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SHAPE OPTIMIZATION
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\.

A shape optimization problem is a variational problem of the form

min {]-'(Q) Qe A}.

~

r

The functional F(2) depends on the solution of a PDE in €, for instance

e F(Q) = — / u(x) dx, where u is the solution to
Q
—Au=1 in Q, u=0 on 0%
o F(Q2) = / |Vu|? dx, where u is the solution to
Q

—Au=Au in €, u=0 on 01, /uzdx:l.
Q

e and might also involve quantities as the perimeter or the measure of ).




SHAPE OPTIMIZATION

~

A shape optimization problem is a variational problem of the form

min {]—'(Q) Qe A}.

The family A of admissible sets can be:
e all open sets contained in some “box" D C R? or in R itself;
e all measurable sets contained in some “box" D C R or in R itself;
e all sets of measure at most 1 contained in some “box" D C R? or in R? itself;
e all sets of fixed perimeter contained in some “box" D C R? or in R itself;
e all convex sets contained in some “box" D C R? or in R itself;

o sets satisfying exterior ball condition;

e sets with uniformly Lipschitz boundary...




SHAPE OPTIMIZATION
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A shape optimization problem is a variational problem of the form

min {.7:(@) Qe A}.

\
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The most studied ones are:
e spectral functionals F(2) = F(A1(22),..., \(2));

e integral functionals F(2) = / j(uq, x)dx , where ugq is the solution of
Q

—Au=f in €, u=0 on 09,

where f(x) is a given function.

e in both cases A is the family of all measurable sets with measure < m,
which are contained in some “box" D C R? or in R4,

\.




SPECTRAL FUNCTIONALS: WHY?

Minimize F(2) =F(A\(2),..., () amongall Q C D, |Q] <1,

where );(Q2) are the eigenfunctions of the Dirichlet Laplacian on €2.

Why they are interesting?
e History: easy answer when F(2) = \;(Q) and D = R? (Faber-Krahn);
e also when F(Q) = A\»(Q) and D = R? (Krahn-Szego);
e Physical interpretation: Can one hear the shape of the drum ?

e Geometry of the domain <—> behavior of the eigenfunctions




SPECTRAL FUNCTIONALS: WHAT IS KNOWN?

Minimize F(2) = F(A(Q),..., \(Q2)) amongall Q C D, [Q] <1,

where );(Q2) are the eigenfunctions of the Dirichlet Laplacian on (2.

Existence of optimal sets:
e Robust existence theory when D is bounded: Buttazzo-Dal Maso (1993).
e Existence in R?: Bucur and Mazzoleni-Pratelli (2011).




SPECTRAL FUNCTIONALS: WHAT IS KNOWN?

r

Minimize F(2) = F(A(Q),..., \(Q2)) amongall Q C D, [Q] <1,

where );(Q2) are the eigenfunctions of the Dirichlet Laplacian on (2.

\.
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Regularity of the free boundary:

e \1(2) and D bounded: Briangon-Lamboley (2011), Russ-Trey-V. (2017),
using Alt-Caffarelli (1981), De Silva (2010), Chang Lara-Savin (2017), Weiss (2000);

o F(2) = A2(Q2) + |2 and D is bounded: Mazzoleni-Trey-V. (2020),
using Bucur-V. (2011), De Philippis-Spolaor-V. (2020) and Russ-Trey-V. (2017);

e \(Q) + -+ + MN(Q) - Mazzoleni-Terracini-V. (2017); Kriventsov-Lin (2017);
Caffarelli-Shahgholian-Yeressian (2017); Trey (2020); preliminary results by:
Bucur-Mazzoleni-Pratelli-V. (2013); David-Toro (2013).

¢ \(2) and more general functionals: Kriventsov-Lin (2018) — it is only known
that the "flat" free boundaries are smooth; cusps are not excluded.




SPECTRAL FUNCTIONALS: WHAT IS KNOWN?
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Minimize F(2) = F(A(Q),..., \(Q2)) amongall Q C D, [Q] <1,

where );(Q2) are the eigenfunctions of the Dirichlet Laplacian on (2.

\.

Main steps in proving the regularity of the free boundary:

e Prove that the optimal sets {2 and the state functions ug solve
an overdetermined boundary value problem (a free bounday problem).
For instance, in the case of \q,

—Au=Xu in Q, IVu|=1 on 90QND, IVu| >1 on 0QNaD.

