Random Batch Methods for the Efficient Solution of Optimal Control Problems on Networks

Daniël Veldman (joint work with Enrique Zuazua)

Chair in Dynamics, Control, and Numerics Friedrich-Alexander Universität Erlangen-Nürnberg

August 24, 2022

Daniël Veldman

IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain

Initial Motivation: Simulation and control of large *interacting particle systems* can be computationally demanding.

Initial Motivation: Simulation and control of large *interacting particle systems* can be computationally demanding.

There are N(N-1)/2 interaction forces between N particles. \Rightarrow Computational cost grows rapidly when N is large.

Proposed simulation method: The Random Batch Method

[Shi Jin, Lei Li, Jian-Guo Liu, J. of Computational Physics 400, 108877, 2020]

Proposed simulation method: The Random Batch Method

[Shi Jin, Lei Li, Jian-Guo Liu, J. of Computational Physics 400, 108877, 2020]

Proposed simulation method: The Random Batch Method

[Shi Jin, Lei Li, Jian-Guo Liu, J. of Computational Physics 400, 108877, 2020]

- Divide the N particles randomly into batches of size $P \ge 2$.
- Consider only interactions between particles in the same batch.

Proposed simulation method: The Random Batch Method

[Shi Jin, Lei Li, Jian-Guo Liu, J. of Computational Physics 400, 108877, 2020]

- Divide the N particles randomly into batches of size $P \ge 2$.
- Consider only interactions between particles in the same batch.
- Do a simulation over a short time interval of length *h*.

Proposed simulation method: The Random Batch Method

[Shi Jin, Lei Li, Jian-Guo Liu, J. of Computational Physics 400, 108877, 2020]

- Divide the N particles randomly into batches of size $P \ge 2$.
- Consider only interactions between particles in the same batch.
- Do a simulation over a short time interval of length h.
- Repeat.

Proposed simulation method: The Random Batch Method

[Shi Jin, Lei Li, Jian-Guo Liu, J. of Computational Physics 400, 108877, 2020]

- Divide the N particles randomly into batches of size $P \ge 2$.
- Consider only interactions between particles in the same batch.
- Do a simulation over a short time interval of length h.
- Repeat.

Proposed simulation method: The Random Batch Method

[Shi Jin, Lei Li, Jian-Guo Liu, J. of Computational Physics 400, 108877, 2020]

- Divide the *N* particles randomly into batches of size *P* ≥ 2.
- Consider only interactions between particles in the same batch.
- Do a simulation over a short time interval of length h.
- Repeat.

 Introduction
 The RBM in LQOC
 Numerical example
 Perspectives

 0000
 00000000000
 0000
 00000000

In formulas

First-order particle dynamics: For each particle $i \in \{1, 2, ..., N\}$

$$\dot{x}_i(t) = rac{1}{N-1} \sum_{\substack{j=1 \ i \neq i}}^N f_{ij}(x_j(t) - x_i(t)).$$

h Method.

Random Batch Method.

- 1 Set k = 0 and set $\tilde{x}_i(0)$ for all $i \in \{1, 2, \dots, N\}$.
- 2 Partition $\{1, 2, \dots, N\}$ into batches of size $P \ge 2$, i.e.

$$\{1,2,\ldots,N\} = \bigcup_{b=1}^{N/P} \mathcal{B}_b^k, \qquad |\mathcal{B}_b^k| = P.$$

Daniël Veldman IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain

 Introduction
 The RBM in LQOC
 Numerical example
 Perspectives

 0000
 00000000000
 0000
 000000000

In formulas

First-order particle dynamics: For each particle $i \in \{1, 2, ..., N\}$

$$\dot{x}_i(t) = rac{1}{N-1} \sum_{\substack{j=1 \ i \neq i}}^N f_{ij}(x_j(t) - x_i(t)).$$

h Method.

Random Batch Method.

- 1 Set k = 0 and set $\tilde{x}_i(0)$ for all $i \in \{1, 2, \dots, N\}$.
- 2 Partition $\{1, 2, \dots, N\}$ into batches of size $P \ge 2$, i.e.

$$\{1,2,\ldots,N\} = \bigcup_{b=1}^{N/P} \mathcal{B}_b^k, \qquad |\mathcal{B}_b^k| = P.$$

3 For each *i*, solve on [kh, (k+1)h]

$$\dot{x}_{h,i}(t) = \frac{1}{P-1} \sum_{j \in \mathcal{B}_{b(i)}^k, \ j \neq i} f_{ij}(x_{h,j}(t) - x_{h,i}(t)), \qquad b(i) \text{ s.t. } i \in \mathcal{B}_{b(i)}^k.$$

4 Set $k \leftarrow k + 1$ and go to step 2.

Daniël Veldman

IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain

The Random Batch Method in Optimal Control

Instead of computing the minimizer $u^*(t)$ of

$$J = \int_0^T f_0(x(t), u(t)) \, \mathrm{d}t,$$

subject to

$$\dot{x}_i(t) = \frac{1}{N-1} \sum_{\substack{j=1 \ j \neq i}}^N f_{ij}(x_j(t) - x_i(t)) + \sum_{k=1}^M g_{ik}(x_i(t))u_k(t),$$

it is faster to compute the minimizer $u_h^*(t)$ of J subject to

$$\dot{x}_{h,i}(t) = rac{1}{P-1} \sum_{\substack{j \in \mathcal{B}_{b(i)}^k \\ i \neq i}} f_{ij}(x_{h,j}(t) - x_{h,i}(t)) + \sum_{k=1}^{M} g_{ik}(x_i(t)) u_{h,k}(t).$$

[D. Ko, E. Zuazua, Math. Models Methods Appl. Sci., Vol. 31, No. 8, 2021].

