On optimal potential problems with changing sing data

Faustino Maestre

Departamento de Ecuaciones Diferenciales y Análisis Numérico Universidad de Sevilla. Spain.

IX Partial differential equations, optimal design and numerics

Mass optimization problems and homogenization

Benasque, España. 2022

Joint work: Giuseppe Buttazzo, Università di Pisa, Juan Casado, Universidad de Sevilla, Bozhidar Velichkov, Università di Pisa.

F. Maestre (Universidad de Sevilla)

Optimal Potentials

< ロ > < 同 > < 回 > < 回 >

- Statement of the problem
- Capacitary measures
- Existence results
 - The admissible class of potentials and its relaxation
 - Optimality conditions
 - Saturation of the Constraint
- Unbounded domain
 - Existence Result
- Numerical experiments
 - Bounded domain
 - Unbouded domain

- Statement of the problem
- Capacitary measures
- 2 Existence results
 - The admissible class of potentials and its relaxation
 - Optimality conditions
 - Saturation of the Constraint
- 3 Unbounded domain
 - Existence Result
- 4 Numerical experiments
 - Bounded domain
 - Unbouded domain

- Statement of the problem
- Capacitary measures
- 2 Existence results
 - The admissible class of potentials and its relaxation
 - Optimality conditions
 - Saturation of the Constraint
- 3 Unbounded domain
 - Existence Result
- 4 Numerical experiments
 - Bounded domain
 - Unbouded domain

We consider $D \subset \mathbb{R}^d$ a fixed open bounded set. We are interested in the optimization problem:

$$\min_{\ell\in\mathcal{V}}\int_D g(x)u(x)\ dx$$

subject to

$$\begin{cases} -\Delta u + V \ u = f & \text{in } D, \\ u = 0 & \text{on } \partial D, \end{cases}$$

where,

$$\mathcal{V} = \left\{ V: D o [0, +\infty] \ : \ V ext{ Lebesgue measurable}, \ \int_D \psi(V(x)) \, dx \leq 1
ight\}$$

and ψ satisfying some appropriate qualitative conditions.

The function $\psi:[\mathbf{0},+\infty]\to [\mathbf{0},+\infty]$ we assume that:

(i) ψ is strictly decreasing;

(ii) there exist p > 1 such that the function $s \mapsto \psi^{-1}(s^p)$ is convex.

For instance the following functions:

- (1) $\psi(s) = s^{-p}$, for any p > 0,
- 2 $\psi(s) = e^{-\alpha s}$, for any $\alpha > 0$,

The choice $\psi(s) = e^{-\alpha s}$ was proposed in [Buttazzo et al ,2014], in order to approximate shape optimization problems with Dirichlet condition on the free boundary.

Moreover, as $\alpha \to 0$ the problems with the parameter α were shown to Γ -converge to the shape optimization problem with a volume constraint $|\Omega| \leq 1$ being Ω the shape variable.

The function $\psi: [\mathbf{0}, +\infty] \to [\mathbf{0}, +\infty]$ we assume that:

- (i) ψ is strictly decreasing;
- (ii) there exist p > 1 such that the function $s \mapsto \psi^{-1}(s^p)$ is convex.

For instance the following functions:

- (1) $\psi(s) = s^{-p}$, for any p > 0,
- 2 $\psi(s) = e^{-\alpha s}$, for any $\alpha > 0$,

The choice $\psi(s) = e^{-\alpha s}$ was proposed in [Buttazzo et al ,2014], in order to approximate shape optimization problems with Dirichlet condition on the free boundary.

Moreover, as $\alpha \to 0$ the problems with the parameter α were shown to Γ -converge to the shape optimization problem with a volume constraint $|\Omega| \leq 1$ being Ω the shape variable.

The function $\psi: [\mathbf{0}, +\infty] \to [\mathbf{0}, +\infty]$ we assume that:

- (i) ψ is strictly decreasing;
- (ii) there exist p > 1 such that the function $s \mapsto \psi^{-1}(s^p)$ is convex.

For instance the following functions:

1
$$\psi(s) = s^{-p}$$
, for any $p > 0$,

2 $\psi(s) = e^{-\alpha s}$, for any $\alpha > 0$,

The choice $\psi(s) = e^{-\alpha s}$ was proposed in [Buttazzo et al ,2014], in order to approximate shape optimization problems with Dirichlet condition on the free boundary.

Moreover, as $\alpha \to 0$ the problems with the parameter α were shown to Γ -converge to the shape optimization problem with a volume constraint $|\Omega| \leq 1$ being Ω the shape variable.