Briangon-Lamboley (2011), Russ-Trey-V. (2017).

e Prove that the if (2, uq) solves the free boundary problem, then 052 is smooth.
Alt-Caffarelli (1981), De Silva (2010), Chang Lara-Savin (2017).




INTEGRAL FUNCTIONALS

~

Minimize F(Q2)= /j(ug,x) dx amongall Q C D, |Q] <1,
Q

where uq =0 on 090, and —Aug =f(x) in Q.

Why integral functionals ? Models in Physics and Engineering.

Existence of optimal sets:
Existence theory for D bounded and j monotone: Buttazzo-Dal Maso (1993),
and when j is a small perturbation of a monotone functional: Buttazzo-V. (2015),

while in general, there are counterexamples: Bucur-Buttazzo (2005).

What about the regularity of the free boundary ?




KNOWN RESULTS I. ENERGY FUNCTIONALS AND POSITIVE SOLUTIONS

~

1
Minimize F(2) = / —Ef(x)ug dx + |)| amongallsets Q C D,
Q

where ug =0 on 002, —Aug=f(x)in Q, and where we assume f > 0.

\ J
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This problem is equivalent to minimizing
1
5 /D |Vul? dx — /Df(x)u dx+ |{u >0}| amongall functions u € H}(D).

The Lipschitz continuity of a minimizer u,
and
the regularity of the positivity set {u > 0},

then follow from: Alt-Caffarelli (1981), Weiss (1999), Chang-Lara-Savin (2017),
Caffarelli-Jerison-Kenig (2004), Jerison-Savin (2015).




KNOWN RESULTS I. ENERGY FUNCTIONALS AND POSITIVE SOLUTIONS
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To prove the equivalence of the two problems, take any v € H}(D). Then:

;/D\Vvlz—/Df(x)v:;/D\VUHZ—F;/D|VU_|2—/Df(x)(v+—v_)
> 5 [ 190l = [ .
> 5 [ vl = [ e =3 [ s

where w is the solutionto —Aw =f in {v >0}, w € H}({v > 0}). Finally

5 190 [ fo+ o> 0} = = [ syt (w0}
> =5 [ a1 =3 [ [Vuaf = [ feua -+ Iua >0}




KNOWN RESULTS II. ENERGY FUNCTIONALS AND SIGN-CHANGING SOLUTIONS

~

1
Minimize F(2) = / —Ef(x)ug dx + |)| amongallsets Q C D,
Q

where uqg=0on 9Q and —Aug=f(x) in Q.

\.

4 A

This problem is equivalent to minimizing
1
2/ |Vu|? dx — /f(x)u dx+ |{u#0}| among all functions u € H}(D).
D D

The Lipschitz continuity of a minimizer u,
and

the regularity of the positivity set {u > 0},
follow from: Alt-Caffarelli-Friedman (1983), De Philippis-Spolaor-V. (2021),

...and all the results for the "one-phase" case f > 0.




THE NEW RESULT FOR INTEGRAL FUNCTIONALS

s N

The problem: Minimize F(2) = / —g(x)uqdx + (2| among all sets 2 C D,
Q

where ug=0on 02 and —Aug=f(x) in Q.

\ J
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Theorem. (Buttazzo-Maiale-Mazzoleni-Tortone-V. and Maiale-Tortone-V.).
Assume that 0 < cf(x) < g(x) < Cf(x), forsome 0 <c<C

.. and suppose that f, g € C>(R?) and that 9D is C1-°.
Then, the boundary 052 of any optimal set 2 C D can be decomposed as:

0 = Reg(09Q2) U Sing(09) ,

where: e Reg(99) is a C** manifold;

e Sing(012) is a closed set of Hausdorff dimension at most 4 — 5.




REGULARITY OF uq — PART I — LIPSCHITZ CONTINUITY

4 A

The optimal shapes are "outwards-minimizing" or "supersolutions". Let B O ().

~ [suo+191 <~ [gun+ 18] =[5 —uo) < B\ 9
c/f(x)(ug—ug) < /g(x)(ug—ug) < |B\ Q;

 [Fun—uo) < B\ =~ [Feua+ 100 <~ [ fxun + B

Thus, by Bucur-Mazzoleni-Pratelli-V. (2013) and Briangon-Hayouni-Pierre (2005),

uq is Lipschitz and (2 is open.

\ J




REGULARITY OF uq — PART II - NON-DEGENERACY

r

The optimal shapes are "inwards-minimizing" or "subsolutions". Let w C

Q.

- [stmariof< - [gtom ol = I0\wl< [ g o - n);

12\ w| < /g(x)(ug — ) < C/f(X)(uQ —u);

@\l <€ [fon-uw) = - [fua+ o< - [fou+

Then, by Bucur-V. (2011), uq, is non-degenerate: there is > 0 such that

|ullpsog,y <mr = u=0in B, .

le

~




FIRST ORDER VARIATION (SHAPE DERIVATIVE)

~

First order variation

Let ¢ € C°(B1;R?) be a smooth vector field.
Let Q; := (Id + t£)(92).

Letu; € H(l](Qt) be the solution to:
—Auy =f(x) in u=0 on 9




FIRST ORDER VARIATION (SHAPE DERIVATIVE)

s N

First order variation

Let ¢ € C°(B1;R?) be a smooth vector field.
Let Q; := (Id + t£)(92).

Letu; € H(l](Qt) be the solution to:
—Auy =f(x) in u=0 on 9
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Calculate 6 F(Q)[¢] = ZLZO}'(QQ _ 4

dt ‘t:o Q ](thv x) dx.

For simplicity: F(u) = | jlug,x)dx=— [ g(x)uq,dx
Qt Qt




FORMAL COMPUTATION OF THE FIRST ORDER VARIATION 1/2

Recall that u; € H}(€) solves:
Let u/ be the derivative of u; at t = 0. Then,

Let v be the solution of

d - / o
dt’t:o/ §(xjug, dx = /ng<x)dx/ﬂuAUde

~

—Aup=f(x) in Q, uy=0 on O

Au'=0 in Q, u' =-¢-Vug on 00.

—Avg =g(x) in Q, vo=0 on ON.

:—/Vu’-Vdex+/ u’an:/ u’%
¢ o0 On s On




FORMAL COMPUTATION OF THE FIRST ORDER VARIATION 2/2

[ w0 [ (Ceovug PP = [ (e PHa O
[ sr@i = [ g = [ e vu = [ (emGR




FORMAL COMPUTATION OF THE FIRST ORDER VARIATION 2/2

~

[ w?e [ (Ceovug P = [ (e PHa D00
sr@i = [ g = [ e vu = [ (emGR

If Q@ minimizes F(Q) = — / g(x)udx among all sets of measure |Q2| = m,
Q

then Q, uq and vg are solutions to the system

(Q={u>0}={v>0}
—Au=f(x) in Q
—Av=g(x) in

3u@_

%871—0 on 0f)




PART II

Free boundary systems & @



GENERAL FREE BOUNDARY SYSTEMS
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Given:
— a ball B; C RY%;

— a function G : 0B; — R?,

— an open set 2 C By,

— continuous functions u,v : By - R, & @

We say that (1,0, (2) is a solution of
the free boundary system
Q={u>0}={v>0}
Au=Av=0 in QNB;
G(|Vul,|Vo]) =1 on 0QNB;




GENERAL FREE BOUNDARY SYSTEMS

o if
for every xo € 02N By;

‘ at which Q@ admits one-sided tangent ball ‘

there are a unit vector v € R%;
and constants « > Qand 5 > 0 m @

such that:

u(x) = a ((x —xo) - v), + o(]x — xo|)

G(a,f) =1 and
o(x) = B ((x —x0) - ), + o(|x — xo).

N




GENERAL FREE BOUNDARY SYSTEMS

o if
for every xo € 02N By;

‘ at which Q@ admits one-sided tangent ball ‘

there are a unit vector v € R%;
and constants « > Qand 5 > 0 m @

such that:

u(x) = a ((x —xo) - v), + o(]x — xo|)
G(o, ) =1 and
o(x) = B ((x —x0) - ), + o(|x — xo).

More generally, we can say that at x( there are one-homogeneous blow-ups of u
| and v of the form ug(x) = a(x - v)1 and vo(x) = B(x - v)+ with G(a, B) = 1.

N




WHAT IS KNOWN ABOUT THE FREE BOUNDARY SYSTEMS ?

\
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The only system studied:

Q={u?+v*>0}

Au=Av=0 in QNB \@
|Vul?+ Vo[> =1 on 9QNB;

Associated functional: / IVU|>dx + |{|U| > 0}|, where U = (u,0).
By

o Caffarelli-Shahgholian-Yeressian, Mazzoleni-Terracini-V., Kriventsov-Lin (2016),
(flat free boundaries are C1® by assuming u > 0, v > 0 in ();

e Spolaor-Velichkov (2017) - 2D, epiperimetric inequality, analysis of singularities;
e Kriventsov-Lin (2017) - in any dimension, no sign assumption;

o Mazzoleni-Terracini-Velichkov (2018), flat NTA boundaries are C1:;

e De Silva-Tortone (2020), flat free boundaries are C1:2.




MAIN THEOREM
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Theorem (Maiale-Tortone-Velichkov, 2021).
Let u,v : B — R be non-negative continuous
functions, and €2 C By be an open set. Suppose that:

e (1,v,Q) is a viscosity solution to
Q={u>0}={v>0}
—Au=f and —Av=g in QNB \
Vul[Vo|=1 on 8QN B %@
e (u,0) is e-flat for some ¢ < ¢, that is,

(xv—e)y <u(x) < (xv+e);r and (xv—e)y <v(x) < (xv+e); in Bj.

Then, 9 is C*-regular in By .




IMPROVEMENT OF FLATNESS
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Aim: Prove the following improvement of flatness theorem:
Lemma: Let u,v : Bj — R be non-negative continuous

functions, and 2 C By be an open set. Suppose that:

o (1,v,) is a viscosity solution to

Q={u>0}={v>0}
—Au=f and —-Av=g in QNB;

[Vu||[Vo|=1 on 02N B m @

e (u,v) is e-flat for some ¢ < ¢, that is,

(xv—e)y <u(x) < (xv+e);y and (xv—e); <v(x) < (xv+e)y in Bj.

Then, the rescalings u,(x) = %u(rx) and v,(x) = %v(rx) are ¢/2 flat in B;.

\. J




STRATEGY OF THE PROOF
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A general strategy for proving improvement-of-flatness (De Silva, (2010)).

e Consider a sequence (uy, vy, (2,) of £,-flat solutions.
(xg—en)+ <up(x) < (xg+en)+ and (xg—en)+ <vu(x) < (x5+e4)4+ in By,

e Prove that in any B,(xp) C B; the oscillation of

Uy (x) == n(x) = x4 and v,(x) := on(X) — X

En €n

decays from B,(xp) to B /»(xo)-

e Deduce that the sequences 1, and v, converge to some functions o, and V.
e Prove that 1, and v are (viscosity) solutions of a PDE.

e Use the uniform estimates for 1., and U, to obtain contradiction.

\ J




AN EXERCICE ABOUT HARMONIC FUNCTIONS

~

Remark. There is a constant ¢ € (0, 1) such that:

if  is a harmonic function in By, then osc(/; B.),) < (1 — ¢) osc(h; By).

Proof. Let
suph =M and infh =m.
By By
M
Casel. h(0) > ;_ ™ The

w(x) := h(x) —m is harmonic and nonnegative in By
w(0) = h(0) —m > M — gy = Mo — Lose(h; By).

Harnack = inf w > cosc(h; B1); on the other hand supw < M — m = osc(h; By)...

Bl/z Bl/Z




PARTIAL HARNACK INEQUALITY

Lemma (Partial Harnack): Let u,v : By — R be non-negative continuous func-
tions, and €2 C By be an open set. Suppose that (1, v, §2) is a solution to

Q={u>0}={v>0}
Au=Av=0 in QNB
|Vu|[Vo| =1 on 0QNB;
Suppose that there are constants A and B suchthat 0 <B - A < ¢y
(g +A)+ Su(x) <(xy+B)y and (xyg+A)4 <o(x) < (xa+B)y inBy.
Then, thereare A <a <b<B suchthat b—a<(1—-¢)(B—A) and

(xg+a)+ <u(x) <(xg+b)y and (vg+a); <o(x) < (xa+0b); inB,.