The RBM in linear-quadratic optimal control (1/2)

RBM to approximate the minimizer $u^*(t)$ of

$$\min_{\substack{u \in L^2(0,T;\mathbb{R}^q)}} J(u) = \int_0^T \left(|x(t) - x_d(t)|_Q^2 + |u(t)|_R^2 \right) dt,$$

$$\dot{x}(t) = Ax(t) + Bu(t), \qquad x(0) = x_0.$$

The RBM in linear-quadratic optimal control (1/2)

RBM to approximate the minimizer $u^*(t)$ of

$$\min_{\substack{u \in L^2(0,T;\mathbb{R}^q)}} J(u) = \int_0^T \left(|x(t) - x_d(t)|_Q^2 + |u(t)|_R^2 \right) dt,$$

$$\dot{x}(t) = Ax(t) + Bu(t), \qquad x(0) = x_0.$$

Step 1 Split the matrix A as

$$A=\sum_{m=1}^M A_m.$$

The RBM in linear-quadratic optimal control (1/2)

RBM to approximate the minimizer $u^*(t)$ of

$$\min_{\substack{u \in L^2(0,T;\mathbb{R}^q)}} J(u) = \int_0^T \left(|x(t) - x_d(t)|_Q^2 + |u(t)|_R^2 \right) dt,$$

$$\dot{x}(t) = Ax(t) + Bu(t), \qquad x(0) = x_0.$$

Step 1 Split the matrix A as

$$A=\sum_{m=1}^M A_m.$$

Step 2 Enumerate the 2^M subsets of $\{1, 2, \ldots, M\}$ as $S_1, S_2, \ldots, S_{2^M}$. Assign to each subset S_ω a probability p_ω .

Daniël Veldman IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain

The RBM in linear-quadratic optimal control (1/2)

RBM to approximate the minimizer $u^*(t)$ of

$$\min_{\substack{u \in L^2(0,T;\mathbb{R}^q)}} J(u) = \int_0^T \left(|x(t) - x_d(t)|_Q^2 + |u(t)|_R^2 \right) dt,$$

$$\dot{x}(t) = Ax(t) + Bu(t), \qquad x(0) = x_0.$$

Step 1 Split the matrix A as

$$A=\sum_{m=1}^M A_m.$$

- Step 2 Enumerate the 2^M subsets of $\{1, 2, \ldots, M\}$ as $S_1, S_2, \ldots, S_{2^M}$. Assign to each subset S_ω a probability p_ω .
- Step 3 Divide [0,T] into K subintervals $[t_{k-1}, t_k)$ of length $\leq h$. For each $[t_{k-1}, t_k)$, randomly choose an index $\omega_k \in \{1, 2, \dots, 2^M\}$ according to the probabilities p_ℓ . Set $\boldsymbol{\omega} = (\omega_1, \omega_2, \dots, \omega_K)$.

The RBM in linear-quadratic optimal control (2/2)

Step 4 Define the matrix $A_h(\omega, t)$

$$A_h(\omega,t) = \sum_{m\in S_{\omega_k}} rac{A_m}{\pi_m}, \qquad t\in [t_{k-1},t_k),$$

where π_m is the probability that *m* is an element of the selected subset, i.e.

$$\pi_m = \sum_{\omega \in \{\omega \mid m \in S_\omega\}} p_\omega.$$

The RBM in linear-quadratic optimal control (2/2)

Step 4 Define the matrix $A_h(\omega, t)$

$$A_h(oldsymbol{\omega},t) = \sum_{m\in S_{\omega_k}}rac{A_m}{\pi_m}, \qquad t\in [t_{k-1},t_k),$$

where π_m is the probability that *m* is an element of the selected subset, i.e.

$$\pi_m = \sum_{\omega \in \{\omega \mid m \in S_\omega\}} p_\omega.$$

Step 5 Compute the minimizer $u_h^*(\omega, t)$ of the 'simpler' LQR problem

$$\min_{u \in L^2(0,T;\mathbb{R}^q)} J_h(\omega, u) = \int_0^T \left(|x_h(\omega, t) - x_d(t)|_Q^2 + |u(t)|_R^2 \right) dt,$$
$$\dot{x}_h(\omega, t) = A_h(\omega, t) x_h(\omega, t) + Bu(t), \qquad x_h(\omega, 0) = x_0.$$

	The RBM in LQOC	
0000	0000000000	0000

Split A into M = 2 pieces as

$$A=A_1+A_2.$$

Split A into M = 2 pieces as

 $A = A_1 + A_2.$ Then there are $2^M = 4$ subsets S_{ω} , $\omega \in \{1, 2, 3, 4\}$. $S_1 = \{1\}, \qquad S_2 = \{2\}, \qquad S_3 = \{1, 2\}, \qquad S_4 = \emptyset.$

Split A into M = 2 pieces as

$$A=A_1+A_2.$$

Then there are $2^M = 4$ subsets S_{ω} , $\omega \in \{1, 2, 3, 4\}$.

