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First non-zero Steklov eigenvalue
Let Ω ⊆ Rn, n ≥ 2, be a bounded, connected, open set with Lipschitz boundary.

The first non-zero Steklov eigenvalue of Ω is defined by

σ(Ω) := min


∫
Ω

|∇v |2dx∫
∂Ω

v2dHn−1
: v ∈ H1(Ω) \ {0},

∫
∂Ω

v dHn−1 = 0

 .

Any minimizer satisfies 
∆u = 0 in Ω

∂u

∂ν
= σ(Ω)u on ∂Ω.
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First non-zero Steklov eigenvalue

∆u = 0 in Ω

∂u

∂ν
= σu on ∂Ω

The sequence of Steklov eigenvalues

0 = σ1(Ω) < σ2(Ω)(= σ(Ω)) ≤ σ3(Ω) ≤ σ3(Ω) · · · ↗ +∞

starts with zero.
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First non-zero Steklov eigenvalue

∆u = 0 in Ω

∂u

∂ν
= σu on ∂Ω

The first non-trivial Steklov eigenvalue σ(Ω) coincides with the value of the best
constant in the Poincaré-Wirtinger trace inequality:

cΩ

∫
∂Ω

|u − ūΩ|2 dHn−1 ≤
∫
Ω

|∇u|2 dx ,

for u ∈ W 1,2(Ω), where ūΩ is the average of the trace of u on ∂Ω.
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Motivation

The Steklov eigenvalues can be interpreted as the eigenvalues of the
Dirichlet-to-Neumann operator

D : H1/2(∂Ω) →: H−1/2(∂Ω)

that maps a function f ∈ H1/2(∂Ω) to Df = ∂Hf
∂ν , where Hf is the harmonic

extension of f to Ω.
Application to: electrical impendance tomography (used in medical and
geophysical imaging) and in the analysis of photonic crystals.

The Steklov boundary condition is often considered in the more general form

∂u

∂ν
= σρu,

where ρ ∈ L∞(∂Ω). If Ω ⊂ R2, the Steklov eigenvalues can be thought of as
the squares of the natural frequencies of a vibrating free membrane with its
mass concentrated along its boundary with density ρ.
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Shape Optimization problem in dimension 2

Theorem [Weinstock, J. Rational Mech. Anal., 1954]
If Ω ⊆ R2 is a bounded, Lipschitz simply connected open set, then

σ(Ω)P(Ω) ≤ σ(B)P(B), (1)

where P(Ω) stands for the perimeter of Ω and B ⊆ R2 is a ball. Equality holds if
and only if Ω is a ball.

In other words: “among all simply connected sets of R2 with prescribed perimeter,
the disc maximises the first non-zero Steklov eigenvalue".
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σ(Ω)P(Ω) ≤ σ(B)P(B), (1)

where P(Ω) stands for the perimeter of Ω and B ⊆ R2 is a ball. Equality holds if
and only if Ω is a ball.

In other words: “among all simply connected sets of R2 with prescribed perimeter,
the disc maximises the first non-zero Steklov eigenvalue".

Remark (Girouard-Polterovich, J. Spectral Theory, 2017)
Weinstock inequality fails for planar domains which are not simply connected.
Namely, one can find an annulus Ωε = B1 \ Bε, ε ≈ 0, such that

σ(Ωε)P(Ωε) > σ(B)P(B).
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Shape Optimization problem in dimension 2

Theorem [Weinstock, J. Rational Mech. Anal., 1954]
If Ω ⊆ R2 is a bounded, Lipschitz simply connected open set, then

σ(Ω)P(Ω) ≤ σ(B)P(B), (1)

where P(Ω) stands for the perimeter of Ω and B ⊆ R2 is a ball. Equality holds if
and only if Ω is a ball.

What about the n-dimensional case, n ≥ 3?
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Shape Optimization problem in Rn with volume constraint

Theorem [Brock, ZAMM, 2001]
For every Lipschitz bounded open set Ω ⊆ Rn, it holds true

σ(Ω)V (Ω)
1
n ≤ σ(B)V (B)

1
n .

The equality holds iff Ω is a ball.

In other words: “Among all Lipschitz sets of Rn with prescribed volume, balls
maximise the first non-zero Steklov eigenvalue".
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Shape Optimization problem in Rn with perimeter constraint

Theorem [Bucur-Ferone-Nitsch-Trombetti, J. Differential Geom.,
2018]
Let Ω be a bounded, open and convex set of Rn. Then

σ(Ω)P(Ω)
1

n−1 ≤ σ(B)P(B)
1

n−1 .

Equality holds only if Ω is a ball.
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Let Ω be a bounded, open and convex set of Rn. Then

σ(Ω)P(Ω)
1

n−1 ≤ σ(B)P(B)
1

n−1 .

Equality holds only if Ω is a ball.

The above inequality cannot hold for simply connected sets in Rn . Namely, one
can find a spherical shell Ωε = B1 \ Bε, ε ≈ 0, (Br denotes the ball of radius r
centered at the origin) such that

σ(Ωε)P(Ωε)
1

n−1 > σ(B)P(B)
1

n−1 .
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The orthotropic p-Laplace operator

Let Ω ⊆ Rn be an open, bounded and convex set and let p > 1. We consider the
orthotropic p−Laplace operator:‹∆pu =

n∑
i=1

(
|uxi |p−2uxi

)
xi
.

For p = 2 it coincides with the Laplacian
For p ̸= 2 it differs from the usual p−Laplacian, that is defined as
∆pu := div

(
|∇u|p−2∇u

)
.

This operator has been considered by several authors:
Visik, 1963
Lions, 1969
Belloni-Kawohl, 2004
Rossi-Saez, 2007
Brasco-Franzina, 2013
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Orthotropic p-Laplacian

Case of the p-Laplace operator: Suppose we are considering a non linear elastic
membrane, fixed on a boundary ∂Ω of a plane domain. If u(x) denotes its vertical
displacements, its deformation energy is given by

∫
Ω
|∇u|p and a minimizer of the

Rayleigh quotient ∫
Ω
|∇u|pdx∫
Ω
|u|pdx

on W 1.p
0 (Ω) satisfies the Euler-Lagrange equation in Ω:

−∆pu = λp|u|p−2u
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Orthotropic p-Laplacian

Case of the orthotropic p-Laplace operator: If the membrane is woven out of
elastic strings in a rectangular fashion, then its deformation energy is given by∫

Ω

∑
i

|uxi |pdx .

A minimizer of the Rayleigh quotient∫
Ω

∑
i |uxi |pdx∫

Ω
|u|pdx

on W 1,p
0 , if it exists, will satisfy‹∆pu = λ̃p|u|p−2u.
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Steklov problem for the orthotropic p−Laplacian

Let us consider the Steklov-eigenvalue problem for the pseudo p−Laplace
operator: ®

−‹∆pu = 0 on Ω∑n
j=i |uxj |p−2uxjν

j
∂Ω = σ|u|p−2uρp on ∂Ω,

(2)

where
ν∂Ω = (ν1

∂Ω, . . . , ν
n
∂Ω) is the outer normal of ∂Ω

ρp(x) = ∥ν∂Ω(x)∥ℓp′ ;
p′ is the coniugate exponent of p;
∥x∥pℓp =

∑n
j=1 |x j |p.

The real number σ is called Steklov eigenvalue whenever problem (2) admits a
non-trivial weak W 1,p solution.
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Steklov problem for the orthotropic p−Laplacian

We can write

−‹∆pu = div (Ap(∇u)) , Ap(∇u) =
(
|ux1 |p−2ux1 , . . . , |uxn |p−2uxn

)
.

Let u ∈ W 1,p(Ω). We say that u is a weak solution of (2) if∫
Ω

⟨Ap(∇u),∇φ⟩dx = σ

∫
∂Ω

|u|p−2uφρpdHn−1 ∀φ ∈ W 1,p(Ω).
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Some results

The following results are proved in [L. Brasco - G. Franzina, NoDEA, 2013].
These Steklov eigenvalues form at least a countably infinite sequence of
positive numbers diverging at infinity.
The first eigenvalue is 0 and corresponds to constant eigenfunctions.
Denoting by Σp

p(Ω) the first non-trivial, it has the following variational
characterization

Σp
p(Ω) = min

® ∫
Ω
∥∇u∥pℓp dx∫

∂Ω
|u|pρpdHn−1 , u ∈ W 1,p(Ω),

∫
∂Ω

|u|p−2uρpdHn−1 = 0

´
.
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These Steklov eigenvalues form at least a countably infinite sequence of
positive numbers diverging at infinity.
The first eigenvalue is 0 and corresponds to constant eigenfunctions.
Σp

p(Ω) represents the optimal constant in the weighted trace-type inequality∫
Ω

∥∇u∥pℓp dx ≥ Σp
p(Ω)

∫
∂Ω

|u|pρpdHn−1

in the class of Sobolev functions u ∈ W 1,p(Ω), such that∫
∂Ω

|u|p−2uρpdHn−1 = 0.
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The orthotropic ∞−Laplace operator

Aim
We want to study the first non-trivial Steklov eigenvalue for the orthotropic
p−Laplacian, as p → +∞:

lim
p→+∞

Σp(Ω).

We define the following operator‹∆∞u(x) :=
∑

j∈I (∇u(x))

u2
xj (x)uxj ,xj (x),

where
I (x) := {j ≤ n : |xj | = ∥x∥ℓ∞}, ∥x∥ℓ∞ = max

j=1,...,n
|x j |.
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Some heuristics: the limit problem as p → +∞
If we assume that u ∈ C 2, we can write‹∆pu = (p − 1)

n∑
j=1

|uxj |p−4u2
xjuxj ,xj .

Dividing by (p − 1) ∥∇u∥p−4
ℓ∞ , we achieve‹∆pu

(p − 1) ∥∇u∥p−4
ℓ∞

=
n∑

j=1

∣∣∣∣ uxj
∥∇u∥ℓ∞

∣∣∣∣p−4

u2
xjuxj ,xj . (3)

Let us define

I (x) := {j ≤ n : |xj | = ∥x∥ℓ∞}, ∥x∥ℓ∞ = max
j=1,...,n

|x j |.

we can rewrite (3) as‹∆pu

(p − 1) ∥∇u∥p−4
ℓ∞

=
∑

j∈I (∇u(x))

u2
xjuxj ,xj +

∑
j ̸∈I (∇u(x))

∣∣∣∣ uxj
∥∇u∥ℓ∞

∣∣∣∣p−4

u2
xjuxj ,xj .
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Some heuristics

Starting from‹∆pu

(p − 1) ∥∇u∥p−4
ℓ∞

=
∑

j∈I (∇u(x))

u2
xjuxj ,xj +

∑
j ̸∈I (∇u(x))

∣∣∣∣ uxj
∥∇u∥ℓ∞

∣∣∣∣p−4

u2
xjuxj ,xj ,

we take the limit as p → +∞ and, since for any j ̸∈ I (∇u(x)) we have∣∣∣ uxj
∥∇u∥ℓ∞

∣∣∣ < 1, we obtain‹∆∞u = lim
p→+∞

‹∆pu

(p − 1) ∥∇u∥p−4
ℓ∞

=
∑

j∈I (∇u(x))

u2
xjuxj ,xj .
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Some new results

Theorem [Ascione-P., JMAA, 2021]
It holds

lim
p→+∞

Σp(Ω) =
2

diam1(Ω)
=: Σ∞(Ω),

where diam1(E ) := supx,y∈E ||x − y ||ℓ1 . Moreover, the following variational
characterization holds:

Σ∞(Ω) = min

®∥∥∇u∥ℓ∞∥L∞(Ω)

∥u∥L∞(∂Ω)

, u ∈ W 1,∞(Ω), max
x∈∂Ω

u(x) = − min
x∈∂Ω

u(x) ̸= 0

´
.

Notation:
We denote by up an eigenfunction with related eigenvalue Σp

p(Ω), with the
following normality condition

1
V (Ω)

∫
∂Ω

|up|pρpdHn−1 = 1,

where V (·) is the volume.

G. Paoli (FAU) Steklov problem Benasque, August 24 2022 16 / 24



Some new results

Theorem [Ascione-P., JMAA, 2021]
It holds

lim
p→+∞

Σp(Ω) =
2

diam1(Ω)
=: Σ∞(Ω),

where diam1(E ) := supx,y∈E ||x − y ||ℓ1 . Moreover, the following variational
characterization holds:

Σ∞(Ω) = min

®∥∥∇u∥ℓ∞∥L∞(Ω)

∥u∥L∞(∂Ω)

, u ∈ W 1,∞(Ω), max
x∈∂Ω

u(x) = − min
x∈∂Ω

u(x) ̸= 0

´
.

Notation:
We denote by up an eigenfunction with related eigenvalue Σp

p(Ω), with the
following normality condition

1
V (Ω)

∫
∂Ω

|up|pρpdHn−1 = 1,

where V (·) is the volume.

G. Paoli (FAU) Steklov problem Benasque, August 24 2022 16 / 24



Some new results

Theorem [Ascione-P., JMAA, 2021]
Let Ω be a bounded open convex set such that ∂Ω is C 1. There exists a sequence
pi → +∞ such that upi converges uniformly in Ω to u∞, that is solution of®

−‹∆∞u = 0 on Ω

Λ(x , u,∇u) = 0 on ∂Ω

in the viscosity sense, where, for (x , u, η) ∈ ∂Ω× R× RN , we set

Λ(x , u, η) =


min

{
∥η∥ℓ∞ − Σ∞(Ω)|u| ,

∑
j∈I (η) ηjν

j
∂Ω(x)

}
if u > 0

max
{
Σ∞(Ω)|u| − ∥η∥ℓ∞ ,

∑
j∈I (η) ηjν

j
∂Ω(x)

}
if u < 0∑

j∈I (η) ηjν
j
∂Ω(x) if u = 0.
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Shape Optimization results

Let p ∈ (1,∞]. Let us recall that

∥x∥pℓp =
n∑

j=1

|x j |p, ∥x∥ℓ∞ = max
j=1,...,n

|x j |

and
ρp(x) = ∥ν∂Ω(x)∥ℓp′ .

We introduce the following notation:
the ball relative to the ℓp norm:

Wp = {x ∈ Rn | ∥x∥ℓp ≤ 1};

the perimeter relative to the ℓp norm:

Pp(Ω) :=

∫
∂Ω

ρp(x)dHn−1(x).

G. Paoli (FAU) Steklov problem Benasque, August 24 2022 18 / 24



Shape Optimization Results

Theorem [Ascione-P., JMAA, 2021]
Let Ω ⊂ Rn be an open bounded convex set and p > 1. Consider q ≥ 0 and
r ∈ [0, n] such that p

n = q + r
n . Then, we have

Σp
p(Ω)Pp(Ω)

r−1
n−1V (Ω)q ≤ Pp(Wp)

r−1
n−1V (Wp)

q.

Remarks and Corollaries:
This result implies the Brock-Weinstock inequality proved in [Brasco-
Franzina, 2013]:

Σp
p(Ω)V (Ω)

p−1
n ≤ V (Wp)

p−1
n .

If p ∈ (1, n], we can choose r = p and q = 0, obtaining

Σp
p(Ω)Pp(Ω)

p−1
n−1 ≤ Pp(Wp)

p−1
n−1 .
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Shape Optimization Results

Theorem [Ascione-P., JMAA, 2021]
For any bounded open convex set Ω ⊆ Rn, it holds

Σ∞(Ω)V (Ω)
1
n ≤ Σ∞(W1)V (W1)

1
n .

Equality holds if and only if Ω is equivalent to W1 up to translations and scalings
Moreover, if n = 2, it also holds

Σ∞(Ω)P∞(Ω) ≤ Σ∞(W1)P(W1).

Equality holds if and only if Ω is of constant width, i.e. if and only if
ω(v) ≡ diam1(Ω) for every directions v .

Fix n = 2 and consider any bounded open convex set Ω. For each direction v there
exists two supporting lines r1, r2 for Ω that are orthogonal to v in the Euclidean
sense. We call width of Ω in the direction v the distance ω(v) = d1(r1, r2).
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Thank you for your attention!
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Orthotropic p-Laplacian

Case of the p-Laplace operator: Suppose we are considering a non linear elastic
membrane, fixed on a boundary ∂Ω of a plane domain. If u(x) denotes its vertical
displacements, its deformation energy is given by

∫
Ω
|∇u|p and a minimizer of the

Rayleigh quotient ∫
Ω
|∇u|pdx∫
Ω
|u|pdx

on W 1.p
0 (Ω) satisfies the Euler-Lagrange equation in Ω:

−∆pu = λp|u|p−2u
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Viscosity Solution

We denote

Fp : (ξ,X ) ∈ RN × RN×N 7→ −
N∑
j=1

(p − 1)|ξj |p−2Xj,j

and

Bp : (σ, x , u, ξ) ∈ R× ∂Ω× R× RN 7→
N∑
j=1

|ξj |p−2ξjν
j
∂Ω(x)− σ|u|p−2uρp(x).

The Steklov problem can be formally rewritten as®
Fp(∇u,∇2u) = 0, on Ω

Bp(σ, x , u,∇u) = 0, on ∂Ω.
(4)
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Let u be a lower (upper) semi-continuous function on the closure Ω of Ω and
Φ ∈ C 2(Ω). We say that Φ is touching from below (above) u in x0 ∈ Ω if and
only if u(x0)− Φ(x0) = 0 and u(x) > Φ(x) (u(x) < Φ(x)) for any x ̸= x0 in Ω.
A lower (upper) semi-continuous function u on Ω is said to be a viscosity
supersolution (subsolution) of (4) if for any function Φ ∈ C 2(Ω) touching from
below (above) u in x0 ∈ Ω one has

Fp(∇Φ(x0),∇2Φ(x0)) ≥ (≤)0 x0 ∈ Ω;

max{Fp(∇Φ(x0),∇2Φ(x0)),Bp(σ, x0,Φ(x0),∇Φ(x0))} ≥ (≤)0 x0 ∈ ∂Ω.

Finally, we say that a continuous function u on Ω is a viscosity solution if it is
both viscosity subsolution and supersolution.
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