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The focus of this project is the regularity theory of free boundary problems. This is a fascinating
topic, which combines methods from Analysis and Geometry, and has numerous applications to a large
variety of problems in Physics, Engineering and Economy, which involve partial differential equations
on domains whose boundary is free, that is, it is not a priori known. Typical examples are the Stefan
problem, describing the evolution of a block of melting ice, and the American stock options. Since the
shape of the boundary is free, it is a deep and usually extremely difficult question to study its fine
structure. The regularity theory is precisely the art of deducing the local structure of the free boundary
just by looking at a global energy-minimization property of the state function. In this project I aim to
develop new techniques to study the regularity of the free boundaries and to give a precise description
of the structure of the free boundaries around singular points. I will introduce a new variational
method for the analysis of the free boundaries, aiming to solve several major open questions related to
the classical one-phase, two-phase and the vectorial Bernoulli problems, the obstacle and thin-obstacle
problems, which are the most important models both from a theoretical and applicative point of view.
The techniques that I will develop in this project will have an impact on several domains, including the
minimal surfaces, harmonic maps, free discontinuity problems, parabolic and non-local free boundary
problems.
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PART I

Shape optimization



SHAPE OPTIMIZATION

A shape optimization problem is a variational problem of the form

min
{
F(Ω) : Ω ∈ A

}
.

The functional F(Ω) depends on the solution of a PDE in Ω, for instance

• F(Ω) = −
∫

Ω
u(x) dx, where u is the solution to

−∆u = 1 in Ω, u = 0 on ∂Ω;

• F(Ω) =

∫
Ω
|∇u|2 dx, where u is the solution to

−∆u = λu in Ω, u = 0 on ∂Ω,

∫
Ω

u2 dx = 1.

• and might also involve quantities as the perimeter or the measure of Ω.



SHAPE OPTIMIZATION

A shape optimization problem is a variational problem of the form

min
{
F(Ω) : Ω ∈ A

}
.

The family A of admissible sets can be:
• all open sets contained in some “box" D ⊆ Rd or in Rd itself;
• all measurable sets contained in some “box" D ⊆ Rd or in Rd itself;
• all sets of measure at most 1 contained in some “box" D ⊆ Rd or in Rd itself;
• all sets of fixed perimeter contained in some “box" D ⊆ Rd or in Rd itself;
• all convex sets contained in some “box" D ⊆ Rd or in Rd itself;
• sets satisfying exterior ball condition;
• sets with uniformly Lipschitz boundary...



SHAPE OPTIMIZATION

A shape optimization problem is a variational problem of the form

min
{
F(Ω) : Ω ∈ A

}
.

The most studied ones are:
• spectral functionals F(Ω) = F(λ1(Ω), . . . , λk(Ω));

• integral functionals F(Ω) =

∫
Ω

j(uΩ, x) dx , where uΩ is the solution of

−∆u = f in Ω, u = 0 on ∂Ω ,

where f (x) is a given function.
• in both cases A is the family of all measurable sets with measure ≤ m,

which are contained in some “box" D ⊆ Rd or in Rd.



SPECTRAL FUNCTIONALS: WHY?

Minimize F(Ω) = F(λ1(Ω), . . . , λk(Ω)) among all Ω ⊆ D, |Ω| ≤ 1,

where λj(Ω) are the eigenfunctions of the Dirichlet Laplacian on Ω.

Why they are interesting?
• History: easy answer when F(Ω) = λ1(Ω) and D = Rd (Faber-Krahn);
• also when F(Ω) = λ2(Ω) and D = Rd (Krahn-Szegö);
• Physical interpretation: Can one hear the shape of the drum ?
• Geometry of the domain <–> behavior of the eigenfunctions



SPECTRAL FUNCTIONALS: WHAT IS KNOWN?

Minimize F(Ω) = F(λ1(Ω), . . . , λk(Ω)) among all Ω ⊆ D, |Ω| ≤ 1,

where λj(Ω) are the eigenfunctions of the Dirichlet Laplacian on Ω.

Existence of optimal sets:
• Robust existence theory when D is bounded: Buttazzo-Dal Maso (1993).
• Existence in Rd: Bucur and Mazzoleni-Pratelli (2011).