イロト 不得 トイヨト イヨト ヨー ろくの

The function $\psi: [\mathbf{0}, +\infty] \to [\mathbf{0}, +\infty]$ we assume that:

- (i) ψ is strictly decreasing;
- (ii) there exist p > 1 such that the function $s \mapsto \psi^{-1}(s^p)$ is convex.

For instance the following functions:

1
$$\psi(s) = s^{-p}$$
, for any $p > 0$,

2 $\psi(s) = e^{-\alpha s}$, for any $\alpha > 0$,

The choice $\psi(s) = e^{-\alpha s}$ was proposed in [Buttazzo et al ,2014], in order to approximate shape optimization problems with Dirichlet condition on the free boundary.

Moreover, as $\alpha \to 0$ the problems with the parameter α were shown to Γ -converge to the shape optimization problem with a volume constraint $|\Omega| \leq 1$ being Ω the shape variable.

- *f* ≥ 0 and *g* ≤ 0 (o reverse case) cost is monotonically increasing (maximum principle) and volume constraint saturated ([Buttazzo et al., 2014])
- Optimal domains with *f* and *g* are allowed to change sing ([Buttazzo and Velichkov, 2018])
- We analyze the existence of optimal potentials when *f* and *g* are allowed to change sing. We expect no saturation of volume constraint.

Main assumptions:

- linear cost (otherwise simple examples show optimal solution only exists in a relaxed sense).
- *D* bounded (characterization of the relaxed formulation).

< 日 > < 同 > < 回 > < 回 > < 回 > <

- f ≥ 0 and g ≤ 0 (o reverse case) cost is monotonically increasing (maximum principle) and volume constraint saturated ([Buttazzo et al., 2014])
- Optimal domains with *f* and *g* are allowed to change sing ([Buttazzo and Velichkov, 2018])
- We analyze the existence of optimal potentials when *f* and *g* are allowed to change sing. We expect no saturation of volume constraint.

Main assumptions:

- linear cost (otherwise simple examples show optimal solution only exists in a relaxed sense).
- *D* bounded (characterization of the relaxed formulation).

・ロト ・四ト ・ヨト ・ヨト

- f ≥ 0 and g ≤ 0 (o reverse case) cost is monotonically increasing (maximum principle) and volume constraint saturated ([Buttazzo et al., 2014])
- Optimal domains with *f* and *g* are allowed to change sing ([Buttazzo and Velichkov, 2018])
- We analyze the existence of optimal potentials when *f* and *g* are allowed to change sing. We expect no saturation of volume constraint.

Main assumptions:

- linear cost (otherwise simple examples show optimal solution only exists in a relaxed sense).
- *D* bounded (characterization of the relaxed formulation).

イロト 不得 トイヨト イヨト

- *f* ≥ 0 and *g* ≤ 0 (o reverse case) cost is monotonically increasing (maximum principle) and volume constraint saturated ([Buttazzo et al., 2014])
- Optimal domains with *f* and *g* are allowed to change sing ([Buttazzo and Velichkov, 2018])
- We analyze the existence of optimal potentials when *f* and *g* are allowed to change sing. We expect no saturation of volume constraint.

Main assumptions:

 linear cost (otherwise simple examples show optimal solution only exists in a relaxed sense).

• *D* bounded (characterization of the relaxed formulation).

- *f* ≥ 0 and *g* ≤ 0 (o reverse case) cost is monotonically increasing (maximum principle) and volume constraint saturated ([Buttazzo et al., 2014])
- Optimal domains with *f* and *g* are allowed to change sing ([Buttazzo and Velichkov, 2018])
- We analyze the existence of optimal potentials when *f* and *g* are allowed to change sing. We expect no saturation of volume constraint.

Main assumptions:

- linear cost (otherwise simple examples show optimal solution only exists in a relaxed sense).
- *D* bounded (characterization of the relaxed formulation).

- Statement of the problem
- Capacitary measures
- 2 Existence results
 - The admissible class of potentials and its relaxation
 - Optimality conditions
 - Saturation of the Constraint
- 3 Unbounded domain
 - Existence Result
- 4 Numerical experiments
 - Bounded domain
 - Unbouded domain

A *capacitary measure* μ is a nonnegative Borel measure on *D*, possibly taking the value $+\infty$, that vanishes on all sets of capacity zero. Notation $\mu \in \mathcal{M}_{cap}$.

