX PDE Benasque 4 / 44



We consider D ⊂ Rd a fixed open bounded set. We are interested in
the optimization problem:

min
V∈V

∫
D

g(x)u(x) dx

subject to {
−∆u + V u = f in D,
u = 0 on ∂D,

where,

V =

{
V : D → [0,+∞] : V Lebesgue measurable,

∫
D
ψ(V (x)) dx ≤ 1

}
,

and ψ satisfying some appropriate qualitative conditions.

F. Maestre (Universidad de Sevilla) Optimal Potentials IX PDE Benasque 5 / 44



The function ψ : [0,+∞]→ [0,+∞] we assume that:
(i) ψ is strictly decreasing;
(ii) there exist p > 1 such that the function s 7→ ψ−1(sp) is convex.

For instance the following functions:
1 ψ(s) = s−p, for any p > 0,
2 ψ(s) = e−αs, for any α > 0,

The choice ψ(s) = e−αs was proposed in [Buttazzo et al ,2014], in
order to approximate shape optimization problems with Dirichlet
condition on the free boundary.
Moreover, as α→ 0 the problems with the parameter α were shown to
Γ-converge to the shape optimization problem with a volume constraint
|Ω| ≤ 1 being Ω the shape variable.
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Existence results:
f ≥ 0 and g ≤ 0 (o reverse case) cost is monotonically increasing
(maximum principle) and volume constraint saturated ([Buttazzo
et al., 2014])
Optimal domains with f and g are allowed to change sing
([Buttazzo and Velichkov, 2018])
We analyze the existence of optimal potentials when f and g are
allowed to change sing. We expect no saturation of volume
constraint.

Main assumptions:
linear cost (otherwise simple examples show optimal solution only
exists in a relaxed sense).
D bounded (characterization of the relaxed formulation).
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A capacitary measure µ is a nonnegative Borel measure on D,
possibly taking the value +∞, that vanishes on all sets of capacity
zero. Notation µ ∈Mcap.
Capacity is intended with respect to the H1 norm

cap(E ,D) = inf

{∫
D
|∇u|2 dx +

∫
D

u2 dx : u ∈ H1
0 (D),

u ≥ 1 in a neigborhood of E
}

We consider the Hilbert space H1
0 (D) ∩ L2(µ) endowed with norm:

‖u‖ =
(
‖∇u‖2L2(D) + ‖u‖2L2(µ)

)1/2
.
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We say that u ∈ H1
0 (D) ∩ L2(µ) is a solution of the problem

−∆u + µu = f , for a function f ∈ L2(D),

if ∫
D
∇u∇φdx +

∫
D

uφdµ =

∫
D

fφdx ∀φ ∈ H1
0 (D) ∩ L2(µ),
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For V ∈ V the state equation

−∆u + Vu = f , u ∈ H1
0 (D) ∩ L2(V ).

The capacitary measure µ associated to V is defined as:

µ(A) =


∫

A
V (x) dx if cap

(
A ∩ {V = +∞}

)
= 0

+∞ if cap
(
A ∩ {V = +∞}

)
> 0,

which implies u = 0 quasi-everywhere on the set {V = +∞}.
Abusing the terminology we will identify µ and V .
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Relaxed problem

We put V the family of capacitary measures µ obtained as limits of
sequences (Vn) of potentials in V. Relaxed problem:

min
µ∈V

∫
D

g(x)u(x) dx

subject to {
u ∈ H1

0 (D) ∩ L2(µ)
−∆u + µ u = f in D,

Theorem

Let D ⊂ Rd be a bounded open set and let ψ satisfy the assumptions
i) and ii) above. Then, for every f ,g ∈ L2(D), the original optimization
problem has a solution.
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We consider u,p ∈ H1
0 (D) ∩ L2(µ) solutions of:{

−∆u + µ u = f in D,
u = 0 on ∂D,

{
−∆p + µ p = g in D,
p = 0 on ∂D,

Proposition

Suppose that µ is a solution of the relaxed optimization problem on the
bounded domain D ⊂ Rd . Then

u p ≤ 0 a.e. on D.

Moreover, the above inequality holds quasi-everywhere on D.
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Saturation volume constraint

One cannot expect that the constraint
∫

D
ψ(V )dx ≤ 1 is saturated.

Moreover, we will show that, if this is not the case, then the optimal
potential V can be reduced to a domain Ω, that is, V is a potential of
the form:

V = 0 on Ω and V = +∞ on Ωc .
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Unbounded domain

We consider D = Rd . We are interested in the optimization problem:

min
µ∈Mcap

∫
Rd

j(x ,u(x),∇u(x)) dx

subject to

−∆u + µ u = f in Rd ,

and
Ψ(µ) ≤ 1,
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some dificulties

Which is good space X for the solutions of −∆u + µu = f , ???∫
Rd
∇u · ∇v dx +

∫
Rd

u v dµ =

∫
Rd

fv , v ∈ X ,

We consider:

W (x) =
1

1 + |x |
if d 6= 2, W (x) =

1
(1 + |x |) log(2 + |x |)

if d = 2.

and we put:

L = {u : Rd → R : Wu ∈ L2(Rd )}

H = {u ∈ L ∩ H1
loc(Rd ) : ∇u ∈ L2(Rd )d}

and one gets

‖u‖L ≤ C
(
‖∇u‖L2(Rd ) + ‖u‖L2

µ

)
We take

X = H ∩ L2
µ
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some dificulties

How is defined Ψ(µ)???.

