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Introduction

Damped wave equation in Ω ⊂ Rd

utt(t, x) + 2a(x) ut(t, x) = (∆ − q(x))u(t, x)

• t ∈ R+ time, x ∈ Ω spatial coordinate
• a : Ω → R+ damping, q : Ω → R+ potential
• Dirichlet boundary conditions at ∂Ω (if ∂Ω ̸= ∅)

• very extensive literature on a ∈ L∞(Ω) or “small” w.r.t to ∆
e.g. references in [Gesztesy and Holden, 2011]

• our goal: a can be unbounded at infinity
[Freitas, Siegl, and Tretter, 2018; Ikehata and Takeda, 2020; Sobajima and Wakasugi, 2018]

• for example: Ω = R and a(x) = x2, q(x) = 0

Focus of this talk
• spectral and pseudospectral effects caused by unbounded damping

• more on operator theory & functional analysis: talk of B. Gerhat
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Towards spectral analysis and semigroups

Operator matrix

utt(t, x) + 2a(x)ut(t, x) = (∆ − q(x))u(t, x)
• can be rewritten as a system

∂t

(
u
v

)
=

(
0 I

∆ − q −2a

)
︸ ︷︷ ︸

G

(
u
v

)
• G acts in a Hilbert space H = W(Ω) ⊕ L2(Ω) where

W(Ω) = C∞
0 (Ω)

(∥∇·∥2+∥q
1
2 ·∥2)

1
2

• a = 0 =⇒ iG is symmetric w.r.t. ⟨∇·, ∇·⟩1 + ⟨q
1
2 ·, q

1
2 ⟩1 + ⟨·, ·⟩2

Associated quadratic function

T (λ) = −∆ + q + 2λa + λ2

Dom(T (λ)) = {f ∈ D(Ω) : T (λ)f ∈ L2(Ω)}

D(Ω) = W 1,2
0 (Ω) ∩ Dom(a

1
2 ) ∩ Dom(q

1
2 )

• arises for special solutions eλtu(x) (or Schur complement)



Towards spectral analysis and semigroups

Theorem (semigroup, relation of spectra) [Freitas, Siegl, and Tretter, 2018; Gerhat, 2022]

Let 0 ≤ a, q ∈ L1
loc(Ω), let T be as above and let

G =
(

0 I
∆ − q −2a

)
Dom(G) = {(f, g) ∈ W(Ω) × D(Ω) : (∆ − q)f − 2ag ∈ L2(Ω)}

Then
• −G is m-accretive ⇝ G generates a contraction semigroup in W(Ω) × L2(Ω)

• ∀λ ∈ C \ (−∞, 0]: λ ∈ σι(G) ⇐⇒ 0 ∈ σι(T (λ)) ι ∈ {·, p, ess}

• the spectral correspondence holds also in (−1/M, 0) if

∀f ∈ D(Ω) 2∥a
1
2 f∥2 ≤ M(∥∇f∥2 + ∥q

1
2 f∥2) + C∥f∥2

[mostly NOT in this talk]
• Ω bounded or lim|x|→∞ a(x) = ∞ ⇝

σ(G) \ (−∞, 0] = isolated eigenvalues of finite multiplicity
(possible accumulations only to (−∞, 0])
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Examples - constant damping a0

T (λ) = −∆ + q + 2λa0 + λ2, a0 ∈ R+

Finite interval Ω = (−1, 1) and q = 0
• bounded Ω and bounded a ⇝ only EV’s in C

−u′′ = (−λ2 − 2λa0)u =⇒ −λ2
k − 2λka0 = µk, µk =

(
kπ

2

)2

λk = −a0 ± i
√

µk − a2
0, k ∈ N

• solutions of the time-dependent equation: eλktuk(x)
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Examples - bounded damping

Finite interval Ω = (−1, 1), a ∈ L∞(Ω)
• asymptotic behavior of eigenvalues (a ∈ BV (−1, 1))