Capacity is intended with respect to the H^1 norm

$${\it cap}(E,D) = \inf \left\{ \int_D |
abla u|^2 \ {\it d}x + \int_D u^2 \ {\it d}x : u \in H^1_0(D), \ u \geq 1 \ {
m in \ a \ neightrophic orbits} \ {\it d} E
ight\}$$

We consider the Hilbert space $H_0^1(D) \cap L^2(\mu)$ endowed with norm:

$$\|u\| = \left(\|\nabla u\|_{L^2(D)}^2 + \|u\|_{L^2(\mu)}^2\right)^{1/2}$$

イロト イポト イラト イラト

We say that $u \in H_0^1(D) \cap L^2(\mu)$ is a solution of the problem

 $-\Delta u + \mu u = f$, for a function $f \in L^2(D)$,

 $\int_D \nabla u \nabla \phi \, dx + \int_D u \phi \, d\mu = \int_D f \phi \, dx \qquad \forall \phi \in H^1_0(D) \cap L^2(\mu),$

if

3

4 D N 4 B N 4 B N 4 B N

Introduction

- Statement of the problem
- Capacitary measures

Existence results

- The admissible class of potentials and its relaxation
- Optimality conditions
- Saturation of the Constraint

3 Unbounded domain

Existence Result

Numerical experiments

- Bounded domain
- Unbouded domain

Introduction

- Statement of the problem
- Capacitary measures

Existence results

- The admissible class of potentials and its relaxation
- Optimality conditions
- Saturation of the Constraint

3 Unbounded domain

Existence Result

Numerical experiments

- Bounded domain
- Unbouded domain

For $V \in \mathcal{V}$ the state equation

$$-\Delta u + Vu = f, \qquad u \in H^1_0(D) \cap L^2(V).$$

The capacitary measure μ associated to V is defined as:

$$\mu(A) = \begin{cases} \int_{A} V(x) \, dx & \text{if } \operatorname{cap} \left(A \cap \{ V = +\infty \} \right) = 0 \\ +\infty & \text{if } \operatorname{cap} \left(A \cap \{ V = +\infty \} \right) > 0, \end{cases}$$

which implies u = 0 quasi-everywhere on the set $\{V = +\infty\}$. Abusing the terminology we will identify μ and V.

Relaxed problem

We put $\overline{\mathcal{V}}$ the family of capacitary measures μ obtained as limits of sequences (V_n) of potentials in \mathcal{V} . Relaxed problem:

$$\min_{\mu\in\overline{\mathcal{V}}} \int_D g(x)u(x) \ dx$$

subject to

$$\begin{cases} u \in H^1_0(D) \cap L^2(\mu) \\ -\Delta u + \mu \ u = f & \text{in } D, \end{cases}$$

Theorem

Let $D \subset \mathbb{R}^d$ be a bounded open set and let ψ satisfy the assumptions i) and ii) above. Then, for every $f, g \in L^2(D)$, the original optimization problem has a solution.

Relaxed problem

We put $\overline{\mathcal{V}}$ the family of capacitary measures μ obtained as limits of sequences (V_n) of potentials in \mathcal{V} . Relaxed problem:

$$\min_{\mu\in\overline{\mathcal{V}}} \int_D g(x)u(x) \ dx$$

subject to

$$\begin{cases} u \in H_0^1(D) \cap L^2(\mu) \\ -\Delta u + \mu \ u = f & \text{in } D, \end{cases}$$

Theorem

Let $D \subset \mathbb{R}^d$ be a bounded open set and let ψ satisfy the assumptions *i*) and *ii*) above. Then, for every $f, g \in L^2(D)$, the original optimization problem has a solution.

Introduction

- Statement of the problem
- Capacitary measures

Existence results

- The admissible class of potentials and its relaxation
- Optimality conditions
- Saturation of the Constraint

3 Unbounded domain

Existence Result

Numerical experiments

- Bounded domain
- Unbouded domain

We consider $u, p \in H_0^1(D) \cap L^2(\mu)$ solutions of:

$$\begin{cases} -\Delta u + \mu \ u = f & \text{in } D, \\ u = 0 & \text{on } \partial D, \end{cases} \begin{cases} -\Delta p + \mu \ p = g & \text{in } D, \\ p = 0 & \text{on } \partial D, \end{cases}$$

Proposition

Suppose that μ is a solution of the relaxed optimization problem on the bounded domain $\mathsf{D}\subset \mathbb{R}^d.$ Then

$u p \leq 0$ a.e. on D.

Moreover, the above inequality holds quasi-everywhere on D.