$$S_1 = \{1\}, \qquad S_2 = \{2\}, \qquad S_3 = \{1, 2\}, \qquad S_4 = \emptyset.$$

We assign the probabilities p_{ω} , $\omega \in \{1, 2, 3, 4\}$.

$$p_1 = \frac{1}{2}, \qquad p_2 = \frac{1}{2}, \qquad p_3 = 0, \qquad p_4 = 0.$$

Daniël Veldman IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain

Split A into M = 2 pieces as

$$A=A_1+A_2.$$

Then there are $2^M = 4$ subsets S_{ω} , $\omega \in \{1, 2, 3, 4\}$.

$$S_1 = \{1\}, \qquad S_2 = \{2\}, \qquad S_3 = \{1, 2\}, \qquad S_4 = \emptyset.$$

We assign the probabilities p_{ω} , $\omega \in \{1, 2, 3, 4\}$.

$$p_1 = \frac{1}{2}, \qquad p_2 = \frac{1}{2}, \qquad p_3 = 0, \qquad p_4 = 0.$$

The probabilities π_m , $m \in \{1,2\}$ are then

$$\pi_1 = p_1 + p_3 = \frac{1}{2}, \qquad \pi_2 = p_2 + p_3 = \frac{1}{2}.$$

Daniël Veldman

IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain

Split A into M = 2 pieces as

$$A=A_1+A_2.$$

Then there are $2^M = 4$ subsets S_{ω} , $\omega \in \{1, 2, 3, 4\}$.

$$S_1 = \{1\}, \qquad S_2 = \{2\}, \qquad S_3 = \{1, 2\}, \qquad S_4 = \emptyset.$$

We assign the probabilities p_{ω} , $\omega \in \{1, 2, 3, 4\}$.

$$p_1 = \frac{1}{2}, \qquad p_2 = \frac{1}{2}, \qquad p_3 = 0, \qquad p_4 = 0.$$

The probabilities $\pi_m, \ m \in \{1,2\}$ are then

$$\pi_1 = p_1 + p_3 = \frac{1}{2}, \qquad \pi_2 = p_2 + p_3 = \frac{1}{2}.$$

The randomized matrix A-matrix is thus given by

$$A_h(\boldsymbol{\omega},t)=2A_{\omega_k}, \qquad t\in[t_{k-1},t_k), \omega_k\in\{1,2\}.$$

Daniël Veldman

IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain

An intuitive convergence argument

In addition to the previous example, assume that

■ A₁ and A₂ commute,

• that the time grid is uniform, i.e., $t_k = kh$, where h = T/K. Then,

$$e^{\int_0^T A_h(\omega,t) \, \mathrm{d}t} = e^{2A_{\omega_1}h} e^{2A_{\omega_2}h} e^{2A_{\omega_3}h} \cdots e^{2A_{\omega_K}h}$$
$$= e^{2A_1T_1 + 2A_2T_2}$$

where

$$T_1 = h \sum_{i=1}^{K} \chi_1(\omega_i), \qquad T_2 = h \sum_{i=1}^{K} \chi_2(\omega_i).$$

By the law of large numbers, $T_1, T_2 \rightarrow T/2$ for $K \rightarrow \infty$.

Properties of the matrix $A_h(\omega, t)$

• The construction of $A_h(\omega, t)$ assures that

$$\mathbb{E}[A_h(t)]=A.$$

Proof: For $t \in [t_{k-1}, t_k)$, $A_h(\omega, t) = \sum_{m \in S_{\omega_k}} \frac{A_m}{\pi_m}$ only depends on ω_k . Therefore,

$$\mathbb{E}[A_h(t)] = \sum_{\omega=1}^{2^M} \sum_{m \in S_\omega} \frac{A_m}{\pi_m} p_\omega = \sum_{m=1}^M \sum_{\omega \in \{\omega \mid m \in S_\omega\}} \frac{A_m}{\pi_m} p_\omega$$
$$= \sum_{m=1}^M \frac{A_m}{\pi_m} \sum_{\omega \in \{\omega \mid m \in S_\omega\}} p_\omega = \sum_{m=1}^M \frac{A_m}{\pi_m} \pi_m = \sum_{m=1}^M A_m = A.$$

Daniël Veldman

IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain

Properties of the matrix $A_h(\omega, t)$

• The construction of $A_h(\omega, t)$ assures that

$$\mathbb{E}[A_h(t)]=A.$$

Proof: For $t \in [t_{k-1}, t_k)$, $A_h(\omega, t) = \sum_{m \in S_{\omega_k}} \frac{A_m}{\pi_m}$ only depends on ω_k . Therefore,

$$\mathbb{E}[A_h(t)] = \sum_{\omega=1}^{2^M} \sum_{m \in S_\omega} \frac{A_m}{\pi_m} p_\omega = \sum_{m=1}^M \sum_{\omega \in \{\omega \mid m \in S_\omega\}} \frac{A_m}{\pi_m} p_\omega$$
$$= \sum_{m=1}^M \frac{A_m}{\pi_m} \sum_{\omega \in \{\omega \mid m \in S_\omega\}} p_\omega = \sum_{m=1}^M \frac{A_m}{\pi_m} \pi_m = \sum_{m=1}^M A_m = A.$$
We also define
$$\operatorname{Var}[A_h] = \mathbb{E}[\|A_h(t) - A\|^2] = \sum_{\omega=1}^{2^M} \left\| \sum_{m \in S_\omega} \frac{A_m}{\pi_m} - A \right\|^2 p_\omega.$$