[Cox and Zuazua, 1994; Freitas and Zuazua, 1996]

λk = ±i
kπ

2
−

∫
a(x)dx

2
+ O(k−1), k → ∞

• eigenfunctions form a Riesz basis
[Cox and Zuazua, 1994; Djakov and Mityagin, 2010; Lunyov and Malamud, 2016]

⇝ decay rate of the semigroup determined by min{Re λk : k ∈ N}

Reminder: Gearhart-Prüss theorem
Let A be a densely defined closed operator in a Hilbert space H such that A
generates a C0 semigroup and let ω ∈ R. If

sup
Re z≥ω

∥(A − z)−1∥ < ∞,

then ∃M > 0 such that
∥etA∥ ≤ Meωt, t ≥ 0.
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Examples - singular not-L1 damping

Theorem [Castro and Cox, 2001]

Let Ω = (0, 1). Every solution of

utt +
2
x

ut = uxx

(Dirichlet BC, initial condition (u0, u1) ∈ W 1,2
0 (0, 1) × L2(0, 1)) vanishes in a

finite time
u(t, ·) = 0, t > 2.

Proposition [Freitas, Hefti, and Siegl, 2020]

Let α > 0 and a(x) = α/x. Then
• if α = n + 1, n ∈ N0, then

σ(G) = {µ
(n)
k

}n
k=1 ⊂ (−∞, 0), determined by L

(1)
n (−2µ) = 0

• α = 0 + 1 ⇝ σ(G) = ∅

• if α /∈ N, then σ(G) contains exactly ⌈α − 1⌉ negative eigenvalues and

infinitely many complex conjugated eigenvalues {λ
(α)
k

} satisfying

λ
(α)
k

= ∓
2k + 1 − α

2
πi−

1
2

log
(

−
Γ(1 − α)
Γ(2 + α)

(±2kπi)2α
)

+O(k−1 log k), k → ∞



Examples - unbounded damping

1D examples on Ω = R

an(x) = x2n + a0 , n ≥ 1, a0 ≥ 0

• eigenvalue problem

−u′′ + 2λ(x2n + a0)u + λ2u = 0

• eigenvalues λk = 2
1

2n+1 e
±iπ n+1

2n+1 µ
n+1

2n+1
k;n − 2(n+1)

2n+1 a0 + ok(1), k → ∞

• {µk;n}k are eigenvalues of the self-adjoint − d2

dx2 + x2n in L2(R)
• for n = 1: µk;1 = 2k + 1, k = 0, 1, 2, . . .
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Examples - 2D example

Infinite 2D strip

• Ω = R × (−1, 1) and a(x, y) = x2 + a0

• separation of variables: algebraic equation for eigenvalues λ

2λµk = (λ2 + σ2
j + 2λa0)2

σ2
j =

(
jπ

2l

)2
, µk = 2k + 1, j, k ∈ N
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Towards “infinite” damping

1D examples on Ω = R

an(x) = x2n + a0 , n ≥ 1, a0 ≥ 0

-6 -5 -4 -3 -2

-15

-10

-5

5

10

15

• it seems that EV’s converge to those of a∞(x) = a0 on (−1, 1)

• similar effect as for Schrödinger operators (convergence to the “square-well”)

−
d2

dx2 + x2n in L2(R) n→∞−−−−→ −
d2

dx2 with Dirichlet BC in L2(−1, 1)
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Convergence of EV’s for infinite damping

Theorem [Freitas, Siegl, and Tretter, 2018]

Assume we have Ω∞ ⊂ Ω open and sufficiently regular, a∞ ∈ L1
loc(Ω∞) and

{an} ⊂ L1
loc(Ω) such that

• lim|x|→∞ a0(x) = ∞ and ∀n ∈ N∗, an ≥ a0

• an → a∞ in Ω∞ and an → ∞ in Ω \ Ω∞ (convergence of a
1
2
n in L2

loc)

Then
• every λ ∈ σp(G∞) \ (−∞, 0] is approximated :

∀λ ∈ σp(G∞) \ (−∞, 0], ∃{λn}, λn ∈ σp(Gn), λn → λ

• no pollution : if

{λn}n∈N ⊂ C \ (−∞, 0], λn ∈ σp(Gn)

has an accumulation point λ ∈ C \ (−∞, 0], then λ ∈ σp(G∞)
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What about R−?