F. Maestre (Universidad de Sevilla)

Optimal Potentials

IX PDE Benasque 16/44

・ロト ・四ト ・ヨト ・ヨト

We consider $u, p \in H_0^1(D) \cap L^2(\mu)$ solutions of:

$$\begin{cases} -\Delta u + \mu \ u = f & \text{in } D, \\ u = 0 & \text{on } \partial D, \end{cases} \begin{cases} -\Delta p + \mu \ p = g & \text{in } D, \\ p = 0 & \text{on } \partial D, \end{cases}$$

Proposition

Suppose that μ is a solution of the relaxed optimization problem on the bounded domain $D \subset \mathbb{R}^d$. Then

$$u p \leq 0$$
 a.e. on D.

Moreover, the above inequality holds quasi-everywhere on D.

イロト イポト イラト イラト

Introduction

- Statement of the problem
- Capacitary measures

Existence results

- The admissible class of potentials and its relaxation
- Optimality conditions

Saturation of the Constraint

3 Unbounded domain

Existence Result

Numerical experiments

- Bounded domain
- Unbouded domain

One cannot expect that the constraint
$$\int_D \psi(V) dx \leq 1$$
 is saturated.

Moreover, we will show that, if this is not the case, then the optimal potential *V* can be reduced to a domain Ω , that is, *V* is a potential of the form:

 $V = 0 \text{ on } \Omega$ and $V = +\infty \text{ on } \Omega^c$.

4 3 5 4 3 5 5

Introduction

- Statement of the problem
- Capacitary measures

Existence results

- The admissible class of potentials and its relaxation
- Optimality conditions
- Saturation of the Constraint

Unbounded domain

Existence Result

Numerical experiments

- Bounded domain
- Unbouded domain

Unbounded domain

We consider $D = \mathbb{R}^d$. We are interested in the optimization problem:

$$\min_{\mu \in \mathcal{M}_{cap}} \int_{\mathbb{R}^d} j(x, u(x), \nabla u(x)) \ dx$$

subject to

and

$$-\Delta u + \mu \ u = f \quad \text{in} \quad \mathbb{R}^d,$$

 $\Psi(\mu) \le 1,$

< ロ > < 同 > < 回 > < 回 >

• Which is good space X for the solutions of $-\Delta u + \mu u = f$, ??? $\int_{\mathbb{R}^d} \nabla u \cdot \nabla v \, dx + \int_{\mathbb{R}^d} u \, v \, d\mu = \int_{\mathbb{R}^d} fv, \quad v \in X,$

We consider:

$$W(x) = \frac{1}{1+|x|}$$
 if $d \neq 2$, $W(x) = \frac{1}{(1+|x|)\log(2+|x|)}$ if $d = 2$.
and we put:

$$L = \{ u : \mathbb{R}^d \to \mathbb{R} : Wu \in L^2(\mathbb{R}^d) \}$$
$$H = \{ u \in L \cap H^1_{loc}(\mathbb{R}^d) : \nabla u \in L^2(\mathbb{R}^d)^d \}$$

and one gets

$$\|u\|_{L} \leq C \left(\|\nabla u\|_{L^{2}(\mathbb{R}^{d})} + \|u\|_{L^{2}_{\mu}} \right)$$

We take

$$X = H \cap L^2_\mu$$

F. Maestre (Universidad de Sevilla)

BAR 4 BA

• Which is good space X for the solutions of $-\Delta u + \mu u = f$, ??? $\int_{\mathbb{R}^d} \nabla u \cdot \nabla v \, dx + \int_{\mathbb{R}^d} u \, v \, d\mu = \int_{\mathbb{R}^d} fv, \quad v \in X,$

We consider:

$$W(x) = \frac{1}{1+|x|}$$
 if $d \neq 2$, $W(x) = \frac{1}{(1+|x|)\log(2+|x|)}$ if $d = 2$.
and we put:

$$L = \{ u : \mathbb{R}^d \to \mathbb{R} : Wu \in L^2(\mathbb{R}^d) \}$$
$$H = \{ u \in L \cap H^1_{loc}(\mathbb{R}^d) : \nabla u \in L^2(\mathbb{R}^d)^d \}$$

and one gets

$$\|u\|_{L} \leq C \left(\|\nabla u\|_{L^{2}(\mathbb{R}^{d})} + \|u\|_{L^{2}_{\mu}} \right)$$

We take

$$X = H \cap L^2_\mu$$

F. Maestre (Universidad de Sevilla)

BAR 4 BA

• Which is good space X for the solutions of $-\Delta u + \mu u = f$, ???

