Optimal design problems
involving the coeflicients
and the domain where the equation 1s posed.
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Optimal design problem
Assume: O € RN open, F:Q X R — R such that

F(.,s) measurablein (), Vs € R,
F(x,.) continuous in R, a.e x € (),

Ir € L} (Q),y = 0 such that
|IF(x,8)] <r(x)+yls|?, Vs€ R, ae x € Q.
feH1(Q), 0<a<p, KqKr>0,
min j F(x,u)dx
Q

(—div ((a)(wa + ,B)(wﬁ) Vu) =f In w, U wg,
4 u=00n6(a)aUa)3),
we, wg C () measurable, wy, U wpg open

\ Wy Nwg =0, |we| < kg |wp| < Kg.



The problem has been widely studied when

Control coefficients problem:
we U wg = (L

The open set where the equation 1s posed 1s known. The most classical results are
due to F. Murat, L.Tartar (Allaire, Cherkaev, Conca, Kohn, Lipton, Lurie...).

Control problem in the domain:
a=2_.
The control variable is the set where the equation 1s posed. The most classical

results are due to G. Buttazzo, G. Dal Maso.

In both cases 1s know that the problem has no solution in general. A relaxation 1s
needed.



Namely: Let us try to use the direct method of the Calculus of Variations.

Take wg, a)g satisfying the constrains such that
f F(x,u,)dx — Infimum of the problem,
Q
U, solution of
—div ((a)(wg + ,B)(wrﬁz) Vun) =f in wj VU a)g
u, =0 on d(wy U wg).
Extending u,, by zero outside wgz U wg,
Xop = 6o in L7(Q) =+
Xop = Op in L*(Q) —x
U, = u in H}(Q)
(a)(wg + ,B)(wﬁ) Vu, = o inLZ2(Q)N
jF(x, U, )dx = J F(x,u)dx
Q Q
with 6,, 0z € L*(9;]0,1]).



In general Aw,, wg with
O = Xw, Op= Xwpgs

Moreover
Xon = 0 In L*(Q) —x, Xop = Op in L* () —x
U, = u in H}(Q)
(a)(wg + ,B)(wg) Vu, = o inL2(Q)N,
does not imply
o= (a@a + ,BHﬁ)Vu.
fwg Uwg =Q= —dive = f in Q

Consequence: The relaxation process is linked to the passage to the limit in a
sequence of PDE problems. This is the goal of the homogenization theory.



Classical results:

Theorem (S. Spagnolo 1968, Extensions F. Murat, L. Tartar 1974)

A, € L2 (Q)N*N symmetric, Eig(4,) C [a, B]. Then, for a subsequence,
JA € L®(Q)N*N symmetric, Eig(A) < [a, B], such that

Vf € H™1(Q) the solution u,, of

—div(4,,Vu,) = f in Q)

{ u, =0 on 0Q,
satisfies

U, = uin H}(Q),
u solution of
{—diV(AVU) =f inQ
u =0 on 9.

We write
A, = A.



Theorem (L. Tartar 1985, K.A. Lurie, A.V. Cherkaev 1986, N = 2)
IfA, = AxXw, T ,BXQ\u)nr Xw, =0 in L*(Q) —*, 0 € L”(Q;[0,1]).

Then the eigenvalues /11, ., Ay of A satisfy u () <A <u*(6)

N—1
Z/l —a ,u (9)—a u=(0) —a

l

N—1
B — /11_[)’ M(9) ﬁ ut 6y

=1

. -1

6
with u=(0) = (E + T) , U (0)=0a+(1-06)p,

0 represents the proportion of material @ used in the homogenized mixture.



Remark: For our purpose it is enough to know V¢ € RY

{A&: A homogenized matrix}

@) +u () ptO) —p (8
:B<u();ru()€’u()2u()|€|)

- {Af :A symmetric,  Eig(4) < [u~ (Q)’“+(Q)]}'

The set
{A&: A homogenized matrix}

is known for more general mixtures (L. Tartar 1997).



Definition:

M (Q) = {v € Borel nonnegative measure, not necessarily Radon
vanishing on the sets of null capacity}

cap(w) = min {j |Vul?dx:u € Hi(£2),u = 1 in a neighbourhood ofa)}.
Q

Recall: A function of H1(Q) has a representative, well defined up to a set of
null capacity.
The Hausdorff dimension of a set of null capacity is N — 2.

Ifv e M(Q) then, 3C,, c Q quasi-closed
(Ve > 0, 3F c Q closed, cap(FAC,) < ¢€)
such that
v(B) =00, VB Borel, cap(BNC,) >0
Q\ C, is. o-finite for v.



Theorem (G. Dal Maso, U. Mosco 1987,
previous result D. Cioranescu F. Murat 1982,
extensions G. Dal Maso, A. Garroni 1994)

wy, C Q, open sets, A € L* (Q)N*N symmetric uniformly elliptic. Then, for a
subsequence, 3v € M () such that Vf € H™1(Q), u, solution of

{—diV(AVun) =f mnw,
u, =0 on dw,,

satisfies u, — u in H} (), u solution of

{—diV(AVU) +vu=f inQ
u =0 on 0dQ,

in the variational sense (it is not a problem in the distributions sense)

( u € HA(Q) N L2(Q)
<fAVu-Vvdx+juvdv = (f,v)
Q Q
\ vv € H3 () n L3(Q).