Daniël Veldman

IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain

Theorem (D.V., E. Zuazua, Numerische Mathematik, 2022)

- For a deterministic control u(t)
 - $\mathbb{E}[|x_h(t) x(t)|^2] \le h \text{Var}[A_h](\|A\|t^2 + 2t)(|x_0| + |Bu|_{L^1})^2.$

• For a stochastic control $u_h(\omega, t)$ satisfying $|Bu_h(\omega)|_{L^2} \leq U$

$$\mathbb{E}[|x_h(t) - x(t)|^2] \leq C_{[\mathcal{T}, ||A||]} h \operatorname{Var}[A_h](x_0 + U\sqrt{t}).$$

Optimality gap

$$\mathbb{E}[|J_h(u_h^*) - J(u^*)|] \leq C\left(\sqrt{h \mathrm{Var}[\mathcal{A}_h]} + h \mathrm{Var}[\mathcal{A}_h]
ight).$$

Convergence in the controls

$$\mathbb{E}[|u_h^* - u^*|_{L^2}^2] \le Ch \operatorname{Var}[A_h].$$

Daniël Veldman

IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain

Structure of the proof (1/2)

1 We give a bound for $\mathbb{E}[|x_h(t) - x(t)|^2]$ where

$$\begin{split} \dot{x}_h(\omega,t) &= A_h(\omega,t) x_h(\omega,t) + B u(t), \qquad x_h(\omega,0) = x_0, \\ \dot{x}(t) &= A x(t) + B u(t), \qquad x(0) = x_0. \end{split}$$

Note: the control u(t) is deterministic (independent of ω).

Structure of the proof (1/2)

1 We give a bound for $\mathbb{E}[|x_h(t) - x(t)|^2]$ where

$$\begin{split} \dot{x}_h(\omega,t) &= A_h(\omega,t) x_h(\omega,t) + B u(t), \qquad x_h(\omega,0) = x_0, \\ \dot{x}(t) &= A x(t) + B u(t), \qquad x(0) = x_0. \end{split}$$

Note: the control u(t) is deterministic (independent of ω). 2 We give a bound for $\mathbb{E}[|x_h(t) - x(t)|^2]$ where

$$\begin{split} \dot{x}_h(\omega,t) &= A_h(\omega,t) x_h(\omega,t) + B u_h(\omega,t), \qquad x_h(\omega,0) = x_0, \\ \dot{x}(\omega,t) &= A x(\omega,t) + B u_h(\omega,t), \qquad \qquad x(\omega,0) = x_0, \end{split}$$

Note: the control $u(\omega, t)$ is stochastic.

Daniël Veldman

IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain

Structure of the proof (1/2)

1 We give a bound for $\mathbb{E}[|x_h(t) - x(t)|^2]$ where

$$\begin{split} \dot{x}_h(\omega,t) &= A_h(\omega,t) x_h(\omega,t) + B u(t), \qquad x_h(\omega,0) = x_0, \\ \dot{x}(t) &= A x(t) + B u(t), \qquad x(0) = x_0. \end{split}$$

Note: the control u(t) is deterministic (independent of ω). 2 We give a bound for $\mathbb{E}[|x_h(t) - x(t)|^2]$ where

$$\dot{x}_h(\omega, t) = A_h(\omega, t) x_h(\omega, t) + B u_h(\omega, t), \qquad x_h(\omega, 0) = x_0, \ \dot{x}(\omega, t) = A x(\omega, t) + B u_h(\omega, t), \qquad x(\omega, 0) = x_0,$$

Note: the control $u(\omega, t)$ is stochastic.

3a Using 2 we obtain a bound for $\mathbb{E}[|J_h(u_h) - J(u_h)|]$ for any stochastic control u_h . A Γ -convergence argument then gives

$$\mathbb{E}[|J_h(u_h^*) - J(u^*)|].$$

Daniël Veldman

IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain

Structure of the proof (2/2)

3b Using 2 we obtain a bound for

$$\mathbb{E}[|\delta J_h(u; v_h) - \delta J(u, v_h)|] \leq C \sqrt{h \operatorname{Var}[A_h] \mathbb{E}[|v_h|^2_{L^2(0, T; \mathbb{R}^q)}]},$$

for any deterministic control u and any stochastic control v_h .

Setting $u(t) = u^*(t)$ and $v_h(\omega, t) = u_h^*(\omega, t) - u^*(t)$, the **convexity** of the functional $J_h(\omega, \cdot)$ yields a bound for

$$\mathbb{E}[|u_{h}^{*}-u^{*}|^{2}_{L^{2}(0,T;\mathbb{R}^{q})}].$$

Daniël Veldman

IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain

Structure of the proof (2/2)

3b Using 2 we obtain a bound for

$$\mathbb{E}[|\delta J_h(u; v_h) - \delta J(u, v_h)|] \leq C \sqrt{h \operatorname{Var}[A_h] \mathbb{E}[|v_h|^2_{L^2(0, T; \mathbb{R}^q)}]},$$

for any deterministic control u and any stochastic control v_h .