$$\int_{\mathbb{R}^d} \nabla u \cdot \nabla v \, dx + \int_{\mathbb{R}^d} u \, v \, d\mu = \int_{\mathbb{R}^d} fv, \quad v \in X,$$

We consider:

$$W(x) = rac{1}{1+|x|}$$
 if $d \neq 2$, $W(x) = rac{1}{(1+|x|)\log(2+|x|)}$ if $d = 2$.

and we put:

$$L = \{ u : \mathbb{R}^d \to \mathbb{R} : Wu \in L^2(\mathbb{R}^d) \}$$
$$H = \{ u \in L \cap H^1_{loc}(\mathbb{R}^d) : \nabla u \in L^2(\mathbb{R}^d)^d \}$$

and one gets

$$\|u\|_{L} \leq C\left(\|\nabla u\|_{L^{2}(\mathbb{R}^{d})} + \|u\|_{L^{2}_{\mu}}\right)$$

 $X = H \cap L^2_{\mu}$

We take

э

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

• Which is good space X for the solutions of $-\Delta u + \mu u = f$,???

$$\int_{\mathbb{R}^d} \nabla u \cdot \nabla v \, dx + \int_{\mathbb{R}^d} u \, v \, d\mu = \int_{\mathbb{R}^d} fv, \quad v \in X,$$

We consider:

$$W(x) = rac{1}{1+|x|}$$
 if $d \neq 2$, $W(x) = rac{1}{(1+|x|)\log(2+|x|)}$ if $d = 2$.

and we put:

$$L = \{ u : \mathbb{R}^d \to \mathbb{R} : Wu \in L^2(\mathbb{R}^d) \}$$
$$H = \{ u \in L \cap H^1_{loc}(\mathbb{R}^d) : \nabla u \in L^2(\mathbb{R}^d)^d \}$$

and one gets

$$\|u\|_{L} \leq C\left(\|\nabla u\|_{L^{2}(\mathbb{R}^{d})} + \|u\|_{L^{2}_{\mu}}\right)$$

We take

$$X = H \cap L^2_\mu$$

F. Maestre (Universidad de Sevilla)

4 E 5

• How is defined $\Psi(\mu)$???.

We decompose $\mu = \mu^{a} + \mu^{s} + \infty_{K}$, and consider:

$$\Psi(\mu) = \int_{\mathbb{R}^d} \psi(\mu^a) \, dx + C_{\psi} \mu^s(\mathbb{R}^d) + \psi(\infty) cap(K),$$

where $\psi : \mathbb{R}^+ \to [0, +\infty]$ is a convex and lower semicontinuous function and

$$\mathcal{C}_{\psi} = \lim_{t o +\infty} rac{\psi(t)}{t}$$

イロト 不得 トイヨト イヨト 二日

Introduction

- Statement of the problem
- Capacitary measures
- 2 Existence results
 - The admissible class of potentials and its relaxation
 - Optimality conditions
 - Saturation of the Constraint
- Unbounded domain
 Existence Result

Numerical experiments

- Bounded domain
- Unbouded domain

Theorem

We consider $j : \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ measurable in $x \in \mathbb{R}$, lower semincontinuous in (s,ξ) and some growth conditions in (s,ξ) . We consider $\psi : \mathbb{R} \to [0, +\infty]$ convex and lower semicontinuous and a measure $\nu \in \mathcal{M}_{cap}$ such that there exists $\hat{\mu} \in \mathcal{M}_{cap}$ satisfying

$$\hat{\mu} \ge \nu, \quad \Psi(\hat{\mu}) \le \mathbf{1}.$$

Moreover, if d = 1, 2 we assume that:

either $\psi(0) > 0$ or ν is not the null measure

Then, for every $f \in H'$ the optimization problem has at least one solution.

On optimal potential problems

Introduction

- Statement of the problem
- Capacitary measures
- 2 Existence results
 - The admissible class of potentials and its relaxation
 - Optimality conditions
 - Saturation of the Constraint
- 3 Unbounded domain
 - Existence Result

Numerical experiments

- Bounded domain
- Unbouded domain

On optimal potential problems

- Introduction
 - Statement of the problem
 - Capacitary measures
- 2 Existence results
 - The admissible class of potentials and its relaxation
 - Optimality conditions
 - Saturation of the Constraint
- Unbounded domain
 Existence Result
 - Numerical experimentsBounded domain
 - Unbouded domain