We decompose µ = µa + µs +∞K , and consider:

Ψ(µ) =

∫
Rd
ψ(µa) dx + Cψµ

s(Rd ) + ψ(∞)cap(K ),

where ψ : R+ → [0,+∞] is a convex and lower semicontinuous
function and

Cψ = lim
t→+∞

ψ(t)
t
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Existence result

Theorem
We consider j : Rd × R× Rd → R ∪ {+∞} measurable in x ∈ R, lower
semincontinuous in (s, ξ) and some growth conditions in (s, ξ). We
consider ψ : R→ [0,+∞] convex and lower semicontinuous and a
measure ν ∈Mcap such that there exists µ̂ ∈Mcap satisfying

µ̂ ≥ ν, Ψ(µ̂) ≤ 1.

Moreover, if d = 1,2 we assume that:

either ψ(0) > 0 or ν is not the null measure

Then, for every f ∈ H ′ the optimization problem has at least one
solution.
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Numerical Analysis

We propose the numerical analysis of the following problem. We
consider D = [0,1]2:

min
V∈V

∫
D

g(x)u(x) dx

subject to {
−∆u + V u = f in D,
u = 0 on ∂D,

where,

V =

{
V : D → [0,+∞] : V Lebesgue measurable,

∫
D
ψ(V (x)) dx ≤ 1

}
,

and ψ(s) = 1
m e−αs
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We use Method of Moving Asymptotes (MMA).
The structure of the algorithm is as follows.

Initialization of the potential V 0 ∈ V;
for k ≥ 0, iteration until convergence as follows:

I compute the state uV k and then the co-state pV k ,
I compute the descent direction Ṽ k (x) = −uV k · pV k

I update the potential V k in D:

V k+1 = V k + `k Ṽ k ,
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We use FreeFem++ v 3.50 completed with the library NLopt.

In the following, we take g ≡ 1 and consider different choices for f and
parameters α and m.
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Figure: To the left: the domain D and its triangulation; number of nodes:
40401; number of triangles: 80000. To the right: the right-hand side function
f (x , y) = −(1 + 10x).
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Figure: The optimal potential Vopt for volume constraint m = 0.2 = mopt . Case
α = 10−2 (left) and α = 3.10−4 (right).
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Figure: Cost evolution for the example from previous Figure, case α = 3.10−4.
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Figure: The right-hand side function f is given by f (x , y) = −1, if
y − 1.4x ≥ 0.3, and f (x , y) = 1, if y − 1.4x < 0.3
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Figure: Optimal potential Vopt for m = 0.2 (left) and m = 0.45 (right). The
occupied volume on the right is 0.33276.
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We consider the sequence of problems

min

{∫
Dn

j(x ,u,∇u) dx : −∆u + µu = f in Dn, un = 0 on ∂Dn,∫
Dn

ψ(µ)dx ≤ 1, µ ∈ L∞(Dn), νn ≤ µ ≤ kn

}
.

(1)

Where Rd = ∪nDn and kn → +∞.
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Theorem

Assume the conditions of the existence Theorem with j such that
j(x , s, ξ) is continuous in (s, ξ) and there exist k ∈ L1, l1, l2 ∈ L∞ such
that

j(x , s, ξ) ≤ k(x) + l1W 2|s|2 + l2|ξ|2, ∀(s, ξ) ∈ R× Rd , a.e. x ∈ Rd .

Then there exists a sequence k̃n → +∞ with k̃n > ‖ϕn‖L∞ such that
taking kn ≥ k̃n problem (1) has a least a solution µn. Extending µn by
zero outside Dn and extracting a subsequence which γ-converges to a
measure µ we have that µ is a solution of (1). Moreover, defining un as
the solution of

−∆un + µnun = f in Dn, un = 0 on ∂Dn,

we have
lim

n→∞

∫
Dn

j(x ,un,∇un) dx =

∫
j(x ,u,∇u) dx .
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Numerical Simulations

We consider
j(x ,u,∇u) = g · u
g(x , y) = 1

1+ε(x2+y2)3 , such that W−1g ∈ L2 we have considered

ε = 10−10.
ψ(s) = 1

m e−αs with α = 3 · 10−4.

f (x , y) =

{
x2 + y2 − 1 if x2 + y2 < 11,

10
1+ε(x2+y2)3 if x2 + y2 > 11.

The solution for these data can be explicitly obtained and it is given by
Ω = B(0,R) .

R =
√

m/π ∧
√

2.
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Figure: Right-hand side function f in D = (−5,5)× (−5,5)
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Figure: The optimal potential µopt for volume constraint m = 2 = mopt (left)
and m = 20 > 6.367 = mopt (right).

F. Maestre (Universidad de Sevilla) Optimal Potentials IX PDE Benasque 40 / 44



We consider now:

f (x , y) =


−10 if (x − 2)2 + (y + 1)2 < 1,
10 if (x + 2)2 + (y − 0.5)2 < 1
0 otherwise.

Figure: The rigth-hand side function f in D = (−5,5)× (−5,5) (left) and in
D = (−20,20)× (−20,20) (right).
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Figure: The optimal potential µopt . D = (−5,5)× (−5,5), volume constraint
m = 0.2 (left) and m = 10 (right).
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Figure: The optimal potential µopt . D = (−12.5,12.5)× (−12.5,12.5) and
volume constraint m = 110 (left). D = (−20,20)× (−20,20) and m = 400
(right).
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THANK YOU

FOR YOUR

ATTENTION!!!
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