Setting $u(t) = u^*(t)$ and $v_h(\omega, t) = u_h^*(\omega, t) - u^*(t)$, the **convexity** of the functional $J_h(\omega, \cdot)$ yields a bound for

$$\mathbb{E}[|u_{h}^{*}-u^{*}|_{L^{2}(0,T;\mathbb{R}^{q})}^{2}].$$

As a consequence, we also get a bound for

$$\mathbb{E}[|J(u_h^*) - J(u^*)|].$$

Daniël Veldman

IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain

Sketch of proof for Step 1 (1/4)

$$\begin{split} \dot{x}_h(\omega,t) &= A_h(\omega,t) x_h(\omega,t) + B u(t), \qquad & x_h(\omega,0) = x_0, \\ \dot{x}(t) &= A x(t) + B u(t), \qquad & x(0) = x_0. \end{split}$$

Sketch of proof for Step 1 (1/4)

$$\begin{split} \dot{x}_h(\omega,t) &= A_h(\omega,t) x_h(\omega,t) + B u(t), \qquad & x_h(\omega,0) = x_0, \\ \dot{x}(t) &= A x(t) + B u(t), \qquad & x(0) = x_0. \end{split}$$

Define $e_h(\omega, t) := x_h(\omega, t) - x(t)$. Then

$$\dot{e}_h(\omega,t) = A_h(\omega,t) x_h(\omega,t) - A x(t)$$

= $A_h(\omega,t) e_h(\omega,t) + (A_h(\omega,t) - A) x(t), \quad e_h(\omega,0) = 0.$

Sketch of proof for Step 1 (1/4)

$$\dot{x}_h(\omega, t) = A_h(\omega, t) x_h(\omega, t) + Bu(t), \qquad x_h(\omega, 0) = x_0, \\ \dot{x}(t) = Ax(t) + Bu(t), \qquad x(0) = x_0.$$

Define $e_h(\omega, t) := x_h(\omega, t) - x(t)$. Then

$$\dot{e}_h(\omega,t) = A_h(\omega,t) x_h(\omega,t) - A x(t)$$

= $A_h(\omega,t) e_h(\omega,t) + (A_h(\omega,t) - A) x(t), \quad e_h(\omega,0) = 0.$

and also (for $t \in [t_{k-1}, t_k)$)

$$egin{aligned} & rac{d}{dt}|e_h(\omega,t)|^2 = e_h(\omega,t)^ op A_h(\omega,t)e_h(\omega,t) \ & + e_h(\omega,t_k)^ op (A_h(\omega,t)-A)x(t) \ & + (e_h(\omega,t)-e_h(\omega,t_k))^ op (A_h(\omega,t)-A)x(t). \end{aligned}$$

Daniël Veldman

IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain Random Batch Methods for the Efficient Solution of Optimal Control Problems on Networks

Sketch of proof for Step 1 (2/4)

$$egin{aligned} &rac{d}{dt}|e_h(\omega,t)|^2 = e_h(\omega,t)^ op A_h(\omega,t)e_h(\omega,t)\ &+ e_h(\omega,t_k)^ op (A_h(\omega,t)-A)x(t)\ &+ (e_h(\omega,t)-e_h(\omega,t_k))^ op (A_h(\omega,t)-A)x(t). \end{aligned}$$

Sketch of proof for Step 1 (2/4)

$$egin{aligned} &rac{d}{dt}|e_h(\omega,t)|^2 = e_h(\omega,t)^ op A_h(\omega,t)e_h(\omega,t)\ &+ e_h(\omega,t_k)^ op (A_h(\omega,t)-A)x(t)\ &+ (e_h(\omega,t)-e_h(\omega,t_k))^ op (A_h(\omega,t)-A)x(t). \end{aligned}$$

The **first term** is bounded by a (quasi-)dissipative assumption:

• Assumption: the matrices A_m are dissipative, i.e.

$$\langle x, A_m x \rangle \leq 0, \qquad \forall m \in \{1, 2, \dots, M\}, x \in \mathbb{R}^N.$$

Then $A_h(\omega, t) = \sum_{m \in S_{\omega_k}} \frac{1}{\pi_m} A_m$ is also dissipative.

Daniël Veldman

IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain

Sketch of proof for Step 1 (2/4)

$$egin{aligned} &rac{d}{dt}|e_h(\omega,t)|^2 = e_h(\omega,t)^ op A_h(\omega,t)e_h(\omega,t)\ &+ e_h(\omega,t_k)^ op (A_h(\omega,t)-A)x(t)\ &+ (e_h(\omega,t)-e_h(\omega,t_k))^ op (A_h(\omega,t)-A)x(t). \end{aligned}$$

The **first term** is bounded by a (quasi-)dissipative assumption:

• Assumption: the matrices A_m are dissipative, i.e.

$$\langle x, A_m x \rangle \leq 0, \qquad \forall m \in \{1, 2, \dots, M\}, x \in \mathbb{R}^N.$$

Then $A_h(\boldsymbol{\omega}, t) = \sum_{m \in S_{\omega_i}} \frac{1}{\pi_m} A_m$ is also dissipative. Alternative: there exists a $a \in \mathbb{R}$ such that

$$\sum_{m\in \mathcal{S}_{\omega}}\frac{1}{\pi_m}\langle x, \mathcal{A}_m x\rangle \leq a|x|^2, \qquad \forall \omega \in \{1, 2, \dots, 2^M\}, x \in \mathbb{R}^N.$$

Daniël Veldman

IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain Random Batch Methods for the Efficient Solution of Optimal Control Problems on Networks 15/28

Sketch of proof for Step 1 (3/4)

$$egin{aligned} &rac{d}{dt}|e_h(\omega,t)|^2 \leq 0 \ &+ e_h(\omega,t_k)^ op (A_h(\omega,t)-A)x(t) \ &+ (e_h(\omega,t)-e_h(\omega,t_k))^ op (A_h(\omega,t)-A)x(t). \end{aligned}$$

Sketch of proof for Step 1 (3/4)

$$egin{aligned} &rac{d}{dt}|e_h(\omega,t)|^2 \leq 0 \ &+ e_h(\omega,t_k)^ op (A_h(\omega,t)-A)x(t) \ &+ (e_h(\omega,t)-e_h(\omega,t_k))^ op (A_h(\omega,t)-A)x(t). \end{aligned}$$

The **second term** vanishes in expectation.