Numerical Analysis

We propose the numerical analysis of the following problem. We consider $D = [0, 1]^2$:

$$\min_{V\in\mathcal{V}}\int_D g(x)u(x)\ dx$$

subject to

$$\begin{cases} -\Delta u + V \ u = f & \text{in } D, \\ u = 0 & \text{on } \partial D, \end{cases}$$

where,

$$\mathcal{V} = \left\{ V : D \to [0, +\infty] : V \text{ Lebesgue measurable, } \int_D \psi(V(x)) \, dx \leq 1 \right\}$$

and $\psi(s) = \frac{1}{m}e^{-\alpha s}$

< 口 > < 同 > < 回 > < 回 > < 回 > <

- Initialization of the potential $V^0 \in \mathcal{V}$;
- for $k \ge 0$, iteration until convergence as follows:
 - compute the state u_{V^k} and then the co-state p_{V^k} ,
 - compute the descent direction $V^{k}(x) = -u_{V^{k}} \cdot p_{V^{k}}$
 - update the potential V^k in D:

$$V^{k+1} = V^k + \ell_k \tilde{V}^k,$$

< ロ > < 同 > < 回 > < 回 >

- Initialization of the potential $V^0 \in \mathcal{V}$;
- for $k \ge 0$, iteration until convergence as follows:
 - compute the state u_{V^k} and then the co-state p_{V^k}
 - compute the descent direction $\tilde{V}^{k}(x) = -u_{V^{k}} \cdot p_{V^{k}}$
 - update the potential V^k in D:

$$V^{k+1} = V^k + \ell_k \, \tilde{V}^k,$$

< ロ > < 同 > < 回 > < 回 >

- Initialization of the potential $V^0 \in \mathcal{V}$;
- for $k \ge 0$, iteration until convergence as follows:
 - compute the state u_{V^k} and then the co-state p_{V^k} ,
 - compute the descent direction $\tilde{V}^{k}(x) = -u_{V^{k}} \cdot p_{V^{k}}$
 - update the potential V^k in D:

$$V^{k+1} = V^k + \ell_k \, \tilde{V}^k,$$

< 口 > < 同 > < 回 > < 回 > < 回 > <

- Initialization of the potential $V^0 \in \mathcal{V}$;
- for $k \ge 0$, iteration until convergence as follows:
 - compute the state u_{V^k} and then the co-state p_{V^k} ,
 - compute the descent direction $\tilde{V}^k(x) = -u_{V^k} \cdot p_{V^k}$
 - update the potential V^k in D:

$$V^{k+1} = V^k + \ell_k \tilde{V}^k,$$

- Initialization of the potential $V^0 \in \mathcal{V}$;
- for $k \ge 0$, iteration until convergence as follows:
 - compute the state u_{V^k} and then the co-state p_{V^k} ,
 - compute the descent direction $\tilde{V}^k(x) = -u_{V^k} \cdot p_{V^k}$
 - update the potential V^k in D:

$$V^{k+1} = V^k + \ell_k \, \tilde{V}^k,$$

We use FreeFem++ v 3.50 completed with the library NLopt.

In the following, we take $g \equiv 1$ and consider different choices for *f* and parameters α and *m*.

We use FreeFem++ v 3.50 completed with the library NLopt.

In the following, we take $g \equiv 1$ and consider different choices for *f* and parameters α and *m*.

イロト イポト イラト イラト

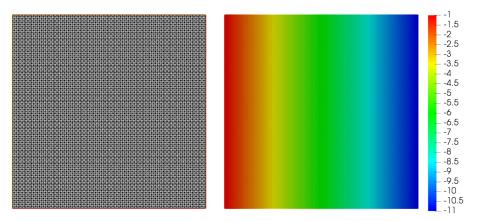


Figure: To the left: the domain *D* and its triangulation; number of nodes: 40401; number of triangles: 80000. To the right: the right-hand side function f(x, y) = -(1 + 10x).

F. Maestre (Universidad de Sevilla)

IX PDE Benasque 30/44

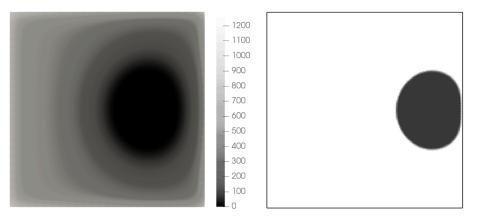


Figure: The optimal potential V_{opt} for volume constraint $m = 0.2 = m_{opt}$. Case $\alpha = 10^{-2}$ (left) and $\alpha = 3.10^{-4}$ (right).