Regularity of the free boundary:
• λ1(Ω) and D bounded: Briançon-Lamboley (2011), Russ-Trey-V. (2017),

using Alt-Caffarelli (1981), De Silva (2010), Chang Lara-Savin (2017), Weiss (2000);
• F(Ω) = λ2(Ω) + |Ω| and D is bounded: Mazzoleni-Trey-V. (2020),

using Bucur-V. (2011), De Philippis-Spolaor-V. (2020) and Russ-Trey-V. (2017);
• λ1(Ω) + · · · + λk(Ω) - Mazzoleni-Terracini-V. (2017); Kriventsov-Lin (2017);

Caffarelli-Shahgholian-Yeressian (2017); Trey (2020); preliminary results by:
Bucur-Mazzoleni-Pratelli-V. (2013); David-Toro (2013).
• λk(Ω) and more general functionals: Kriventsov-Lin (2018) – it is only known

that the "flat" free boundaries are smooth; cusps are not excluded.

Main steps in proving the regularity of the free boundary:
• Prove that the optimal sets Ω and the state functions uΩ solve

an overdetermined boundary value problem (a free bounday problem).
For instance, in the case of λ1,

−∆u = λu in Ω , |∇u| = 1 on ∂Ω ∩D , |∇u| ≥ 1 on ∂Ω ∩ ∂D.

Briançon-Lamboley (2011), Russ-Trey-V. (2017).

• Prove that the if (Ω,uΩ) solves the free boundary problem, then ∂Ω is smooth.
Alt-Caffarelli (1981), De Silva (2010), Chang Lara-Savin (2017).
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INTEGRAL FUNCTIONALS

Minimize F(Ω) =

∫
Ω

j(uΩ, x) dx among all Ω ⊆ D, |Ω| ≤ 1,

where uΩ = 0 on ∂Ω, and −∆uΩ = f (x) in Ω.

Why integral functionals ? Models in Physics and Engineering.

Existence of optimal sets:
Existence theory for D bounded and j monotone: Buttazzo-Dal Maso (1993),
and when j is a small perturbation of a monotone functional: Buttazzo-V. (2015),
while in general, there are counterexamples: Bucur-Buttazzo (2005).

What about the regularity of the free boundary ?



KNOWN RESULTS I. ENERGY FUNCTIONALS AND POSITIVE SOLUTIONS

Minimize F(Ω) =

∫
Ω
−1

2
f (x)uΩ dx + |Ω| among all sets Ω ⊆ D ,

where uΩ = 0 on ∂Ω , −∆uΩ = f (x) in Ω , and where we assume f ≥ 0.

This problem is equivalent to minimizing

1
2

∫
D
|∇u|2 dx−

∫
D

f (x)u dx + |{u > 0}| among all functions u ∈ H1
0(D).

The Lipschitz continuity of a minimizer u ,
and

the regularity of the positivity set {u > 0} ,

then follow from: Alt-Caffarelli (1981), Weiss (1999), Chang-Lara-Savin (2017),
Caffarelli-Jerison-Kenig (2004), Jerison-Savin (2015).



KNOWN RESULTS I. ENERGY FUNCTIONALS AND POSITIVE SOLUTIONS

To prove the equivalence of the two problems, take any v ∈ H1
0(D). Then:

1
2

∫
D
|∇v|2 −

∫
D

f (x)v =
1
2

∫
D
|∇v+|2 +

1
2

∫
D
|∇v−|2 −

∫
D

f (x)
(
v+ − v−

)
≥ 1

2

∫
D
|∇v+|2 −

∫
D

f (x)v+

≥ 1
2

∫
D
|∇w|2 −

∫
D

f (x)w = −1
2

∫
D

f (x)w,

where w is the solution to −∆w = f in {v > 0} , w ∈ H1
0({v > 0}). Finally

1
2

∫
D
|∇v|2−

∫
D

f (x)v + |{v > 0}| ≥ −1
2

∫
D

f (x)w + |{w > 0}|

≥ −1
2

∫
D

f (x)uΩ + |Ω| = 1
2

∫
D
|∇uΩ|2 −

∫
D

f (x)uΩ + |{uΩ > 0}|.



