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Introduction The RBM in LQOC Numerical example Perspectives

Origins of the Random Batch Method

Initial Motivation: Simulation and control of large interacting
particle systems can be computationally demanding.

There are N(N − 1)/2 interaction forces between N particles.
⇒ Computational cost grows rapidly when N is large.
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Introduction The RBM in LQOC Numerical example Perspectives

Origins of the Random Batch Method

Proposed simulation method: The Random Batch Method
[Shi Jin, Lei Li, Jian-Guo Liu, J. of Computational Physics 400, 108877, 2020]

Divide the N particles randomly into batches of size P ≥ 2.

Consider only interactions between particles in the same batch.

Do a simulation over a short time interval of length h.

Repeat.

Daniël Veldman IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain

Random Batch Methods for the Efficient Solution of Optimal Control Problems on Networks 3/28



Introduction The RBM in LQOC Numerical example Perspectives

Origins of the Random Batch Method

Proposed simulation method: The Random Batch Method
[Shi Jin, Lei Li, Jian-Guo Liu, J. of Computational Physics 400, 108877, 2020]

Divide the N particles randomly into batches of size P ≥ 2.

Consider only interactions between particles in the same batch.

Do a simulation over a short time interval of length h.

Repeat.
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Introduction The RBM in LQOC Numerical example Perspectives

In formulas

First-order particle dynamics: For each particle i ∈ {1, 2, . . . ,N}

ẋi (t) =
1

N − 1

N∑

j=1
j 6=i

fij(xj(t)− xi (t)).

Random Batch Method.

1 Set k = 0 and set x̃i (0) for all i ∈ {1, 2, . . . ,N}.
2 Partition {1, 2, . . . ,N} into batches of size P ≥ 2, i.e.

{1, 2, . . . ,N} =
⋃̇N/P

b=1
Bkb , |Bkb | = P.

3 For each i , solve on [kh, (k + 1)h]

ẋh,i (t) =
1

P − 1

∑

j∈Bk
b(i)
, j 6=i

fij(xh,j(t)−xh,i (t)), b(i) s.t. i ∈ Bkb(i).

4 Set k ← k + 1 and go to step 2.
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The Random Batch Method in Optimal Control

Instead of computing the minimizer u∗(t) of

J =

∫ T

0
f0(x(t), u(t)) dt,

subject to

ẋi (t) =
1

N − 1

N∑

j=1
j 6=i

fij(xj(t)− xi (t))+
M∑

k=1

gik(xi (t))uk(t),

it is faster to compute the minimizer u∗h(t) of J subject to

ẋh,i (t) =
1

P − 1

∑

j∈Bk
b(i)

j 6=i

fij(xh,j(t)− xh,i (t))+
M∑

k=1

gik(xi (t))uh,k(t).

[D. Ko, E. Zuazua, Math. Models Methods Appl. Sci., Vol. 31, No. 8, 2021].
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Introduction The RBM in LQOC Numerical example Perspectives

The RBM in linear-quadratic optimal control (1/2)

RBM to approximate the minimizer u∗(t) of

min
u∈L2(0,T ;Rq)

J(u) =

∫ T

0

(
|x(t)− xd(t)|2Q + |u(t)|2R

)
dt,

ẋ(t) = Ax(t) + Bu(t), x(0) = x0.

Step 1 Split the matrix A as

A =
M∑

m=1

Am.

Step 2 Enumerate the 2M subsets of {1, 2, . . . ,M} as S1, S2, . . .S2M .
Assign to each subset Sω a probability pω.

Step 3 Divide [0,T ] into K subintervals [tk−1, tk) of length ≤ h. For
each [tk−1, tk), randomly choose an index ωk ∈ {1, 2, . . . , 2M}
according to the probabilities p`. Set ω = (ω1, ω2, . . . , ωK ).
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The RBM in linear-quadratic optimal control (2/2)

Step 4 Define the matrix Ah(ω, t)

Ah(ω, t) =
∑

m∈Sωk

Am

πm
, t ∈ [tk−1, tk),

where πm is the probability that m is an element of the
selected subset, i.e.

πm =
∑

ω∈{ω|m∈Sω}

pω.

Step 5 Compute the minimizer u∗h(ω, t) of the ‘simpler’ LQR problem

min
u∈L2(0,T ;Rq)

Jh(ω, u) =

∫ T

0

(
|xh(ω, t)− xd(t)|2Q + |u(t)|2R

)
dt,

ẋh(ω, t) = Ah(ω, t)xh(ω, t) + Bu(t), xh(ω, 0) = x0.
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An example

Split A into M = 2 pieces as

A = A1 + A2.