< ロ > < 同 > < 回 > < 回 >

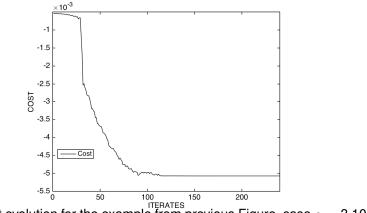


Figure: Cost evolution for the example from previous Figure, case $\alpha = 3.10^{-4}$.

< A

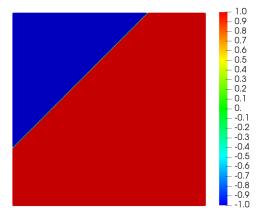


Figure: The right-hand side function f is given by f(x, y) = -1, if $y - 1.4x \ge 0.3$, and f(x, y) = 1, if y - 1.4x < 0.3

F. Maestre (Universidad de Sevilla)

Optimal Potentials

IX PDE Benasque 33/44

4 E 5

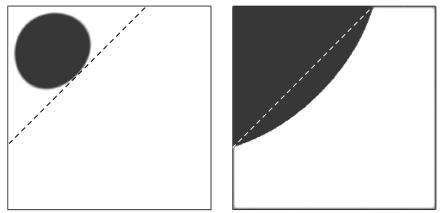


Figure: Optimal potential V_{opt} for m = 0.2 (left) and m = 0.45 (right). The occupied volume on the right is 0.33276.

On optimal potential problems

- Introduction
 - Statement of the problem
 - Capacitary measures
- 2 Existence results
 - The admissible class of potentials and its relaxation
 - Optimality conditions
 - Saturation of the Constraint
- 3 Unbounded domain
 - Existence Result
- Numerical experiments
 Bounded domain
 - Unbouded domain

We consider the sequence of problems

$$\min\left\{\int_{D_n} j(x, u, \nabla u) \, dx : -\Delta u + \mu u = f \text{ in } D_n, \ u_n = 0 \text{ on } \partial D_n, \\ \int_{D_n} \psi(\mu) \, dx \le 1, \ \mu \in L^{\infty}(D_n), \ \nu_n \le \mu \le k_n \right\}.$$
(1)

Where $\mathbb{R}^d = \bigcup_n D_n$ and $k_n \to +\infty$.

- Tel - Se

Theorem

Assume the conditions of the existence Theorem with *j* such that $j(x, s, \xi)$ is continuous in (s, ξ) and there exist $k \in L^1$, $l_1, l_2 \in L^{\infty}$ such that

 $j(x,s,\xi) \leq k(x) + l_1 W^2 |s|^2 + l_2 |\xi|^2, \quad \forall (s,\xi) \in \mathbb{R} \times \mathbb{R}^d, \ a.e. \ x \in \mathbb{R}^d.$

Then there exists a sequence $\tilde{k}_n \to +\infty$ with $\tilde{k}_n > \|\varphi_n\|_{L^{\infty}}$ such that taking $k_n \geq \tilde{k}_n$ problem (1) has a least a solution μ_n . Extending μ_n by zero outside D_n and extracting a subsequence which γ -converges to a measure μ we have that μ is a solution of (1). Moreover, defining u_n as the solution of

$$-\Delta u_n + \mu_n u_n = f \text{ in } D_n, \qquad u_n = 0 \text{ on } \partial D_n,$$

we have

$$\lim_{n\to\infty}\int_{D_n}j(x,u_n,\nabla u_n)\,dx=\int j(x,u,\nabla u)\,dx.$$

We consider

•
$$j(x, u, \nabla u) = g \cdot u$$

• $g(x,y) = \frac{1}{1+\epsilon(x^2+y^2)^3}$, such that $W^{-1}g \in L^2$ we have considered $\epsilon = 10^{-10}$.

•
$$\psi(s) = \frac{1}{m}e^{-\alpha s}$$
 with $\alpha = 3 \cdot 10^{-4}$.
• $f(x, y) = \begin{cases} x^2 + y^2 - 1 & \text{if } x^2 + y^2 < 11, \\ \frac{10}{1 + \epsilon (x^2 + y^2)^3} & \text{if } x^2 + y^2 > 11. \end{cases}$

The solution for these data can be explicitly obtained and it is given by $\Omega = B(0, R)$.

$$R=\sqrt{m/\pi}\wedge\sqrt{2}.$$

We consider

•
$$j(x, u, \nabla u) = g \cdot u$$

• $g(x,y) = \frac{1}{1+\epsilon(x^2+y^2)^3}$, such that $W^{-1}g \in L^2$ we have considered $\epsilon = 10^{-10}$.

