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Algunas cuestiones habituales

. Las Matematicas para que sirven?

;, Matematica o Matematicas?

¢, Las Matematicas no estan ya todas hechas,
acabadas? ;Para qué seguir en la investigacion
Matematica?

¢ Qué aportan las Matematicas?

., Qué salidas laborales ofrecen las Matematicas?

;. S0n necesarias las Matematicas en el sistema
educativo?
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€ Origenes



Hombre/Mujer = unidad de medida

El ser humano es |la medida de todo

PROTAGORAS

Protagoras d'Abdera (485 a. C. - 411 a. C.)

Pensador ndmada, util alli donde fuera



Origines

Pitagoricos
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Escuela pitagorica: formada por astrélogos, médicos, matematicos y
filésofos, cuya creencia mdas importante era que todas las cosas son, en
esencia, nimeros (siglo VI a.C.).
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Matematicas: Exactas ?
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. If every instrument couldﬁ”accompllsh its own work, obeying
or antICIpatlng the will of others . ..
if the shuttle weaved and the pick touched the lyre without a
hand to guide them, chief workmen would not need servants, nor
masters slaves.”

Chapter 3, Book 1, of the monograph “Politics”, Aristotle (384-322 B.
C.).

Main motivation: The need of automatizing processes to let the human
being gain in liberty, freedom, and quality of life. g

ARISTOTLE

POLITICS
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Controle

“Cybernétique” was proposed by the French physicist A.-M. Ampere in
the XIX Century to design the nonexistent science of process controlling.
This was quickly forgotten until 1948, when Norbert Wiener
(1894-1964) chose “Cybernetics” as the title of his famous book.

Wiener defined Cybernetics as “ the science of control and communication
in animals and machines”.

In this way, he established the connection between Control Theory and

Physiology and anticipated that, in a desirable future, engines would obey
and imitate human beings.
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Robotic arm




Controle

Let n,m € N* and T > 0 and consider the following linear
finite-dimensional system

X'(t) = Ax(t) + Bu(t), te(0,T); x(0)=x". (1)

In (1), Ais a n x n real matrix, B is of dimensions n x m and x° is the
initial sate of the sytem in R". The function x : [0, T| — R" represents
thestate and v : [0, T| — R™ the control.

; Can we control the state x of n components with only m controls, even if
n>>m¢

(1958, Rudolf Emil Kalman (1930-2016 )) System (1) is controllable iff

rank[B, AB,--- ,A"1B] = n.

Input EEEEp | Controller | C‘;:‘é:z:d mmm) Output

Open Loop System
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Proof:

From the variation of constants formula:

t t )k
x(t) = e™tx? —l—/ eAt=9) By(s)ds = X0 + Z (£ —5) A¥Bu(s)ds.
L 0 k50

By Cayley!-Hamilton's 2 theorem AX for k > n is a linear combination of
I, A, .. AL

'Arthur Cayley (UK, 1821 - 1895)
“William Rowan Hamilton (Ireland, 1805 - 1865)
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An example: Parking a car
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Control in an information rich World, SIAM, R. Murray Ed., 2003.
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The mathematical shepherd

R. Escobedo, A. Ibanez and E.Zuazua, Optimal strategies for driving a mobile agent

in a “guidance by repulsion” model, Communications in Nonlinear Science and
Numerical Simulation, 39 (2016), 58-72.




Duality, J.-L. Lions, SIREV, 1988

Consider the adjoint system

p(T) =pr
and minimize .
1 >k
J(pT) = 5/ | B*p | dt + (x°, p(0))
0

Then
u=B*p

is the control of minimal L%-norm.?

And the functional J is coercive iff the Kalman rank condition is satisfied.

The Kalman condition is equivalent to the Unique Continuation property

B*p=0=p' =0.

The observability inequality plays a key role

)
1pT |12 < C/o 1 B%p |2 dt

4This confirms Wiener’s vision " ..control and communication...”