Observe: For $t \in [t_k, t_{k+1})$, • $A_h(\boldsymbol{\omega}, t)$ depends only on ω_k

• $e_h(\omega, t_k)$ depends only on $\omega_1, \omega_2, \ldots, \omega_{k-1}$. Therefore,

$$\mathbb{E}[e_h(t_k)^\top (A_h(t)-A)] = \mathbb{E}[e_h(t_k)^\top] \mathbb{E}[A_h(t)-A] = \mathbb{E}[e_h(t_k)^\top] \cdot 0 = 0.$$

Daniël Veldman

IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain Random Batch Methods for the Efficient Solution of Optimal Control Problems on Networks 16/28

Sketch of proof for Step 1 (3/4)

$$egin{aligned} &rac{d}{dt}\mathbb{E}[|e_h(t)|^2] \leq 0 \ &+\mathbb{E}[e_h(t_k)^ op(A_h(t)-A)]x(t) \ &+\mathbb{E}[(e_h(t)-e_h(t_k))^ op(A_h(t)-A)]x(t)] \end{aligned}$$

The **second term** vanishes in expectation.

Observe: For $t \in [t_k, t_{k+1})$, • $A_h(\boldsymbol{\omega}, t)$ depends only on ω_k • $e_h(\omega, t_k)$ depends only on $\omega_1, \omega_2, \ldots, \omega_{k-1}$. Therefore,

$$\mathbb{E}[e_h(t_k)^\top (A_h(t)-A)] = \mathbb{E}[e_h(t_k)^\top] \mathbb{E}[A_h(t)-A] = \mathbb{E}[e_h(t_k)^\top] \cdot 0 = 0.$$

Daniël Veldman

IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain Random Batch Methods for the Efficient Solution of Optimal Control Problems on Networks 16/28 .

Sketch of proof for Step 1 (4/4)

$$egin{aligned} &rac{d}{dt} \mathbb{E}[|e_h(t)|^2] \leq 0 \ &+ 0 \ &+ \mathbb{E}[(e_h(t) - e_h(t_k))^ op (A_h(t) - A)]x(t). \end{aligned}$$

The third term can be bounded as follows.

$$\begin{split} \mathbb{E}[(e_h(t) - e_h(t_k))^\top (A_h(t) - A)] & \times(t) \\ & \leq \mathbb{E}[|e_h(t) - e_h(t_k)| \|A_h(t) - A\|] | \times(t)| \\ & \leq \sqrt{\mathbb{E}[|e_h(t) - e_h(t_k)|^2] \mathbb{E}[\|A_h(t) - A\|^2]} | \times(t)| \\ & \leq C_{[\|A\|, \mathcal{T}, u]} h \operatorname{Var}[A_h]. \end{split}$$

Daniël Veldman IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain

Sketch of proof for Step 1 (4/4)

$$egin{aligned} &rac{d}{dt} \mathbb{E}[|e_h(t)|^2] \leq 0 \ &+ 0 \ &+ \mathbb{E}[(e_h(t) - e_h(t_k))^ op (A_h(t) - A)]x(t). \end{aligned}$$

The third term can be bounded as follows.

$$\begin{split} \mathbb{E}[(e_h(t) - e_h(t_k))^\top (A_h(t) - A)] x(t) \\ &\leq \mathbb{E}[|e_h(t) - e_h(t_k)| \|A_h(t) - A\|] |x(t)| \\ &\leq \sqrt{\mathbb{E}[|e_h(t) - e_h(t_k)|^2] \mathbb{E}[\|A_h(t) - A\|^2]} |x(t)| \\ &\leq C_{[\|A\|, T, u]} h \operatorname{Var}[A_h]. \end{split}$$

Conclusion:

.

$$\mathbb{E}[|x_h(t) - x(t)|^2] \leq C_{[\|A\|, T, u]} h \operatorname{Var}[A_h].$$

Daniël Veldman

IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain

Numerical example

Consider a heat equation on $V = [-L, L]^3$,

$$\begin{split} y_t(t,\boldsymbol{\xi}) &= \Delta y(t,\boldsymbol{\xi}), & \boldsymbol{\xi} \in [-L,L]^3, \\ \nabla y(t,\boldsymbol{\xi}) \cdot \mathbf{n} &= u(t), & \boldsymbol{\xi} \in S_{\text{top}}, \\ \nabla y(t,\boldsymbol{\xi}) \cdot \mathbf{n} &= 0, & \boldsymbol{\xi} \in \partial V \backslash S_{\text{top}}, \\ y(0,\boldsymbol{\xi}) &= e^{-|\boldsymbol{\xi}|^2/(8L^2)}, \end{split}$$

where $S_{top} = \{(\xi_1, \xi_2, \xi_3) \in [-L, L]^3 \mid \xi_3 = L\}$. Minimize

$$J = 1000 \int_0^T \iint_{\mathcal{S}_{\text{side}}} (y(t,\boldsymbol{\xi}))^2 \, \mathrm{d}\boldsymbol{\xi} \, \mathrm{d}t + \int_0^T (u(t))^2 \, \mathrm{d}t,$$

where $S_{\text{side}} = \{ (\xi_1, \xi_2, \xi_3) \in [-L, L]^3 \mid \xi_1 = -L \}.$

Spatial discretization and splitting

The PDE is discretized by finite differences.