KNOWN RESULTS II. ENERGY FUNCTIONALS AND SIGN-CHANGING SOLUTIONS

Minimize F(Ω) =

∫
Ω
−1

2
f (x)uΩ dx + |Ω| among all sets Ω ⊆ D ,

where uΩ = 0 on ∂Ω and −∆uΩ = f (x) in Ω .

This problem is equivalent to minimizing

1
2

∫
D
|∇u|2 dx−

∫
D

f (x)u dx + |{u 6= 0}| among all functions u ∈ H1
0(D).

The Lipschitz continuity of a minimizer u ,
and

the regularity of the positivity set {u > 0} ,

follow from: Alt-Caffarelli-Friedman (1983), De Philippis-Spolaor-V. (2021),

...and all the results for the "one-phase" case f ≥ 0.



THE NEW RESULT FOR INTEGRAL FUNCTIONALS

The problem: Minimize F(Ω) =

∫
Ω
−g(x)uΩ dx + |Ω| among all sets Ω ⊆ D ,

where uΩ = 0 on ∂Ω and −∆uΩ = f (x) in Ω .

Theorem. (Buttazzo-Maiale-Mazzoleni-Tortone-V. and Maiale-Tortone-V.).

Assume that 0 ≤ c f (x) ≤ g(x) ≤ C f (x), for some 0 < c ≤ C

... and suppose that f , g ∈ C∞(Rd) and that ∂D is C1,α.

Then, the boundary ∂Ω of any optimal set Ω ⊆ D can be decomposed as:

∂Ω = Reg(∂Ω) ∪ Sing(∂Ω) ,

where: • Reg(∂Ω) is a C1,α manifold;
• Sing(∂Ω) is a closed set of Hausdorff dimension at most d− 5.



REGULARITY OF uΩ – PART I – LIPSCHITZ CONTINUITY

The optimal shapes are "outwards-minimizing" or "supersolutions". Let B ⊇ Ω.

−
∫

g(x)uΩ + |Ω| ≤ −
∫

g(x)uB + |B| ⇒
∫

g(x)
(
uB − uΩ

)
≤ |B \ Ω|;

c
∫

f (x)
(
uB − uΩ

)
≤
∫

g(x)
(
uB − uΩ

)
≤ |B \ Ω|;

c
∫

f (x)
(
uB − uΩ

)
≤ |B \ Ω| ⇒ −

∫
f (x)uΩ +

1
c
|Ω| ≤ −

∫
f (x)uB +

1
c
|B|.

Thus, by Bucur-Mazzoleni-Pratelli-V. (2013) and Briançon-Hayouni-Pierre (2005),

uΩ is Lipschitz and Ω is open.



REGULARITY OF uΩ – PART II – NON-DEGENERACY

The optimal shapes are "inwards-minimizing" or "subsolutions". Let ω ⊆ Ω.

−
∫

g(x)uΩ + |Ω| ≤ −
∫

g(x)uω + |ω| ⇒ |Ω \ ω| ≤
∫

g(x)
(
uΩ − uω

)
;

|Ω \ ω| ≤
∫

g(x)
(
uΩ − uω

)
≤ C

∫
f (x)

(
uΩ − uω

)
;

|Ω \ ω| ≤ C
∫

f (x)
(
uΩ − uω

)
⇒ −

∫
f (x)uΩ +

1
C
|Ω| ≤ −

∫
f (x)uω +

1
C
|ω|.

Then, by Bucur-V. (2011), uΩ is non-degenerate: there is η > 0 such that

‖u‖L∞(Br) ≤ ηr ⇒ u ≡ 0 in Br/2.



FIRST ORDER VARIATION (SHAPE DERIVATIVE)
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First order variation

Let ξ ∈ C∞c (B1;Rd) be a smooth vector field.

Let Ωt := (Id + tξ)(Ω).

Let ut ∈ H1
0(Ωt) be the solution to:

−∆ut = f (x) in Ωt, ut = 0 on ∂Ωt

Calculate δF(Ω)[ξ] :=
d
dt

∣∣∣
t=0
F(Ωt) =

d
dt

∣∣∣
t=0

∫
Ωt

j(uΩt , x) dx.