TN Zuan R Control & ML
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Available online at www.sciencedirect.com
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Early History of Machine Learning
Alexander L. Fradkov ™

* Institute for Problems in Mechanical Engineering, Russian Academy
of Sciences, Saint-Petersburg (e-mail: Alexander.Fradkov@gmail.com)

Bol. Soc. Esp. Mat. Apl. n°26(2003), 79—140

© Aprendizaje automatico

Control theory: History, mathematical achievements and
perspectives*

E. FERNANDEZ-CARA! AND E. ZUAZUA?



Universal approximation theorem |

Math. Control Signals Systems (1989) 2: 303-314 M athematics of Control

Signals, and Systems
© 1989 Springer-Vertag New York Inc.

Approximation by Superpositions of a Sigmoidal Function*

G. Cybenkot

Tacojxro) 4 0

where y; € R” and ;, @ € R are fixed. (y" is the transpose of y so that y'x is the inner
product of y and x.) Here the univariate function ¢ depends heavily on the context
of the application. Our major concern is with so-called sigmoidal ¢’s:

a(t)—»{l as t— +0o0, A/

0 as t-— —o0,

o Zuaua Control & ML



Universal approximation theorem ||
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Supervised learning

Goal: Find an approximation of a function f, : RY — R™ from a dataset

- 1N
{Xi’yi}izl CRdXN XRmXN

drawn from an unknown probability measure p on RY x R™.

Classification: match points (images) to respective labels (cat, dog).
— Popular method: training a neural network.

Control & ML



Deep learning

Residual neural networks

[1] K He, X Zhang, S Ren, J Sun, 2016: Deep residual learning for image recognition

[2] E. Weinan, 2017. A proposal on machine learning via dynamical systems.

[3] R. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud, 2018. Neural ordinary differential equations.

[4] E. Sontag, H. Sussmann, 1997, Complete controllability of continuous-time recurrent neural networks.

ResNets

Xt = XX+ hWX o (ARXE +b%), ke {0,..., Njayers — 1}
XX =%, i=1.,N

where h = 1, o globally Lipschitz o(0) = 0.

nODE
Layer = timestep; h = N,T for given T > 0
ayers
xi(t) = W(t)o(A(t)x;(t) + b(t)) for t € (0, T)

X,'(O) — )_(’,', | = 1, ooy N

The problem becomes then a giant simultaneous control problem in which each initial datum x;(0)

needs to the driven to the corresponding destination for all i = 1, ..., N with the same controls:

@ What happens when T — oo, i.e. in the deep, high number of layers regime?8 °

8. Esteve, B. Geshkovski, D. Pighin, E. Zuazua, Large-time asymptotics in deep learning, arXiv:2008.02491
9D. Ruiz-Balet & Zuazua, Neural ODE control for classification, approximation and transport, arXiv:2104.05278
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Special features of the control of ResNets

@ Nonlinearities are unusual in Mechanics: o is flat in half of the phase space.

@ We need to control many trajectories (one per item to be classified) with the same control!
10

The very nature of the activation function o allows actually to achieve this monster simultaneous
control goal. The fact that o leaves half of the phase space invariant while deforming the other

one, allows to build dynamics that are not encountered in the classical ODE systems in mechanics
and for which such kind of simultaneous control property is unlikely or even impossible.

10This would be impossible for instance, for the standard linear system x’ = Ax + Bu.
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Deep learning

B. Geshkovski, MIT
Control & ML
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Deep learning
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Deep learning
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What is actually the ResNet doing?

The classification problem is a relaxed version of the simultaneous control problem. We are given
N points in RY and M classes y; € {1,..., M}.
We then proceed as follows:

@ We identify a region in the euclidean space corresponding to each class of data.

@ Look for a control strategy (A, W, b) bringing simultaneously all points to the location
corresponding to its class.

4
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Deep learning

Basic control actions

x(t) = W(t)o(A(t)x(t) + b(t))

@ b(t) induces a time-dependent translation of the Euclidean space. It plays an important role
to place the center of the action of the sigmoid.

e A(t) compresses, expands, and induces rotations in the euclidean space with different

objectives:
e Compression can help gathering data into clusters so that they might be manipulated simultaneously
e Expansion allows to separate data of different classes to better focus the action of the control on

just one of them.
e Rotations allow to better choose the hemisphere where the action will be focused.

e W(t) determines the direction and intensity with which the flow will evolve in the active
hemisphere.

E. Zuazua (FAU - AvH) Control & ML B



Deep learning

Some canonical flows induced by nODE
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Deep learning

Controlling one datum
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Deep learning

Neural transport equations

Note that the differential equation

% = W(t)o(A(t)x + b(t))
X(O) = X0

corresponds to the characteristics of the transport equation:

Bep + divy [(W(t)o (A(t)x + b(t)))p] = 0
p(0) = p°

The results above can therefore be understood in terms of the controllability of the transport
equation: " Atomic initial data can be driven to atomic final targets”. This also allow for a more

general interpretation in terms of approximation control in Wasserstein-1 distance. Or for systems
of transport equations, so that each scalar component corresponds to the density within one of
the classes of data.

This establishes a link to the Theory of Optimal Transport: Neural Transport? 12

12

Wi(u,v) = sup {/ gdu—/ ng}
Lip(g)<1 L/RA R

where Lip(g) < 1 stands for the class of Lipschitz functions with Lipschitz constant less or equal than 1.

Control & ML



Optimal transport: Monge-Kantorovich

In Mathematics and Economy: Optimal transport of resources.
Formulated any the French mathematicians Gaspard Monge in 1781
(“Sur la théorie des déblais et des remblais” (Mém. de I'Acad. de Paris,

1781))

MEMORIAL >ENDANT
SCIENCES MATHEMATIQUES
) . i JE

1746 - 1878
MATHEMATICIEN , UN DES FONDATEURS
DE LU'ECOLE POLYTECHNIQUE

PARIS

In the ancient Egypt the “harpenodaptai” (string stretchers), were
specialized in stretching very long strings leading to long straight segments
to help in large constructions, with the understanding that (a) “The
shortest distance between two points is the straight line” and (b) “Among
all the paths of a given length the one that produces the longest distance

between Its extremes Is the straight line as well.”



Neural transport equations

The simultaneous control of the nODE

{x = W(t)o(A(t)x + b(t))
x(0)=x;, i=1,...N

to arbitrary terminal states
x(T)=y;,, i=1..,N

In terms of the transport equation, leads to the control of an atomic initial datum from

N
p(x,0) = 3 midy
i=1
to the terminal one
N
p(x, T) = Z m;dy, .
i=1

But note that, even if the locations of the masses are transported, the amplitude of the masses
do not vary.

E. Zuazua (FAU - AvH) Control & ML



Neural transport equations

We can enrich the strategy above to also regulate the amplitude of the masses. But this requires
to relax the control statement into an e-approximate one.
For that to be done we need to split initial masses so that

Ji
m; — E mi.j, | = 1, coog N
J=1

they are dispersed from the center X; into the neighboring points x; ;. This allows to enrich the
transport diagram.

m
L1
9
ma3
9
X3

E. Zuazua (FAU - AvH) Control & ML



Deep learning

Universal approximation

Let us approximate a piece-weise constant function taking two different values P and Q on the

sets represented by colors blue and red.
We aim to build a nODE so that the solution of

{sb(t) = W(t)o(A(t)p(t) + b(t))
¢(0) = x,
is such that

o(T,x) =P, when x € Blue Set

and
o(T,x) =Q, when x € Red Set.

The same control inspired strategies allow to achieve the result up to an - error.

N

‘ ‘ P+ ' Q

E. Zuazua (FAU - AvH) Control & ML
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Future

El nuevo paradigma: Matematicas + Inteligencia Artificial
PageRank: Larry Page and Sergey Brin (Google, 1998)

Inspirados por el Teorema de Perron-Frobenius (Oskar Perron (1907) y
Georg Frobenius (1912))
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