Spatial discretization and splitting

The PDE is discretized by finite differences. The *A*-matrix is the graph-Laplacian for

$$N = 16^3 = 4,096$$

11,520 edges

Daniël Veldman IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain

Spatial discretization and splitting

The PDE is discretized by finite differences. The *A*-matrix is the graph-Laplacian for

The splitting $A = \sum_{m=1}^{M} A_m$ is obtained by (randomly) dividing the edges in the graph into $M(\ll N)$ subgroups of equal size. (These subgroups are fixed during the application of the RBM)

Daniël Veldman

IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain

The RBM in LQO

Numerical example

Convergence rate

$$\mathbb{E}[|u_h^* - u^*|^2_{L^2(0,T;\mathbb{R}^q)}] \le Ch \text{Var}[A_h]$$

In each time interval $[t_{k-1}, t_k)$, we *P* of the *M* submatrices A_m are used simulteneously.

Daniël Veldman

IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain

Computational cost

In each time interval $[t_{k-1}, t_k)$, we *P* of the *M* submatrices A_m are used simulteneously.

The computational cost can be reduced by a factor 3.

Daniël Veldman

IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain

Open questions

• Extension to infinite dimensional systems Main obstruction in Step 1:

||A|| appears when estimating $\mathbb{E}[|e_h(t) - e_h(t_k)|^2]$

Open questions

Extension to infinite dimensional systems
 Main obstruction in Step 1:
 ||A|| appears when estimating E[|e_h(t) - e_h(t_k)|²]

 Extension to nonlinear systems

Relevant for interacting-particle systems and neural ODEs. Main obstruction in Step 2: stochastic controls Also convexity is lost \Rightarrow Step 3b does not apply anymore.

Open questions

Extension to infinite dimensional systems Main obstruction in Step 1: ||A|| appears when estimating $\mathbb{E}[|e_h(t) - e_h(t_k)|^2]$

Extension to nonlinear systems
 Relevant for interacting-particle systems and neural ODEs.
 Main obstruction in Step 2: stochastic controls
 Also convexity is lost ⇒ Step 3b does not apply anymore.

 Combination with Model Predictive Control Novel analysis of MPC in the LQ-setting was developed. [Veldman, Zuazua, https://arxiv.org/abs/2206.01097, 2022] Convergence of RBM-MPC in the LQ setting in the MSc internship Alexandra Borkowski. Nonlinear setting still open.

The RBM for hyperbolic systems

Consider the transport equation

$$y_t(t,x) + v(x)y_x(t,x) = 0,$$
 $t \in (0, T), x \in \mathbb{R},$
 $y(0,x) = y_0(x),$ $x \in \mathbb{R},$

where v(x) is bounded an Lipschitz and y_0 is C^1 .

Note: the operator $v(x)\frac{\partial}{\partial x}$ is unbounded. \Rightarrow Convergence proof from before breaks down.

The RBM for hyperbolic systems

Consider the transport equation

$$y_t(t,x) + v(x)y_x(t,x) = 0,$$
 $t \in (0, T), x \in \mathbb{R},$
 $y(0,x) = y_0(x),$ $x \in \mathbb{R},$

where v(x) is bounded an Lipschitz and y_0 is C^1 .

Note: the operator $v(x)\frac{\partial}{\partial x}$ is unbounded. \Rightarrow Convergence proof from before breaks down.

The solution y(t, x) is given by

$$y(t,x) = y_0(\xi(0; t, x)),$$

where $\xi(s; t, x)$ is the solution of the ODE

$$\frac{d}{ds}\xi(s;t,x)=v(\xi(s;t,x)),\qquad \qquad \xi(t;t,x)=x.$$

Daniël Veldman

IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain

The RBM for hyperbolic systems

We split the generator of the semi-group as

where the $v_m(x)$ are Lipschitz and bounded and consider as before

$$A_h(\boldsymbol{\omega},t) = \sum_{m\in S_{\omega_k}} rac{A_m}{\pi_m}, \qquad t\in [t_{k-1},t_k).$$

Daniël Veldman

IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain

The RBM for hyperbolic systems

We thus consider the randomized transport equation

$$egin{aligned} &y_t(oldsymbol{\omega},t,x)+v_h(oldsymbol{\omega},x)y_x(oldsymbol{\omega},t,x)=0, & t\in(0,\,T), x\in\mathbb{R},\ &y(oldsymbol{\omega},0,x)=y_0(x), & x\in\mathbb{R}, \end{aligned}$$

where

$$v_h(\boldsymbol{\omega}, x) = \sum_{m \in S_{\boldsymbol{\omega}_k}} rac{v_m(x)}{\pi_m}, \qquad t \in [t_{k-1}, t_k).$$