Then there are 2M = 4 subsets Sω, ω ∈ {1, 2, 3, 4}.
S1 = {1}, S2 = {2}, S3 = {1, 2}, S4 = ∅.

We assign the probabilities pω, ω ∈ {1, 2, 3, 4}.
p1 = 1

2 , p2 = 1
2 , p3 = 0, p4 = 0.

The probabilities πm, m ∈ {1, 2} are then

π1 = p1 + p3 = 1
2 , π2 = p2 + p3 = 1

2 .

The randomized matrix A-matrix is thus given by

Ah(ω, t) = 2Aωk
, t ∈ [tk−1, tk), ωk ∈ {1, 2}.
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An intuitive convergence argument

In addition to the previous example, assume that

A1 and A2 commute,

that the time grid is uniform, i.e., tk = kh, where h = T/K .

Then,

e
∫ T

0 Ah(ω,t) dt = e2Aω1he2Aω2he2Aω3h · · · e2AωK
h

= e2A1T1+2A2T2

where

T1 = h
K∑

i=1

χ1(ωi ), T2 = h
K∑

i=1

χ2(ωi ).

By the law of large numbers, T1,T2 → T/2 for K →∞.
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Properties of the matrix Ah(ω, t)

The construction of Ah(ω, t) assures that

E[Ah(t)] = A.

Proof: For t ∈ [tk−1, tk), Ah(ω, t) =
∑

m∈Sωk

Am
πm

only

depends on ωk . Therefore,

E[Ah(t)] =
2M∑

ω=1

∑

m∈Sω

Am

πm
pω =

M∑

m=1

∑

ω∈{ω|m∈Sω}

Am

πm
pω

=
M∑

m=1

Am

πm

∑

ω∈{ω|m∈Sω}

pω =
M∑

m=1

Am

πm
πm =

M∑

m=1

Am = A.

We also define

Var[Ah] = E[‖Ah(t)− A‖2] =
2M∑

ω=1

∥∥∥∥∥∥
∑

m∈Sω

Am

πm
− A

∥∥∥∥∥∥

2

pω.
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Theorem (D.V., E. Zuazua, Numerische Mathematik, 2022)

For a deterministic control u(t)

E[|xh(t)− x(t)|2] ≤ hVar[Ah](‖A‖t2 + 2t)(|x0|+ |Bu|L1)2.

For a stochastic control uh(ω, t) satisfying |Buh(ω)|L2 ≤ U

E[|xh(t)− x(t)|2] ≤ C[T ,‖A‖]hVar[Ah](x0 + U
√
t).

Optimality gap

E[|Jh(u∗h)− J(u∗)|] ≤ C
(√

hVar[Ah] + hVar[Ah]
)
.

Convergence in the controls

E[|u∗h − u∗|2L2 ] ≤ ChVar[Ah].
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Structure of the proof (1/2)

1 We give a bound for E[|xh(t)− x(t)|2] where

ẋh(ω, t) = Ah(ω, t)xh(ω, t) + Bu(t), xh(ω, 0) = x0,

ẋ(t) = Ax(t) + Bu(t), x(0) = x0.

Note: the control u(t) is deterministic (independent of ω).

2 We give a bound for E[|xh(t)− x(t)|2] where

ẋh(ω, t) = Ah(ω, t)xh(ω, t) + Buh(ω, t), xh(ω, 0) = x0,

ẋ(ω, t) = Ax(ω, t) + Buh(ω, t), x(ω, 0) = x0,

Note: the control u(ω, t) is stochastic.

3a Using 2 we obtain a bound for E[|Jh(uh)− J(uh)|] for any
stochastic control uh. A Γ-convergence argument then gives

E[|Jh(u∗h)− J(u∗)|].
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ẋh(ω, t) = Ah(ω, t)xh(ω, t) + Bu(t), xh(ω, 0) = x0,
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Structure of the proof (2/2)

3b Using 2 we obtain a bound for

E[|δJh(u; vh)− δJ(u, vh)|] ≤ C
√
hVar[Ah]E[|vh|2L2(0,T ;Rq)

],

for any deterministic control u and any stochastic control vh.