For simplicity: F(Ωt) =

∫
Ωt

j(uΩt , x) dx = −
∫

Ωt

g(x)uΩt dx



FIRST ORDER VARIATION (SHAPE DERIVATIVE)
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FORMAL COMPUTATION OF THE FIRST ORDER VARIATION 1/2

Recall that ut ∈ H1
0(Ωt) solves:

−∆ut = f (x) in Ωt, ut = 0 on ∂Ωt

Let u′ be the derivative of ut at t = 0. Then,

∆u′ = 0 in Ω , u′ = −ξ · ∇uΩ on ∂Ω.

Let vΩ be the solution of

−∆vΩ = g(x) in Ω , vΩ = 0 on ∂Ω.

Then
d
dt

∣∣∣
t=0

∫
−g(x)uΩt dx = −

∫
Ω

u′g(x) dx =

∫
Ω

u′∆vΩ dx

= −
∫

Ω
∇u′ · ∇vΩ dx +

∫
∂Ω

u′
∂vΩ

∂n
=

∫
∂Ω

u′
∂vΩ

∂n



FORMAL COMPUTATION OF THE FIRST ORDER VARIATION 2/2

δF(Ω)[ξ] =

∫
∂Ω

u′
∂vΩ

∂n
=

∫
∂Ω

(−ξ · ∇uΩ)
∂vΩ

∂n
=

∫
∂Ω

(−ξ · n)
∂uΩ

∂n
∂vΩ

∂n

If Ω minimizes F(Ω) = −
∫

Ω
g(x)u dx among all sets of measure |Ω| = m,

then Ω, uΩ and vΩ are solutions to the system

Ω = {u > 0} = {v > 0}

−∆u = f (x) in Ω

−∆v = g(x) in Ω

∂u
∂n

∂v
∂n

= c on ∂Ω



FORMAL COMPUTATION OF THE FIRST ORDER VARIATION 2/2
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PART II

Free boundary systems
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v
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u = v = 0

14



GENERAL FREE BOUNDARY SYSTEMS

Given:
− a ball B1 ⊆ Rd;

− a function G : ∂B1 → R2,

− an open set Ω ⊆ B1,

− continuous functions u, v : B1 → R,

We say that (u, v,Ω) is a solution of

the free boundary system
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Ω = {u > 0} = {v > 0}

∆u = ∆v = 0 in Ω ∩ B1

G(|∇u|, |∇v|) = 1 on ∂Ω ∩ B1



GENERAL FREE BOUNDARY SYSTEMS

... if
for every x0 ∈ ∂Ω ∩ B1;

at which Ω admits one-sided tangent ball

there are a unit vector ν ∈ Rd;

and constants α > 0 and β > 0

such that:
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G(α, β) = 1 and

 u(x) = α
(
(x− x0) · ν

)
+

+ o(|x− x0|)

v(x) = β
(
(x− x0) · ν

)
+

+ o(|x− x0|).

More generally, we can say that at x0 there are one-homogeneous blow-ups of u
and v of the form u0(x) = α(x · ν)+ and v0(x) = β(x · ν)+ with G(α, β) = 1.
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WHAT IS KNOWN ABOUT THE FREE BOUNDARY SYSTEMS ?

The only system studied:
Ω = {u2 + v2 > 0}

∆u = ∆v = 0 in Ω ∩ B1

|∇u|2 + |∇v|2 = 1 on ∂Ω ∩ B1
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Associated functional:
∫

B1

|∇U|2 dx + |{|U| > 0}|, where U = (u, v).

• Caffarelli-Shahgholian-Yeressian, Mazzoleni-Terracini-V., Kriventsov-Lin (2016),
(flat free boundaries are C1,α by assuming u > 0, v > 0 in Ω);
• Spolaor-Velichkov (2017) - 2D, epiperimetric inequality, analysis of singularities;
• Kriventsov-Lin (2017) - in any dimension, no sign assumption;
•Mazzoleni-Terracini-Velichkov (2018), flat NTA boundaries are C1,α;
• De Silva-Tortone (2020), flat free boundaries are C1,α.