The RBM for hyperbolic systems

We thus consider the randomized transport equation

$$egin{aligned} &y_t(oldsymbol{\omega},t,x)+v_h(oldsymbol{\omega},x)y_x(oldsymbol{\omega},t,x)=0, & t\in(0,\mathcal{T}), x\in\mathbb{R}, \ &y(oldsymbol{\omega},0,x)=y_0(x), & x\in\mathbb{R}, \end{aligned}$$

where

$$v_h(\boldsymbol{\omega}, x) = \sum_{m \in S_{\omega_k}} \frac{v_m(x)}{\pi_m}, \qquad t \in [t_{k-1}, t_k).$$

The solution $y_h(\omega, t, x)$ is given by

$$y_h(\boldsymbol{\omega},t,x)=y_0(\xi(\boldsymbol{\omega},0;t,x)),$$

where $\xi_h(\omega, s; t, x)$ is the solution of the ODE

$$\frac{d}{ds}\xi_h(\omega,s;t,x) = v_h(\omega,\xi_h(\omega,s;t,x)), \qquad \xi(\omega,t;t,x) = x.$$

Daniël Veldman

IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain Random Batch Methods for the Efficient Solution of Optimal Control Problems on Networks 25/28

The RBM for hyperbolic systems

Consider the two systems of characteristics $\frac{d}{ds}\xi(s; t, x) = v(\xi(s; t, x)),$ $\frac{d}{ds}\xi_h(\omega, s; t, x) = v_h(\omega, \xi_h(\omega, s; t, x)),$

 $\xi(t; t, x) = x,$ $\xi(\boldsymbol{\omega}, t; t, x) = x.$

The RBM for hyperbolic systems

Consider the two systems of characteristics $\frac{d}{ds}\xi(s;t,x) = v(\xi(s;t,x)), \qquad \xi(t;t,x) = x,$ $\frac{d}{ds}\xi_h(\omega,s;t,x) = v_h(\omega,\xi_h(\omega,s;t,x)), \qquad \xi(\omega,t;t,x) = x.$

Lemma

If v(x) and the $v_m(x)$ are bounded and Lipschitz, $\exists a \ C \ s.t.$

$$\mathbb{E}[|\xi_h(s;t,x)-\xi(s;t,x)|^2] \leq C_{[t-s]}h.$$

The RBM for hyperbolic systems

Consider the two systems of characteristics $\frac{d}{ds}\xi(s;t,x) = v(\xi(s;t,x)),$ $\xi(t;t,x)=x.$ $\xi(\boldsymbol{\omega},t;t,x)=x.$ $\frac{d}{ds}\xi_h(\omega,s;t,x)=v_h(\omega,\xi_h(\omega,s;t,x)),$

Lemma

If v(x) and the $v_m(x)$ are bounded and Lipschitz, $\exists a C s.t.$

$$\mathbb{E}[|\xi_h(s;t,x)-\xi(s;t,x)|^2] \leq C_{[t-s]}h.$$

As a consequence

$$\begin{split} |y_h(\omega, t, x) - y(t, x)| &= |y_0(\xi_h(\omega, 0; t, x)) - y_0(\xi(0; t, x))| \\ &\leq |y_0|_{C^1} |\xi_h(\omega, 0; t, x) - \xi(0; t, x)|. \\ \mathbb{E}[|y_h(t, x) - y(t, x)|^2] &\leq |y_0|_{C^1}^2 C_{[t]} h. \end{split}$$

Daniël Veldman

IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain Random Batch Methods for the Efficient Solution of Optimal Control Problems on Networks 26/28

Numerical example

Visualization

Visualization

Visualization

Remarks and outlook

- 'Easy' extensions:
 - bounded domains $x \in (0, L)$.
 - *n*-dimensional spatial domains

$$y_t(t, \vec{x}) = \vec{v}(\vec{x}) \cdot \nabla_{\vec{x}} y(t, \vec{x}).$$

systems of linear transport equations

$$\vec{y}_t(t,x) = A(x)\vec{y}_x(t,x).$$

Remarks and outlook

- 'Easy' extensions:
 - bounded domains $x \in (0, L)$.
 - *n*-dimensional spatial domains

$$y_t(t, \vec{x}) = \vec{v}(\vec{x}) \cdot \nabla_{\vec{x}} y(t, \vec{x}).$$

 systems of linear transport equations

 $\vec{y}_t(t,x) = A(x)\vec{y}_x(t,x).$

(Much) more challenging:

- Removing the Lipschitz conditions (networks of transport equations)
- Weaker notions of solutions.
- Nonlinear transport equations / conservation laws
 In particular, networks of incompressible Euler equations

Daniël Veldman

IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain

Remarks and outlook

- 'Easy' extensions:
 - bounded domains $x \in (0, L)$.
 - n-dimensional spatial domains

$$y_t(t,\vec{x}) = \vec{v}(\vec{x}) \cdot \nabla_{\vec{x}} y(t,\vec{x}).$$

 systems of linear transport equations

$$\vec{y}_t(t,x) = A(x)\vec{y}_x(t,x).$$

(Much) more challenging:

- Removing the Lipschitz conditions (networks of transport equations)
- Weaker notions of solutions.
- Nonlinear transport equations / conservation laws
 In particular, networks of incompressible Euler equations

 $\varepsilon \approx 0, h = 0.02$

IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain