Damped wave equation with unbounded damping

Petr Siegl

Institute of Applied Mathematics, TU Graz

Based on

- P. Freitas, P. Siegl, and C. Tretter [2018]. "Damped wave equation with unbounded damping". In: J. Differential Equations 264, pp. 7023–7054
- [2] A. Arifoski and P. Siegl [2020]. "Pseudospectra of damped wave equation with unbounded damping". In: SIAM J. Math. Anal. 52, 1343–1362
- [3] P. Freitas, N. Hefti, and P. Siegl [2020]. "Damped wave equation with singular damping". In: Proc. Amer. Math. Soc. 148, pp. 4273–4284
- [4] A. Arnal [2022]. Resolvent estimates for the one-dimensional damped wave equation with unbounded damping. arXiv:2206.08820v1 [math.SP]

Introduction

Damped wave equation in $\Omega \subset \mathbb{R}^d$

$$u_{tt}(t,x) + \frac{2a(x)}{2a(x)}u_t(t,x) = (\Delta - q(x))u(t,x)$$

- $t \in \mathbb{R}_+$ time, $x \in \Omega$ spatial coordinate
- $a: \Omega \to \mathbb{R}_+$ damping, $q: \Omega \to \mathbb{R}_+$ potential
- Dirichlet boundary conditions at $\partial \Omega$ (if $\partial \Omega \neq \emptyset$)

Introduction

Damped wave equation in $\Omega \subset \mathbb{R}^d$

$$u_{tt}(t,x) + \frac{2a(x)}{2a(x)}u_t(t,x) = (\Delta - q(x))u(t,x)$$

- $t \in \mathbb{R}_+$ time, $x \in \Omega$ spatial coordinate
- $a: \Omega \to \mathbb{R}_+$ damping, $q: \Omega \to \mathbb{R}_+$ potential
- Dirichlet boundary conditions at $\partial \Omega$ (if $\partial \Omega \neq \emptyset$)
- very extensive literature on $a \in L^{\infty}(\Omega)$ or "small" w.r.t to Δ

e.g. references in [Gesztesy and Holden, 2011]

• our goal: a can be unbounded at infinity

[Freitas, Siegl, and Tretter, 2018; Ikehata and Takeda, 2020; Sobajima and Wakasugi, 2018]

• for example: $\Omega = \mathbb{R}$ and $a(x) = x^2$, q(x) = 0

Focus of this talk

- spectral and pseudospectral effects caused by unbounded damping
- more on operator theory & functional analysis: talk of B. Gerhat

Towards spectral analysis and semigroups

Operator matrix

$$u_{tt}(t,x) + 2a(x)u_t(t,x) = (\Delta - q(x))u(t,x)$$

• can be rewritten as a system

$$\partial_t \begin{pmatrix} u \\ v \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & I \\ \Delta - q & -2a \end{pmatrix}}_{G} \begin{pmatrix} u \\ v \end{pmatrix}$$

• G acts in a Hilbert space $\mathcal{H} = \mathcal{W}(\Omega) \oplus L^2(\Omega)$ where

$$\mathcal{W}(\Omega) = \overline{C_0^{\infty}(\Omega)}^{(\|\nabla \cdot\|^2 + \|q^{\frac{1}{2}} \cdot\|^2)^{\frac{1}{2}}}$$

• $a = 0 \Longrightarrow iG$ is symmetric w.r.t. $\langle \nabla \cdot, \nabla \cdot \rangle_1 + \langle q^{\frac{1}{2}} \cdot, q^{\frac{1}{2}} \rangle_1 + \langle \cdot, \cdot \rangle_2$

Associated quadratic function

$$T(\lambda) = -\Delta + q + 2\lambda a + \lambda^{2}$$

$$Dom(T(\lambda)) = \{f \in \mathcal{D}(\Omega) : T(\lambda)f \in L^{2}(\Omega)\}$$

$$\mathcal{D}(\Omega) = W_{0}^{1,2}(\Omega) \cap Dom(a^{\frac{1}{2}}) \cap Dom(q^{\frac{1}{2}})$$

• arises for special solutions $e^{\lambda t}u(x)$ (or Schur complement)

Theorem (semigroup, relation of spectra) [Freitas, Siegl, and Tretter, 2018; Gerhat, 2022] Let $0 \leq a, q \in L^1_{loc}(\Omega)$, let T be as above and let

$$G = \begin{pmatrix} 0 & I \\ \Delta - q & -2a \end{pmatrix}$$
$$\operatorname{Dom}(G) = \{(f,g) \in \mathcal{W}(\Omega) \times \mathcal{D}(\Omega) : (\Delta - q)f - 2ag \in L^{2}(\Omega)\}$$

Then

• -G is m-accretive $\rightsquigarrow G$ generates a contraction semigroup in $\mathcal{W}(\Omega) \times L^2(\Omega)$

Theorem (semigroup, relation of spectra) [Freitas, Siegl, and Tretter, 2018; Gerhat, 2022] Let $0 \leq a, q \in L^1_{loc}(\Omega)$, let T be as above and let

$$G = \begin{pmatrix} 0 & I \\ \Delta - q & -2a \end{pmatrix}$$
$$\operatorname{Dom}(G) = \{(f,g) \in \mathcal{W}(\Omega) \times \mathcal{D}(\Omega) : (\Delta - q)f - 2ag \in L^{2}(\Omega)\}$$

Then

- -G is m-accretive $\rightsquigarrow G$ generates a contraction semigroup in $\mathcal{W}(\Omega) \times L^2(\Omega)$
- $\forall \lambda \in \mathbb{C} \setminus (-\infty, 0]$: $\lambda \in \sigma_{\iota}(G) \iff 0 \in \sigma_{\iota}(T(\lambda))$ $\iota \in \{\cdot, \mathbf{p}, \mathrm{ess}\}$

Theorem (semigroup, relation of spectra) [Freitas, Siegl, and Tretter, 2018; Gerhat, 2022] Let $0 \leq a, q \in L^1_{loc}(\Omega)$, let T be as above and let

$$G = \begin{pmatrix} 0 & I \\ \Delta - q & -2a \end{pmatrix}$$
$$\operatorname{Dom}(G) = \{(f,g) \in \mathcal{W}(\Omega) \times \mathcal{D}(\Omega) : (\Delta - q)f - 2ag \in L^{2}(\Omega)\}$$

Then

- -G is m-accretive $\rightsquigarrow G$ generates a contraction semigroup in $\mathcal{W}(\Omega) \times L^2(\Omega)$
- $\forall \lambda \in \mathbb{C} \setminus (-\infty, 0]$: $\lambda \in \sigma_{\iota}(G) \iff 0 \in \sigma_{\iota}(T(\lambda))$ $\iota \in \{\cdot, p, ess\}$
- the spectral correspondence holds also in (-1/M, 0) if

$$\forall f \in \mathcal{D}(\Omega) \quad 2\|a^{\frac{1}{2}}f\|^{2} \le M(\|\nabla f\|^{2} + \|q^{\frac{1}{2}}f\|^{2}) + C\|f\|^{2}$$

[mostly NOT in this talk]

Theorem (semigroup, relation of spectra) [Freitas, Siegl, and Tretter, 2018; Gerhat, 2022] Let $0 \leq a, q \in L^1_{loc}(\Omega)$, let T be as above and let

$$G = \begin{pmatrix} 0 & I \\ \Delta - q & -2a \end{pmatrix}$$
$$\operatorname{Dom}(G) = \{(f,g) \in \mathcal{W}(\Omega) \times \mathcal{D}(\Omega) : (\Delta - q)f - 2ag \in L^{2}(\Omega)\}$$

Then

- -G is m-accretive $\rightsquigarrow G$ generates a contraction semigroup in $\mathcal{W}(\Omega) \times L^2(\Omega)$
- $\forall \lambda \in \mathbb{C} \setminus (-\infty, 0]$: $\lambda \in \sigma_{\iota}(G) \iff 0 \in \sigma_{\iota}(T(\lambda))$ $\iota \in \{\cdot, \mathbf{p}, \mathrm{ess}\}$
- the spectral correspondence holds also in (-1/M, 0) if

$$\forall f \in \mathcal{D}(\Omega) \quad 2\|a^{\frac{1}{2}}f\|^{2} \le M(\|\nabla f\|^{2} + \|q^{\frac{1}{2}}f\|^{2}) + C\|f\|^{2}$$

[mostly NOT in this talk]

•
$$\Omega$$
 bounded or $\lim_{|x|\to\infty} a(x) = \infty \rightsquigarrow$
 $\sigma(G) \setminus (-\infty, 0] = \text{isolated eigenvalues of finite multiplicity}$
(possible accumulations only to $(-\infty, 0]$)