Remark: Problem
{—div(AVu) = f inw
u=0 on Jdw,
can be written as
{—diV(AVu) +vu = f in{)

u =0 on 01,
defining
(0 ifcap(B\w) =0
v(B) = {+oo if cap(B \ ) > 0, VB c (), Borel.
(thusv = C,)

In this form the equation is stable by homogenization.



Theorem (G. Dal Maso, F. Murat, 2004,
extensions to nonlinear problems C. Calvo-Jurado, J. Casado-Diaz 2002).

H
A, — AenQ,v, € M(Q), then, for a subsequence v € M ({1), such that Vf €
H~1(Q) the solutions u,, of

{—diV(AnVun) +v,u, = f inQ
u, = 0 on 01,

converge weakly in H3 () to u solution of

{—diV(AVU) +vu=f inQ
u =0 on 0Q.



Counterexample

min] lu —ugy|?dx
Q

(—div ((a)(wa + ,8)(0)3) Vu) =f In w, U wg,
{ u = 0ond(w, Vwg),
wq, wg C () measurable

\ W, Nwg =0, |We | < kg, |wp| < Kp.
ug4 solution of

—div(AVu,) +vuy = f 1n
ug =0 on 01,

For A, f conveniently chosen.



Theorem: A relaxed formulation of

minj F(x,u)dx
Q

—div ((a)(wa + 'BXwB) Vu) =f In w, Uwg

< u=20 on d(w, Uwp)
Wq, wg C ) measurable, w, U wpg open, wg Nwg = @
\ lwel < kg, |wp| < Kp.
1s given by

minJ F(x,u)dx
Q

( —div(AVu) +vu=f 1 Q
u=0 on 09, 6,60z €L*(Q;[01]), Ae€L°(@Q)"" symmetric, VEM (Q)
0, +0s<1, 6,+6;=1inQ\C,, Eig(4) € [u(0,),u"(8,)] ae.in Q\C,

j 0,dx < kg4, feﬁdx < Kg.
\ Q Q

A




Remark: 3 a solution (Qa, 0p, A, v, u) of the relaxed problem such that
(64, 4,v,u) solves

min f F(x,u)dx
Q

( —div(AVu) +vu = in Q
u=0on 09, 6, €L”Q\C,;[01]), A€L®Q\C)"*N symmetric, vVEM (Q)
{ Big(A) € [u™(0,), u™(0,)] ae.in Q\C,

Q| —Kp < J O,dx < K,
Q\Cy

\
Hﬁ =(1- Ha)XQ\C’V-

Optimality Conditions

Assume k € L?(Q), 1 > 0.
F(.,0) € L}(Q)
F(x,.) € C}(R) a.e. x €0
|0sF (x,s)| < k(x)+Als| Vs€eER, ae. x€NAQ.



Theorem: Assume (8,, A, v, 1) solution. Define the adjoint state g by
—div(AVq) + vq = 0,F (x,u) in. Q
{ q = 0 on dQ.
Then ugq <0 ge.mn Q, ug=0 v-a.e.1n

( *@,)+u (6 *6,) —pu(6,) |Vu
Avny = P (6g) M(a)Vu+u(a) 1 (0,) Vg ae.in {Vq £ 0}
; 2 2 Vg
*6,) +u (6 *(0,) —u(6y) |V
kAquu ( a)zu ( a)vq+u ( a)zu (0a) vz Vi ae. in {Vu % 0)
Vul|lVg| +Vu -V VullVg|—Vu -V
Defining E+=| Vgl a E_=| Vgl a
2 g 2
( 0 if E<E++T
—

1 afE- |« N
,8—0( E+ 11 leSE + 7 <
\

37 > 0 such that 8, = <

R

1 ifEt+r<2
\ g



Consequence: If F(x, s) is concave in s, there exists a solution (6, A, v, u) with
v =0C,.

Numerical Resolution

For n € N, we replace the relaxed problem by

min j F(x,u)dx
Q
( —div(AVu) +vu=f in Q
u=0 on 00, 6, €L”([0,1]), A€ L®(Q)N*N symmetric, v € L*(Q;[0,n])
< Eig(A) € [u™(8a), 17 (64)] ace.in Q

\ JQ(Ha_%)-I_dXSKa, Jﬂ(l—ea—%ydxs;cﬁ.




Theorem: The approximate solution has a solution (8%, A,,, V, Uy,) of the
approximate problem. For a subsequence

U, = u in H}(Q)
vt v\ _ .
(9’;—;") - 0,, (1—9?—#) =6 in L7(Q)-*
A, Vu, = AVu in L*(Q)N

jF(x,un)dx - fF(x,u)dx
Q Q

with (64, 6, A, v, u) solution of the relaxed problem.



The relaxed problem can be solved using a gradient algorithm taking into
account the convexity of the set of controls of the approximate problem.

Example: Q = (0,1)%,a = 1,8 = 2

max f udx
Q

( —div(AVu) +vu = f in Q
u=0ondQ, 6,€lL”Q\C,;[01]), A€L®(Q\C)V*N symmetric, VEM (Q)
< Eig(4) € [u7(82), u*(0,)] ae.in Q\ G,

It is a classical problem. It provides the optimal arrangement of two materials in
the cross section of a beam in order to minimize the torsion. The form of the cross
section 1s unknown.

With the above parameters there exists a unique solution

= 0 0 = ) A: B 9 I
v =0y a X{%ﬁx—(%%)l%} 1 (8a)

11 1
x-G>z}



e
-

functiaonméam, Mn - iOOO, function 8,, n = 10000,

funhcti;)nmv, n= 1000, funactigonu v,w n = 1lOOVOO,