•
$$\psi(s) = \frac{1}{m}e^{-\alpha s}$$
 with $\alpha = 3 \cdot 10^{-4}$.
• $f(x, y) = \begin{cases} x^2 + y^2 - 1 & \text{if } x^2 + y^2 < 11, \\ \frac{10}{1 + \epsilon (x^2 + y^2)^3} & \text{if } x^2 + y^2 > 11. \end{cases}$

The solution for these data can be explicitly obtained and it is given by $\Omega = B(0, R)$.

$$R=\sqrt{m/\pi}\wedge\sqrt{2}.$$

- 3

We consider

The solution for these data can be explicitly obtained and it is given by $\Omega = B(0, R)$.

$$R=\sqrt{m/\pi}\wedge\sqrt{2}$$

イロト イポト イヨト イヨト

We consider

•
$$j(x, u, \nabla u) = g \cdot u$$

• $g(x, y) = \frac{1}{1 + \epsilon (x^2 + y^2)^3}$, such that $W^{-1}g \in L^2$ we have considered
 $\epsilon = 10^{-10}$.
• $\psi(s) = \frac{1}{m}e^{-\alpha s}$ with $\alpha = 3 \cdot 10^{-4}$.
• $f(x, y) = \begin{cases} x^2 + y^2 - 1 & \text{if } x^2 + y^2 < 11, \\ \frac{10}{1 + \epsilon (x^2 + y^2)^3} & \text{if } x^2 + y^2 > 11. \end{cases}$

The solution for these data can be explicitly obtained and it is given by $\Omega = B(0, R)$.

$$R=\sqrt{m/\pi}\wedge\sqrt{2}.$$

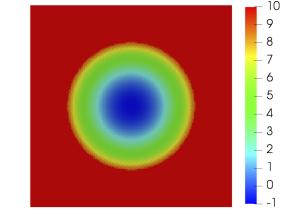


Figure: Right-hand side function *f* in $D = (-5, 5) \times (-5, 5)$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

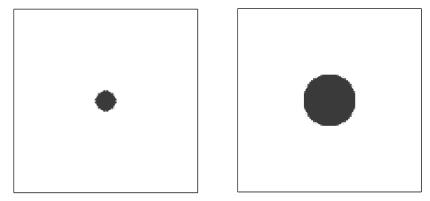


Figure: The optimal potential μ_{opt} for volume constraint $m = 2 = m_{opt}$ (left) and $m = 20 > 6.367 = m_{opt}$ (right).

We consider now:

$$f(x,y) = \begin{cases} -10 & \text{if } (x-2)^2 + (y+1)^2 < 1, \\ 10 & \text{if } (x+2)^2 + (y-0.5)^2 < 1 \\ 0 & \text{otherwise.} \end{cases}$$

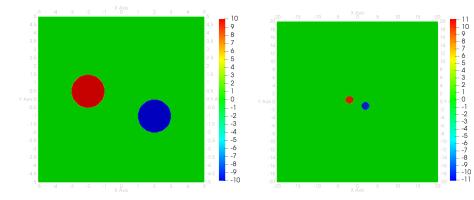


Figure: The righth and side function f in $D = (-5,5) \times (-5,5)$ (left) and in $D = (-20, 20) \times (-20, 20)$ (right).

F. Maestre (Universidad de Sevilla)

Optimal Potentials

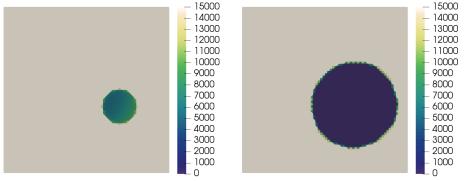


Figure: The optimal potential μ_{opt} . $D = (-5, 5) \times (-5, 5)$, volume constraint m = 0.2 (left) and m = 10 (right).

< 🗇 🕨

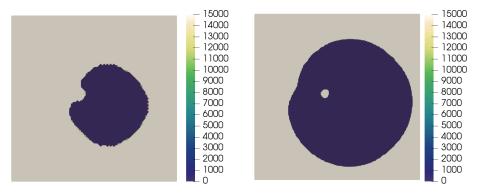


Figure: The optimal potential μ_{opt} . $D = (-12.5, 12.5) \times (-12.5, 12.5)$ and volume constraint m = 110 (left). $D = (-20, 20) \times (-20, 20)$ and m = 400 (right).

< 6 b

THANK YOU

FOR YOUR ATTENTION!!!

< A >

F. Maestre (Universidad de Sevilla)

Optimal Potentials

IX PDE Benasque 44/44

3 + 4 = +