Examples - constant damping a_0

$$T(\lambda) = -\Delta + q + 2\lambda a_0 + \lambda^2, \quad a_0 \in \mathbb{R}_+$$

Finite interval $\Omega = (-1, 1)$ and q = 0

• bounded Ω and bounded $a \rightsquigarrow$ only EV's in \mathbb{C}

Examples - constant damping a_0

$$T(\lambda) = -\Delta + q + 2\lambda a_0 + \lambda^2, \quad a_0 \in \mathbb{R}_+$$

Finite interval $\Omega = (-1, 1)$ and q = 0

• bounded Ω and bounded $a \rightsquigarrow$ only EV's in $\mathbb C$

$$-u'' = (-\lambda^2 - 2\lambda a_0)u \implies -\lambda_k^2 - 2\lambda_k a_0 = \mu_k, \quad \mu_k = \left(\frac{k\pi}{2}\right)^2$$
$$\lambda_k = -a_0 \pm i\sqrt{\mu_k - a_0^2}, \quad k \in \mathbb{N}$$

Examples - constant damping a_0

2

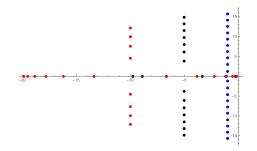
$$T(\lambda) = -\Delta + q + 2\lambda a_0 + \lambda^2, \quad a_0 \in \mathbb{R}_+$$

Finite interval $\Omega = (-1, 1)$ and q = 0

• bounded Ω and bounded $a \rightsquigarrow$ only EV's in $\mathbb C$

$$-u'' = (-\lambda^2 - 2\lambda a_0)u \implies -\lambda_k^2 - 2\lambda_k a_0 = \mu_k, \quad \mu_k = \left(\frac{k\pi}{2}\right)^2$$
$$\lambda_k = -a_0 \pm i\sqrt{\mu_k - a_0^2}, \quad k \in \mathbb{N}$$

• solutions of the time-dependent equation: $e^{\lambda_k t} u_k(x)$



Finite interval $\Omega = (-1, 1), a \in L^{\infty}(\Omega)$

• asymptotic behavior of eigenvalues $(a \in BV(-1, 1))$

[Cox and Zuazua, 1994; Freitas and Zuazua, 1996]

$$\lambda_k = \pm \mathrm{i} \frac{k\pi}{2} - \frac{\int a(x)\mathrm{d}x}{2} + \mathcal{O}(k^{-1}), \quad k \to \infty$$

Finite interval $\Omega = (-1, 1), a \in L^{\infty}(\Omega)$

• asymptotic behavior of eigenvalues $(a \in BV(-1, 1))$

[Cox and Zuazua, 1994; Freitas and Zuazua, 1996]

$$\lambda_k = \pm \mathrm{i}rac{k\pi}{2} - rac{\int a(x)\mathrm{d}x}{2} + \mathcal{O}(k^{-1}), \quad k o \infty$$

eigenfunctions form a Riesz basis

[Cox and Zuazua, 1994; Djakov and Mityagin, 2010; Lunyov and Malamud, 2016]

 \rightsquigarrow decay rate of the semigroup determined by $\min\{\operatorname{Re} \lambda_k : k \in \mathbb{N}\}$

Finite interval $\Omega = (-1, 1), a \in L^{\infty}(\Omega)$

• asymptotic behavior of eigenvalues $(a \in BV(-1, 1))$

[Cox and Zuazua, 1994; Freitas and Zuazua, 1996]

$$\lambda_k = \pm \mathrm{i}rac{k\pi}{2} - rac{\int a(x)\mathrm{d}x}{2} + \mathcal{O}(k^{-1}), \quad k o \infty$$

• eigenfunctions form a Riesz basis

[Cox and Zuazua, 1994; Djakov and Mityagin, 2010; Lunyov and Malamud, 2016]

 \rightsquigarrow decay rate of the semigroup determined by $\min\{\operatorname{Re} \lambda_k : k \in \mathbb{N}\}$

Reminder: Gearhart-Prüss theorem

Let A be a densely defined closed operator in a Hilbert space \mathcal{H} such that A generates a C_0 semigroup and let $\omega \in \mathbb{R}$. If

$$\sup_{\operatorname{Re} z \ge \omega} \|(A-z)^{-1}\| < \infty,$$

then $\exists M > 0$ such that

$$\|e^{tA}\| \le M e^{\omega t}, \quad t \ge 0.$$

Examples - singular not- L^1 damping

Theorem

Let $\Omega = (0, 1)$. Every solution of

$$u_{tt} + \frac{2}{x}u_t = u_{xx}$$

(Dirichlet BC, initial condition $(u_0, u_1) \in W_0^{1,2}(0, 1) \times L^2(0, 1)$) vanishes in a finite time

$$u(t,\cdot)=0,\quad t>2.$$

Proposition

[Freitas, Hefti, and Siegl, 2020]

Let $\alpha > 0$ and $a(x) = \alpha/x$. Then

• if $\alpha = n + 1, n \in \mathbb{N}_0$, then

$$\sigma(G) = \{\mu_k^{(n)}\}_{k=1}^n \subset (-\infty, 0), \text{ determined by } L_n^{(1)}(-2\mu) = 0$$

•
$$\alpha = 0 + 1 \rightsquigarrow \sigma(G) = \emptyset$$

• if $\alpha \notin \mathbb{N}$, then $\sigma(G)$ contains exactly $\lceil \alpha - 1 \rceil$ negative eigenvalues and infinitely many complex conjugated eigenvalues $\{\lambda_k^{(\alpha)}\}$ satisfying

$$\lambda_k^{(\alpha)} = \mp \frac{2k+1-\alpha}{2} \pi \mathrm{i} - \frac{1}{2} \log \left(-\frac{\Gamma(1-\alpha)}{\Gamma(2+\alpha)} (\pm 2k\pi \mathrm{i})^{2\alpha} \right) + \mathcal{O}(k^{-1}\log k), \quad k \to \infty$$

[Castro and Cox, 2001]

1D examples on $\Omega = \mathbb{R}$

$$a_n(x) = x^{2n} + a_0$$
, $n \ge 1$, $a_0 \ge 0$

1D examples on $\Omega = \mathbb{R}$

$$a_n(x) = x^{2n} + a_0$$
, $n \ge 1$, $a_0 \ge 0$

• eigenvalue problem

$$-u'' + 2\lambda(x^{2n} + a_0)u + \lambda^2 u = 0$$

1D examples on $\Omega = \mathbb{R}$

$$a_n(x) = x^{2n} + a_0$$
, $n \ge 1$, $a_0 \ge 0$

• eigenvalue problem

$$-u'' + 2\lambda(x^{2n} + a_0)u + \lambda^2 u = 0$$

• eigenvalues
$$\lambda_k = 2^{\frac{1}{2n+1}} e^{\pm i\pi \frac{n+1}{2n+1}} \mu_{k;n}^{\frac{n+1}{2n+1}} - \frac{2(n+1)}{2n+1} a_0 + o_k(1), \quad k \to \infty$$

• $\{\mu_{k;n}\}_k$ are eigenvalues of the self-adjoint $-\frac{d^2}{dx^2} + x^{2n}$ in $L^2(\mathbb{R})$

• for
$$n = 1$$
: $\mu_{k;1} = 2k + 1$, $k = 0, 1, 2, ...$

1D examples on $\Omega = \mathbb{R}$

$$a_n(x) = x^{2n} + a_0$$
, $n \ge 1$, $a_0 \ge 0$

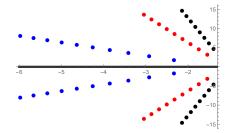
• eigenvalue problem

$$-u'' + 2\lambda(x^{2n} + a_0)u + \lambda^2 u = 0$$

• eigenvalues
$$\lambda_k = 2^{\frac{1}{2n+1}} e^{\pm i\pi \frac{n+1}{2n+1}} \mu_{k;n}^{\frac{n+1}{2n+1}} - \frac{2(n+1)}{2n+1} a_0 + o_k(1), \quad k \to \infty$$

• $\{\mu_{k;n}\}_k$ are eigenvalues of the self-adjoint $-\frac{d^2}{dx^2} + x^{2n}$ in $L^2(\mathbb{R})$

• for
$$n = 1$$
: $\mu_{k;1} = 2k + 1, k = 0, 1, 2, ...$



Infinite 2D strip

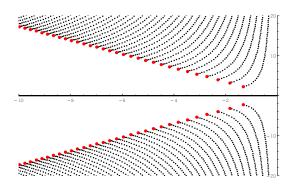
- $\Omega = \mathbb{R} \times (-1, 1)$ and $a(x, y) = x^2 + a_0$
- separation of variables: algebraic equation for eigenvalues λ

$$2\lambda\mu_k = (\lambda^2 + \sigma_j^2 + 2\lambda a_0)^2$$
$$\sigma_j^2 = \left(\frac{j\pi}{2l}\right)^2, \qquad \mu_k = 2k+1, \ j,k \in \mathbb{N}$$

Infinite 2D strip

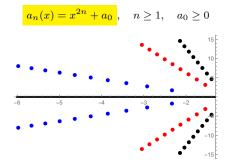
- $\Omega = \mathbb{R} \times (-1, 1)$ and $a(x, y) = x^2 + a_0$
- separation of variables: algebraic equation for eigenvalues λ

$$2\lambda\mu_k = (\lambda^2 + \sigma_j^2 + 2\lambda a_0)^2$$
$$\sigma_j^2 = \left(\frac{j\pi}{2l}\right)^2, \qquad \mu_k = 2k+1, \ j,k \in \mathbb{N}$$



Towards "infinite" damping

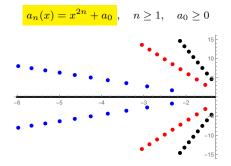
1D examples on $\Omega = \mathbb{R}$



• it seems that EV's converge to those of $a_{\infty}(x) = a_0$ on (-1, 1)

Towards "infinite" damping

1D examples on $\Omega = \mathbb{R}$



• it seems that EV's converge to those of $a_{\infty}(x) = a_0$ on (-1, 1)

• similar effect as for Schrödinger operators (convergence to the "square-well")

$$-\frac{\mathrm{d}^2}{\mathrm{d}x^2} + x^{2n} \quad \text{in} \quad L^2(\mathbb{R}) \xrightarrow{n \to \infty} -\frac{\mathrm{d}^2}{\mathrm{d}x^2} \quad \text{with Dirichlet BC in} \quad L^2(-1,1)$$

 $\begin{array}{ll} \text{Theorem} & [\text{Freitas, Siegl, and Tretter, 2018}]\\ \text{Assume we have } \Omega_{\infty} \subset \Omega \text{ open and sufficiently regular, } a_{\infty} \in L^{1}_{\text{loc}}(\Omega_{\infty}) \text{ and}\\ \{a_{n}\} \subset L^{1}_{\text{loc}}(\Omega) \text{ such that}\\ \bullet & \lim_{|x| \to \infty} a_{0}(x) = \infty \text{ and } \forall n \in \mathbb{N}^{*}, a_{n} \geq a_{0}\\ \bullet & a_{n} \to a_{\infty} \text{ in } \Omega_{\infty} \text{ and } a_{n} \to \infty \text{ in } \Omega \setminus \Omega_{\infty} \text{ (convergence of } a_{n}^{\frac{1}{2}} \text{ in } L^{2}_{\text{loc}}) \end{array}$

Then

• every $\lambda \in \sigma_p(G_\infty) \setminus (-\infty, 0]$ is approximated :

 $\forall \lambda \in \sigma_{\mathbf{p}}(G_{\infty}) \setminus (-\infty, 0], \quad \exists \{\lambda_n\}, \quad \lambda_n \in \sigma_{\mathbf{p}}(G_n), \quad \lambda_n \to \lambda$

Theorem [Freitas, Siegl, and Tretter, 2018] Assume we have $\Omega_{\infty} \subset \Omega$ open and sufficiently regular, $a_{\infty} \in L^{1}_{loc}(\Omega_{\infty})$ and $\{a_{n}\} \subset L^{1}_{loc}(\Omega)$ such that • $\lim_{|x|\to\infty} a_{0}(x) = \infty$ and $\forall n \in \mathbb{N}^{*}$, $a_{n} \ge a_{0}$ • $a_{n} \to a_{\infty}$ in Ω_{∞} and $a_{n} \to \infty$ in $\Omega \setminus \Omega_{\infty}$ (convergence of $a_{n}^{\frac{1}{2}}$ in L^{2}_{loc}) Then • every $\lambda \in \sigma_{p}(G_{\infty}) \setminus (-\infty, 0]$ is approximated :

 $\forall \lambda \in \sigma_{\mathbf{p}}(G_{\infty}) \setminus (-\infty, 0], \quad \exists \{\lambda_n\}, \quad \lambda_n \in \sigma_{\mathbf{p}}(G_n), \quad \lambda_n \to \lambda$

• no pollution : if

 $\{\lambda_n\}_{n\in\mathbb{N}}\subset\mathbb{C}\setminus(-\infty,0],\quad\lambda_n\in\sigma_{\mathrm{p}}(G_n)$

has an accumulation point $\lambda \in \mathbb{C} \setminus (-\infty, 0]$, then $\lambda \in \sigma_p(G_\infty)$

• for e.g.
$$\lambda = -1$$
 and $a(x) = x^{2n}$: $T(-1) = -\frac{d^2}{dx^2} - 2x^{2n} + 1$

What about \mathbb{R}_- ?

The issue

• for e.g.
$$\lambda = -1$$
 and $a(x) = x^{2n}$: $T(-1) = -\frac{d^2}{dx^2} - 2x^{2n} + 1$

• "tricky" spectra of $T(\lambda)$ with $\lambda < 0$:

$$\sigma(-\frac{\mathrm{d}^2}{\mathrm{d}x^2}-x^2) = \mathbb{R} \quad \text{vs.} \quad \sigma(-\frac{\mathrm{d}^2}{\mathrm{d}x^2}-x^4) = \sigma_{\mathrm{disc}}(-\frac{\mathrm{d}^2}{\mathrm{d}x^2}-x^4)$$

• for e.g.
$$\lambda = -1$$
 and $a(x) = x^{2n}$: $T(-1) = -\frac{d^2}{dx^2} - 2x^{2n} + 1$

• "tricky" spectra of $T(\lambda)$ with $\lambda < 0$:

$$\sigma(-\frac{\mathrm{d}^2}{\mathrm{d}x^2}-x^2)=\mathbb{R}\quad \mathrm{vs.}\quad \sigma(-\frac{\mathrm{d}^2}{\mathrm{d}x^2}-x^4)=\sigma_{\mathrm{disc}}(-\frac{\mathrm{d}^2}{\mathrm{d}x^2}-x^4)$$

Theorem (negative essential spectrum) For d = 1, if $\mathbb{R}_+ \subset \Omega$ and $\lambda < 0$ is such that

[Freitas, Siegl, and Tretter, 2018]

• $A(x) := 2|\lambda|a(x) + \lambda^2 - q(x)$ is (eventually) increasing on \mathbb{R}_+ ,

•
$$\lim_{x \to +\infty} A(x) = +\infty$$
,

• $\lim_{x \to +\infty} \frac{A'(x)}{A(x)} = 0,$

then $\lambda \in \sigma_{\text{ess}}(G)$.

• for e.g.
$$\lambda = -1$$
 and $a(x) = x^{2n}$: $T(-1) = -\frac{d^2}{dx^2} - 2x^{2n} + 1$

• "tricky" spectra of $T(\lambda)$ with $\lambda < 0$:

$$\sigma(-\frac{\mathrm{d}^2}{\mathrm{d}x^2}-x^2)=\mathbb{R}\quad \mathrm{vs.}\quad \sigma(-\frac{\mathrm{d}^2}{\mathrm{d}x^2}-x^4)=\sigma_{\mathrm{disc}}(-\frac{\mathrm{d}^2}{\mathrm{d}x^2}-x^4)$$

Theorem (negative essential spectrum) For d = 1, if $\mathbb{R}_+ \subset \Omega$ and $\lambda < 0$ is such that

[Freitas, Siegl, and Tretter, 2018]

• $A(x) := 2|\lambda|a(x) + \lambda^2 - q(x)$ is (eventually) increasing on \mathbb{R}_+ ,

•
$$\lim_{x \to +\infty} A(x) = +\infty$$
,

• $\lim_{x \to +\infty} \frac{A'(x)}{A(x)} = 0,$

then $\lambda \in \sigma_{\text{ess}}(G)$.

Examples in d = 1: $a_n(x) = x^{2n}$ and $q(x) = q_0$

• $\sigma_{\rm ess}(G) = (-\infty, 0]$

• for e.g.
$$\lambda = -1$$
 and $a(x) = x^{2n}$: $T(-1) = -\frac{d^2}{dx^2} - 2x^{2n} + 1$

• "tricky" spectra of $T(\lambda)$ with $\lambda < 0$:

$$\sigma(-\frac{\mathrm{d}^2}{\mathrm{d}x^2}-x^2)=\mathbb{R}\quad \mathrm{vs.}\quad \sigma(-\frac{\mathrm{d}^2}{\mathrm{d}x^2}-x^4)=\sigma_{\mathrm{disc}}(-\frac{\mathrm{d}^2}{\mathrm{d}x^2}-x^4)$$

Theorem (negative essential spectrum) For d = 1, if $\mathbb{R}_+ \subset \Omega$ and $\lambda < 0$ is such that

[Freitas, Siegl, and Tretter, 2018]

• $A(x) := 2|\lambda|a(x) + \lambda^2 - q(x)$ is (eventually) increasing on \mathbb{R}_+ ,

•
$$\lim_{x \to +\infty} A(x) = +\infty$$
,

• $\lim_{x \to +\infty} \frac{A'(x)}{A(x)} = 0,$

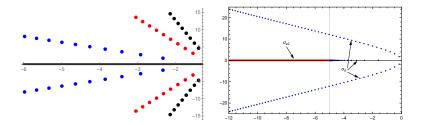
then $\lambda \in \sigma_{\text{ess}}(G)$.

Examples in d = 1: $a_n(x) = x^{2n}$ and $q(x) = q_0$

•
$$\sigma_{\rm ess}(G) = (-\infty, 0]$$

For d > 1, the same holds if Ω contains a (possibly shrinking) neighborhood of a semi-infinite segment where A grows to $+\infty$.

Overdamping due to $\sigma_{ess}(G)$



Remarks

- no exponential decay due to $0 \in \sigma(G)$
- shift of $\sigma_{\rm ess}$ by adding "large" q: e.g. $q(x) = 10x^2$, $a(x) = x^2$ [Arnal, 2022]
- jump in spectra: $a_n(x) = x^{2n} + a_0$ on \mathbb{R} vs. $a_{\infty}(x) = a_0$ on (-1, 1)
- eigenvalues (and eigenfunctions) do converge vs. "jump" in $\sigma_{\rm ess}$

$$\|u(t,\cdot)\|^2 \lesssim (1+t)^{-1}$$
, $\|u_t(t,\cdot)\|^2 + \|\nabla u(t,\cdot)\|^2 \lesssim (1+t)^{-2}$.

Theorem

[Sobajima and Wakasugi, 2018]

Let $\Omega \subset \mathbb{R}^d$ be an exterior domain with a smooth $\partial \Omega$ and $0 \notin \Omega$. Let (with $\alpha > 0$)

$$\lim_{|x| \to \infty} |x|^{-\alpha} a(x) = a_0 > 0.$$

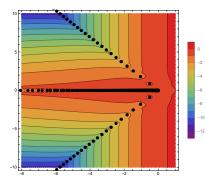
Let $(u_0, u_1) \in (H^2(\Omega) \cap H^1_0(\Omega)) \times H^1_0(\Omega)$ with compact support. Then (with $\delta > 0$ arb. small)

$$\|a^{\frac{1}{2}}u(t,\cdot)\|^{2} \lesssim (1+t)^{-\frac{d+\alpha}{2+\alpha}+\delta} \|(u_{0},u_{1})\|^{2}_{H^{2}\times H^{1}}.$$

(and a comparison to the solution of a related heat equation).

Resolvent estimates (pseudospectrum, spectral instabilities)

- $a(x) = x^2, d = 1$
- resolvent norm (log scale)



Theorem (simplified)

Let $\Omega = \mathbb{R}$, q(x) = 0, $a(x) = x^{2n}$, $n \in \mathbb{N}$. Then

i) for every $\omega \in (\frac{\pi}{2}, \pi) \cup (\pi, \frac{3}{2}\pi)$

```
[Arifoski and Siegl, 2020]
```

$$\lim_{r \to +\infty} \|(G - re^{i\omega})^{-1}\| = \infty;$$

ii) for every
$$c \ge 0$$
 [Arnal, 2022]

Based on (as
$$|b| \to \infty$$
)
 $||T(-c+ib)^{-1}|| = ||(A-c)^{-1}||(2|b|)^{-1} \times (1 + \mathcal{O}_c(|b|^{-1})),$

where $A = -\partial_x + a(x)$ in $L^2(\mathbb{R})$.