Setting u(t) = u∗(t) and vh(ω, t) = u∗h(ω, t)− u∗(t),
the convexity of the functional Jh(ω, ·) yields a bound for

E[|u∗h − u∗|2L2(0,T ;Rq)].

As a consequence, we also get a bound for

E[|J(u∗h)− J(u∗)|].
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Sketch of proof for Step 1 (1/4)

ẋh(ω, t) = Ah(ω, t)xh(ω, t) + Bu(t), xh(ω, 0) = x0,

ẋ(t) = Ax(t) + Bu(t), x(0) = x0.

Define eh(ω, t) := xh(ω, t)− x(t). Then

ėh(ω, t) = Ah(ω, t)xh(ω, t)− Ax(t)

= Ah(ω, t)eh(ω, t) + (Ah(ω, t)− A)x(t), eh(ω, 0) = 0.

and also (for t ∈ [tk−1, tk))

d

dt
|eh(ω, t)|2 = eh(ω, t)>Ah(ω, t)eh(ω, t)

+ eh(ω, tk)>(Ah(ω, t)− A)x(t)

+ (eh(ω, t)− eh(ω, tk))>(Ah(ω, t)− A)x(t).
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Sketch of proof for Step 1 (2/4)

d

dt
|eh(ω, t)|2 = eh(ω, t)>Ah(ω, t)eh(ω, t)

+ eh(ω, tk)>(Ah(ω, t)− A)x(t)

+ (eh(ω, t)− eh(ω, tk))>(Ah(ω, t)− A)x(t).

The first term is bounded by a (quasi-)dissipative assumption:

Assumption: the matrices Am are dissipative, i.e.

〈x ,Amx〉 ≤ 0, ∀m ∈ {1, 2, . . . ,M}, x ∈ RN .

Then Ah(ω, t) =
∑

m∈Sωk

1
πm

Am is also dissipative.

Alternative: there exists a a ∈ R such that
∑

m∈Sω

1

πm
〈x ,Amx〉 ≤ a|x |2, ∀ω ∈ {1, 2, . . . , 2M}, x ∈ RN .
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Sketch of proof for Step 1 (3/4)

d

dt
|eh(ω, t)|2 ≤ 0

+ eh(ω, tk)>(Ah(ω, t)− A)x(t)

+ (eh(ω, t)− eh(ω, tk))>(Ah(ω, t)− A)x(t).

The second term vanishes in expectation.

Observe: For t ∈ [tk , tk+1),

Ah(ω, t) depends only on ωk

eh(ω, tk) depends only on ω1, ω2, . . . , ωk−1.

Therefore,

E[eh(tk)>(Ah(t)−A)] = E[eh(tk)>]E[Ah(t)−A] = E[eh(tk)>]·0 = 0.
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Sketch of proof for Step 1 (4/4)

d

dt
E[|eh(t)|2] ≤ 0

+ 0

+ E[(eh(t)− eh(tk))>(Ah(t)− A)]x(t).

The third term can be bounded as follows.

E[(eh(t)− eh(tk))>(Ah(t)− A)]x(t)

≤ E[|eh(t)− eh(tk)|‖Ah(t)− A‖]|x(t)|

≤
√
E[|eh(t)− eh(tk)|2]E[‖Ah(t)− A‖2]|x(t)|

≤ C[‖A‖,T ,u]hVar[Ah].

Conclusion:

E[|xh(t)− x(t)|2] ≤ C[‖A‖,T ,u]hVar[Ah].
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Numerical example

Consider a heat equation on V = [−L, L]3,

yt(t, ξ) = ∆y(t, ξ), ξ ∈ [−L, L]3,

∇y(t, ξ) · n = u(t), ξ ∈ Stop,

∇y(t, ξ) · n = 0, ξ ∈ ∂V \Stop,
y(0, ξ) = e−|ξ|

2/(8L2),

where Stop = {(ξ1, ξ2, ξ3) ∈ [−L, L]3 | ξ3 = L}. Minimize

J = 1000

∫ T

0

∫∫

Sside

(y(t, ξ))2 dξ dt +

∫ T

0
(u(t))2 dt,

where Sside = {(ξ1, ξ2, ξ3) ∈ [−L, L]3 | ξ1 = −L}.
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Spatial discretization and splitting

The PDE is discretized by finite differences.

