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The problem
Inital condition or starting optimal control: solve the following problem

min
u∈H

{J(u) : ∥y(T)− y∗∥ ≤ ε} ,

where ẏ(t) + Ay(t) = f(t) for 0 ≤ t ≤ T,
y(0) = u,

J(u) = α

2
∥u∥2 + 1

2

∫ T

0

β(t)∥y(t)− w(t)∥2 dt.
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The problem
Here we assume:
▶ A ≥ κ selfadjoint operator on a Hilbert space H, given as a partial differential

operator on the domain Ω ⊂ Rd,
▶ f ∈ L2((0,T);H).

Parameters are:
▶ y∗ the target state,
▶ ε > 0 the tolerance,
▶ α > 0 weight,
▶ β ∈ L∞((0,T); [0,∞)) weight, and
▶ w ∈ L2((0,T);H) the desired trajectory of the system. 3



Solving the problem

The problem is ill-posed, thus numerically challenging.

We use first optimize, then discretize approach. We want

▶ to construct a closed form expression of the solution of the problem, and
▶ use a discretization scheme which is tailored to the particular problem.
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The solution
The solution uopt of the problem is given by

uopt = (µεS2T +Ψ)−1(µεSTy∗ + ψ),

Ψ = αI +
∫ T

0

β(t)S2tdt, ψ =

∫ T

0

β(t)Stw(t)dt.

Here

▶ {St} is the semigroup generated by −A
▶ µε ≥ 0 is

▶ the unique solution of Φ(µ) = ε if ε < ∥Ψ−1STψ − y∗∥,
▶ and zero otherwise.
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The solution
▶ the function Φ: [0,∞) → [0,∞) is defined by

Φ(µ) = ∥y∗ − (µS2T +Ψ)−1(µS2Ty∗ + STψ)∥

and is a decreasing function.
▶ The solution of the unconstrained problem (ε = ∞) is given by the same

formula with µε = 0.
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Practical solution
▶ Let ϕ(µ) = y∗ − (µS2T +Ψ)−1(µS2Ty∗ + STψ), hence Φ(µ) = ∥ϕ(µ)∥.

Then ϕ(µ) = y∗ − x, where x is the solution of the equation

(µS2T +Ψ) x = µS2Ty∗ + STψ,

hence the calculation of Φ(µ) reduces to solving a linear equation.
▶ Note also that the optimal initial state uopt is the solution of the equation

(µεS2T +Ψ) x = µεSTy∗ + ψ.
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How to calculate Ψ

To calculate Ψ we use the fact that it can be written as a function of A by using∫ T

0

β(t)S2tdt =
∫ ∞

−∞

∫ T

0

β(t)e−2tλdt dE(λ) = β̃0(A),

where β̃0 is a function given by β̃0(λ) =
∫ T
0
β(t)e−2tλdt and E is the spectral

measure of A.
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How to calculate ψ
We can always find a good approximant for ψ. Let w̃(t) =

∑N
i=1 wiχ[ti−1,ti] be an

approximation of w, where 0 = t0 < t1 < · · · < tN = T, wi ∈ H, i = 1, . . . ,N, and
χS is the characteristic function of the set S. Then

ψ̃ =
N∑

i=1

β̃i(A)wi, where β̃i(λ) =

∫ ti

ti−1

β(t)e−tλdt,

is an approximation of ψ.
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How to really calculate Ψ and ψ: 1/5

Both Ψ and ψ can be represented as functions of operator A, so we want to
efficiently calculate g(A) for a given function g.

If g has the form u0(x) + u1(x)eax, where u0, u1 are rational functions, we use the
fact that such functions can be very efficiently approximated: there exists a rational
function rn,n+k such that

∥g − rn,n+k∥∞ ≤ C · 9.28903−n
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How to really calculate Ψ and ψ: 2/5

We use rkfit algorithm to find a rational function

rRK(x) = r0 +
r1

x − ζ1
+ · · ·+ rd

x − ζd

such that
∥rRK − g∥∞ ≤ tol∥g∥2.

Now the operator rRK(A) := r0I +
∑d

i=1 ri(A − ζi)
−1 satisfies

∥g(A)− rRK(A)∥L(H) ≤ tol∥g∥2.

So it remains to approximate the resolvent of the operator A.
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How to really calculate Ψ and ψ: 3/5

We approximate the (action of the) resolvent by selecting a finite dimensional
subspace Vh ⊂ Dom(A1/2) and then forming the Galerkin projection of A onto Vh.
The Galerkin projection Ah : Vh → Vh is given by the formula (assuming A ≤ 0)

Ah = (A1/2Ph)
∗(A1/2Ph),

where Ph is the orthogonal projection onto Vh.
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How to really calculate Ψ and ψ: 4/5

Let Vh be the space of piece-wise linear, for a given triangular tessellation of Ω, and
continuous functions on Ω. Let

▶ h be the maximal diameter of a triangle in the chosen tessellation, and
▶ ν be a parameter depending on the regularity of the functions in Dom(A).