The issue
• for e.g. λ = −1 and a(x) = x2n: T (−1) = − d2

dx2 −2x2n + 1

• “tricky” spectra of T (λ) with λ < 0:

σ(−
d2

dx2 − x2) = R vs. σ(−
d2

dx2 − x4) = σdisc(−
d2

dx2 − x4)

Theorem (negative essential spectrum) [Freitas, Siegl, and Tretter, 2018]

For d = 1, if R+ ⊂ Ω and λ < 0 is such that
• A(x) := 2|λ|a(x) + λ2 − q(x) is (eventually) increasing on R+,
• limx→+∞ A(x) = +∞,

• limx→+∞
A′(x)
A(x) = 0,

then λ ∈ σess(G) .

Examples in d = 1: an(x) = x2n and q(x) = q0

• σess(G) = (−∞, 0]

For d > 1, the same holds if Ω contains a (possibly shrinking) neighborhood of a
semi-infinite segment where A grows to +∞.
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Overdamping due to σess(G)
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Remarks
• no exponential decay due to 0 ∈ σ(G)
• shift of σess by adding “large” q: e.g. q(x) = 10x2, a(x) = x2 [Arnal, 2022]

• jump in spectra:
an(x) = x2n + a0 on R vs. a∞(x) = a0 on (−1, 1)

• eigenvalues (and eigenfunctions) do converge vs. “jump” in σess



Polynomial decay

Theorem [Ikehata and Takeda, 2020]

Let d ≥ 3, a ∈ C(Rd) such that a(x) ≥ a0 > 0, x ∈ Rd. Let initial data satisfy
• (u0, u1) ∈ (H2(Rd) ∩ L1(Rd)) × (H1(Rd) ∩ L1(Rd))
• au0 ∈ L1(Rd) ∩ L2(Rd).

Then

∥u(t, ·)∥2 ≲ (1 + t)−1 , ∥ut(t, ·)∥2 + ∥∇u(t, ·)∥2 ≲ (1 + t)−2.

Theorem [Sobajima and Wakasugi, 2018]

Let Ω ⊂ Rd be an exterior domain with a smooth ∂Ω and 0 /∈ Ω. Let (with α > 0)

lim
|x|→∞

|x|−αa(x) = a0 > 0.

Let (u0, u1) ∈ (H2(Ω) ∩ H1
0 (Ω)) × H1

0 (Ω) with compact support. Then (with
δ > 0 arb. small)

∥a
1
2 u(t, ·)∥2 ≲ (1 + t)− d+α

2+α
+δ∥(u0, u1)∥2

H2×H1 .

(and a comparison to the solution of a related heat equation).



Resolvent estimates (pseudospectrum, spectral instabilities)

• a(x) = x2, d = 1
• resolvent norm (log scale)
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Theorem (simplified)
Let Ω = R, q(x) = 0, a(x) = x2n, n ∈ N.
Then

i) for every ω ∈ ( π
2 , π) ∪ (π, 3

2 π)
[Arifoski and Siegl, 2020]

lim
r→+∞

∥(G − reiω)−1∥ = ∞;

ii) for every c ≥ 0 [Arnal, 2022]

∥(G − (−c + ib))−1∥ ≈ 1, |b| → +∞.

Based on (as |b| → ∞)

∥T (−c + ib)−1∥ = ∥(A − c)−1∥(2|b|)−1

× (1 + Oc(|b|−1)),

where A = −∂x + a(x) in L2(R).