The A-matrix is the graph-Laplacian for

A1

A2

A3

N = 163 = 4, 096
11, 520 edges

The splitting A =
∑M

m=1 Am is obtained by (randomly) dividing
the edges in the graph into M(� N) subgroups of equal size.
(These subgroups are fixed during the application of the RBM)
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Convergence rate

E[|u∗h − u∗|2L2(0,T ;Rq)] ≤ ChVar[Ah]
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100

√
hVarW [A]

|u
∗ h
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−
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2
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[tk−1, tk), we P of the
M submatrices Am are
used simulteneously.
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Computational cost
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In each time interval
[tk−1, tk), we P of the
M submatrices Am are
used simulteneously.

The computational cost
can be reduced by a
factor 3.
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Open questions

Extension to infinite dimensional systems
Main obstruction in Step 1:
‖A‖ appears when estimating E[|eh(t)− eh(tk)|2]
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Extension to nonlinear systems
Relevant for interacting-particle systems and neural ODEs.

Main obstruction in Step 2: stochastic controls
Also convexity is lost ⇒ Step 3b does not apply anymore.

Combination with Model Predictive Control
Novel analysis of MPC in the LQ-setting was developed.

[Veldman, Zuazua, https://arxiv.org/abs/2206.01097, 2022]

Convergence of RBM-MPC in the LQ setting in the MSc
internship Alexandra Borkowski. Nonlinear setting still open.
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The RBM for hyperbolic systems

Consider the transport equation

yt(t, x) + v(x)yx(t, x) = 0, t ∈ (0,T ), x ∈ R,
y(0, x) = y0(x), x ∈ R,

where v(x) is bounded an Lipschitz and y0 is C 1.

Note: the operator v(x) ∂
∂x is unbounded.

⇒ Convergence proof from before breaks down.

The solution y(t, x) is given by

y(t, x) = y0(ξ(0; t, x)),

where ξ(s; t, x) is the solution of the ODE

d
ds ξ(s; t, x) = v(ξ(s; t, x)), ξ(t; t, x) = x .
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The RBM for hyperbolic systems

We split the generator of the semi-group as

−v(x)
∂

∂x︸ ︷︷ ︸
A

=
M∑

m=1

−vm(x)
∂

∂x︸ ︷︷ ︸
Am

,

where the vm(x) are Lipschitz and bounded and consider as before

Ah(ω, t) =
∑

m∈Sωk

Am

πm
, t ∈ [tk−1, tk).
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The RBM for hyperbolic systems

We thus consider the randomized transport equation

yt(ω, t, x) + vh(ω, x)yx(ω, t, x) = 0, t ∈ (0,T ), x ∈ R,
y(ω, 0, x) = y0(x), x ∈ R,

where

vh(ω, x) =
∑

m∈Sωk

vm(x)

πm
, t ∈ [tk−1, tk).

The solution yh(ω, t, x) is given by

yh(ω, t, x) = y0(ξ(ω, 0; t, x)),

where ξh(ω, s; t, x) is the solution of the ODE

d
ds ξh(ω, s; t, x) = vh(ω, ξh(ω, s; t, x)), ξ(ω, t; t, x) = x .
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The RBM for hyperbolic systems

Consider the two systems of characteristics
d
ds ξ(s; t, x) = v(ξ(s; t, x)), ξ(t; t, x) = x ,
d
ds ξh(ω, s; t, x) = vh(ω, ξh(ω, s; t, x)), ξ(ω, t; t, x) = x .

Lemma

If v(x) and the vm(x) are bounded and Lipschitz, ∃ a C s.t.

E[|ξh(s; t, x)− ξ(s; t, x)|2] ≤ C[t−s]h.

As a consequence
|yh(ω, t, x)− y(t, x)| = |y0(ξh(ω, 0; t, x))− y0(ξ(0; t, x))|

≤ |y0|C1 |ξh(ω, 0; t, x)− ξ(0; t, x)|.
E[|yh(t, x)− y(t, x)|2] ≤ |y0|2C1C[t]h.
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Visualization

v(x) = v̄ = v1(x) + v2(x)
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Remarks and outlook

‘Easy’ extensions:

bounded domains x ∈ (0, L).

n-dimensional spatial domains

yt(t, ~x) = ~v(~x) · ∇~xy(t, ~x).

systems of linear transport
equations

~yt(t, x) = A(x)~yx(t, x).

(Much) more challenging:

Removing the Lipschitz conditions
(networks of transport equations)

Weaker notions of solutions.

Nonlinear transport equations / conservation laws
In particular, networks of incompressible Euler equations
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