The resolvent estimate for A using the Galerkin projection Ah for h < h0 and
v ∈ Vh is

∥(A − z)−1v − (Ah − z)−1v∥2 ≤ Ch2ν∥v∥2.

Here h0 denotes the minimal level of refinement from which the estimate holds.
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How to really calculate Ψ and ψ: 5/5

Finally, let g(x) = u0(x) + u1(x)eax be a perturbed exponential function. For a given
rational function rRK and v ∈ Vh we have the estimate

∥g(A)v − rRK(Ah)v∥2 ≤ ∥g − rRK∥∞∥v∥2 + dCh2ν∥v∥2.

By choosing suitable rRK and h, this estimate ensures a good approximation of
g(A)v based on a finite dimensional approximation of the operator A.

The theorem from the following slide ensures that the numerical solution is a good
approximation of the solution of the optimal problem.
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Sensitivity of the problem

Let us perturb all the parameters of the problem with perturbations < ν, in
respective norms, such that that the perturbed problem has the same structure (A
still selfadjoint etc.). For the perturbation of the operator A, we allow δA which is
relatively bounded with respect to A. Then we have
Theorem
For small enough ν > 0 the optimal solutions of the original and the perturbed
problem differ (in norm) by < Cν where C does not depend on ν.
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An example
Let A < 0, f = 0, β = χ[T/3,2T/3] and assume that w does not depend on time.

Then

Ψ = αI + 1

2
A−1S2T/3(I − S2T/3),

ψ = A−1ST/3(I − ST/3)w.

Hence
Ψ = αI +

∫
R

eλ 2T/3(1/λ− eλ2T/3/λ)︸ ︷︷ ︸
:=g(λ)

dE(λ).
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An example
The value of the function Φ(µ) is computed using the rational approximation and
the spectral calculus

(µS2T +Ψ)−1µS2Ty∗ =
∫ 0

−∞

µe2Tλ

µe2Tλ + α + (1/λ− eλ 2T/3/λ)︸ ︷︷ ︸
:=g(λ)

dE(λ)y∗

≈ r0y∗ +
18∑
i=1

ri(A − ζi)
−1y∗,

where tol = 10−15.

The solution of Φ(µ) = ε is obtain using the Brent method.
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1D heat equation
Let

▶ A = −∂x((1 + aχ[2.2,π])∂x) on Ω = [0, π], a ≤ 0,
▶ α = 10−4,
▶ T = 0.01,
▶ w = χ[π/5,2π/5],
▶ y∗ = χ[3π/5,4π/5],
▶ ε = [0.2, 0.5, 0.9]Φ(0).

Φ(0) is the distance between the target y∗ and y(T) in the case y(0) = umin, umin being the solution of the

corresponding unconstrained problem.
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a = 0 and a = −0.8, corresponding µε
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a = −0.8, ε = 0.2Φ(0)
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a = −0.8, ε = 0.5Φ(0)
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a = −0.8, ε = 0.9Φ(0)
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2D heat equation on irregular domain

Let

▶ A be Dirichlet Laplacian on Ω = [−1, 1]2 \ ([−1, 0]× [0, 1]),
▶ α = 10−4,
▶ T = 0.01,
▶ w(x) = χ∥x−x0∥1≤0.2,
▶ y∗(x) = e−20∥x−x1∥2 + e−20∥x−x2∥2 + e−30∥x−x3∥2 , with x0 = (−0.5,−0.5),

x1 = (0.5, 0.5), x2 = (0.6, 0.1) and x3 = (0.8, 0.4).
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The prescribed final target y∗.
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ε = 0.1Φ(0)
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ε = 0.5Φ(0)
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ε = 0.9Φ(0)
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Non-homogeneous boundary condition

Suppose we have 
ẏ(t) + Ly(t) = 0 for 0 ≤ t ≤ T,
Gy(t) = g(t),
y(0) = u,

where (L,G) form a well-posed boundary control system on U ,Z and X .

The optimal control problem is given by

J(u) = α

2
∥u∥2 + 1

2

∫ T

0

β(t)∥y(t)− w(t)∥2Z dt,

min
u∈Z

{J(u) : ∥y(T)− y∗∥Z ≤ ε} .
. 28



Non-homogeneous b. c.

We can also solve optimal control problems of this type.

Our approach is to lift the boundary condition to obtain

ẏ + Ây = Bg(t), (∗)

where Â =
(
L|Ker G

)
−1

and B ∈ L(U,X−1).

One cannot directly apply the previous result as the the constraints are given in
Z ⊂ X and the equation (∗) lives in X−1.
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Recapitulation
▶ We constructed and implemented a numerical algorithm for a constrained

optimal control problem.
▶ For the numerical implementation we explored efficient Krylov subspace

techniques that allowed us to approximate a complex function of an operator
by a series of linear problems. We provided a-priori estimates for the
approximation that are not sensitive to any particular spatial discretization,
and neither to a matrix representation of the operator A.

▶ We provided a complete quantified sensitivity analysis of the solution with
respect to all the data entering the problem.

▶ This approach can be generalised to other optimal control problems.
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