MAIN THEOREM

Theorem ( Maiale-Tortone-Velichkov, 2021 ).
Let u, v : B1 → R be non-negative continuous
functions, and Ω ⊆ B1 be an open set. Suppose that:
• (u, v,Ω) is a viscosity solution to

Ω = {u > 0} = {v > 0}

−∆u = f and −∆v = g in Ω ∩ B1

|∇u||∇v| = 1 on ∂Ω ∩ B1

• (u, v) is ε-flat for some ε < ε0, that is,

(x·ν−ε)+ ≤ u(x) ≤ (x·ν+ε)+ and (x·ν−ε)+ ≤ v(x) ≤ (x·ν+ε)+ in B1.
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Then, ∂Ω is C1,α-regular in B1/2.



IMPROVEMENT OF FLATNESS

Aim: Prove the following improvement of flatness theorem:
Lemma: Let u, v : B1 → R be non-negative continuous
functions, and Ω ⊆ B1 be an open set. Suppose that:
• (u, v,Ω) is a viscosity solution to

Ω = {u > 0} = {v > 0}

−∆u = f and −∆v = g in Ω ∩ B1

|∇u||∇v| = 1 on ∂Ω ∩ B1

• (u, v) is ε-flat for some ε < ε0, that is,

(x·ν−ε)+ ≤ u(x) ≤ (x·ν+ε)+ and (x·ν−ε)+ ≤ v(x) ≤ (x·ν+ε)+ in B1.
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Then, the rescalings ur(x) = 1
r u(rx) and vr(x) = 1

r v(rx) are ε/2 flat in B1.



STRATEGY OF THE PROOF

A general strategy for proving improvement-of-flatness (De Silva, (2010)).

• Consider a sequence (un, vn,Ωn) of εn-flat solutions.

(xd−εn)+ ≤ un(x) ≤ (xd +εn)+ and (xd−εn)+ ≤ vn(x) ≤ (xd +εn)+ in B1.

• Prove that in any Br(x0) ⊆ B1 the oscillation of

ũn(x) :=
un(x)− xd

εn
and ṽn(x) :=

vn(x)− xd

εn

decays from Br(x0) to Br/2(x0).

• Deduce that the sequences ũn and ṽn converge to some functions ũ∞ and ṽ∞.

• Prove that ũ∞ and ṽ∞ are (viscosity) solutions of a PDE.

• Use the uniform estimates for ũ∞ and ṽ∞ to obtain contradiction.



AN EXERCICE ABOUT HARMONIC FUNCTIONS

Remark. There is a constant c ∈ (0, 1) such that:

if h is a harmonic function in B1, then osc
(
h; B1/2

)
≤ (1− c) osc(h; B1).

Proof. Let
sup

B1

h = M and inf
B1

h = m.

Case 1. h(0) ≥ M + m
2

. Then:{
w(x) := h(x)−m is harmonic and nonnegative in B1

w(0) = h(0)−m ≥ M+m
2 −m = M−m

2 = 1
2 osc(h; B1).

Harnack⇒ inf
B1/2

w ≥ c osc(h; B1); on the other hand sup
B1/2

w ≤M−m = osc(h; B1)...



PARTIAL HARNACK INEQUALITY

Lemma (Partial Harnack): Let u, v : B1 → R be non-negative continuous func-
tions, and Ω ⊆ B1 be an open set. Suppose that (u, v,Ω) is a solution to

Ω = {u > 0} = {v > 0}

∆u = ∆v = 0 in Ω ∩ B1

|∇u||∇v| = 1 on ∂Ω ∩ B1

Suppose that there are constants A and B such that 0 ≤ B− A ≤ ε0

(xd + A)+ ≤ u(x) ≤ (xd + B)+ and (xd + A)+ ≤ v(x) ≤ (xd + B)+ in B1.

Then, there are A ≤ a < b ≤ B such that b− a ≤ (1− c)(B− A) and

(xd + a)+ ≤ u(x) ≤ (xd + b)+ and (xd + a)+ ≤ v(x) ≤ (xd + b)+ in Br.


