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Gas transport in pipeline networks

We study barotropic Euler equations on networks, as a model for gas transport in pipeline
networks.

Specific features, different from standard scenario for (barotropic) Euler equations

I slow flow velocities (1-2 m/s), i.e. low Mach number flows

I interest in large space and time scales → friction dominated flow

I specific non-linear friction law is important to get correct steady states

I solutions are expected to be continuous (no shock waves)

Our analysis works for networks but most parts of this talk focus on single pipes simlify the
presentation.
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Modeling

Conservation of mass
∂tρ + ∂x m = 0

and balance of momentum

ε2∂t m + ∂x

(
ε2 m2

ρ
+ p(ρ)

)
= −|m|m

ρ

where p = p(ρ) is a constitutive law for the pressure, we only assume p′ > 0; ε ≥ 0 small
parameter related to Mach number (i.e. reference fluid velocity divided by speed of sound).

Equations can be rewritten in different variables (equivalent for strong solutions but not for
weak entropy solutions): Fluid velocity v ; m = ρv .

∂tρ + ∂x (ρv ) = 0

ε2∂t v + ∂x

(
ε2 v2

2
+ P′(ρ)

)
= −|v |v

with P such that ρP′′(ρ) = p′(ρ).
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Low Mach – large friction limit

By formally setting ε = 0 in

ε2∂t v + ∂x

(
ε2 v2

2
+ P′(ρ)

)
= −|v |v

we obtain friction dominated flow model (→ talk by Günther Leugering)

∂tρ + ∂x (ρv ) = 0 ∂x P′(ρ) = −|v |v

I Can we make this convergence rigorous (on networks)?

I Speed of convergence?

I Asymptotic preserving numerical schemes?

For linear friction → Marcati & Milani 1990, Lattanzio & Tzavaras 2016.
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port-Hamiltonian structure

The formulation in (ρ, v ) variables reveales a port-Hamiltonian structure:
Energy of the system

H (ρ, v ) :=
∫
Ω

ε2

2
ρv2 + P(ρ) dx

where Ω is the computational domain.
Taking variational derivatives we see

δH

δρ
= ε2 v2

2
+ P′(ρ),

δH

δv
= ε2ρv

Thus, the equations can be expressed as

∂tρ +
1
ε2

∂x
δH

δv
= 0

ε2∂t v + ∂x
δH

δρ
= − 1

ε2

|v |
ρ

δH

δv
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port-Hamiltonian structure

Based on

∂tρ +
1
ε2

∂x
δH

δv
= 0

ε2∂t v + ∂x
δH

δρ
= − 1

ε2

|v |
ρ

δH

δv
it is ’straightforward’ to derive an energy balance

dtH (ρ, v ) =
∫
Ω

δH

δρ
∂tρ+

δH

δv
∂t v = −

∫
Ω

δH

δρ

1
ε2

∂x
δH

δv
+
δH

δv
1
ε2

(
∂x

δH

δρ
+

1
ε2

|v |
ρ

δH

δv

)
= − 1

ε2

∫
∂Ω

δH

δv
δH

δρ︸ ︷︷ ︸
energy flux

ν − 1
ε4

∫
Ω

|v |
ρ

∣∣∣∣δHδv

∣∣∣∣2︸ ︷︷ ︸
energy dissipation

August 24, 2022 | Numerical Analysis and Scientific Computing | Jan Giesselmann | 9 Numerische
Mathematik

,



Relative Energy

We abbreviate further u = (ρ, v ) and write

C ∂t u + J z(u) = R(u)z(u)

with

z(u) = C −1 δH

δu
, C =

(
1 0
0 ε2

)
, R(u) =

(
0 0
0 |v|

ρ

)
, J =

(
0 ∂x

∂x 0

)
For two (approximate) solutions u = (ρ, v ) and û = (ρ̂, v̂ ) we define the relative energy

H (u|û) := H (u) − H (û) −
∫
Ω

δH

δu
(u − û)

and have the relative energy balance

dtH (u|û) = −〈R(u)z(u) −R(û)z(û), z(u) − z(û)〉Ω + 〈z1(u) − z1(û), z2(u) − z2(û)〉∂Ω
+ 〈C ∂t û, z(u) − z(û) − G(û)(u − û)〉Ω

where G(û) = C −1 δ2H
δu2 (û).
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Convexity of Energy

H is strictly convex on the set of states such that ρ > 0 and |v |2 < p′(ρ), i.e. subsonic flows
without vacuum.
To infer (finite time) stability from relative energy balance we need:

−〈R(u)z(u) −R(û)z(û), z(u) − z(û)〉Ω ≤ Ĉ1H (u|û) − 2D(u|û), (C1)

〈C ∂t û, z(u) − z(û) − G(û)(u − û)〉Ω ≤ Ĉ2H (u|û), (C2)

〈z1(u) − z1(û), z2(u) − z2(û)〉∂Ω ≤ P∂ (z(u) − z(û)), (C4)

If we allow û to solve the equation only up to some residual e, i.e.

C ∂t û + J z(û) = R(û)z(û) + e

we aditinally require

〈e, z(u) − z(û)〉Ω ≤ Ĉ3H (u|û) + D(u|û) + P(e), (C3)

with some suitable P(e).
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Stability and parabolic limit

Lemma (Egger, JG 2020)
Let (ρ, v ) and (ρ̂, v̂ ) be two Lipschitz continuous solutions of the barotropic Euler equations
that are subsonic and bounded away from vacuum and share identical Dirichlet boundary
conditions for the enthalpy, then

‖ρ(t) − ρ̂(t)‖2
L2(Ω) + ε2‖v (t) − v̂ (t)‖2

L2(Ω) +
∫ t

0
‖v (s) − v̂ (s)‖3

L3(Ω)ds

≤ CeCt
(
‖ρ(0) − ρ̂(0)‖2

L2(Ω) + ε2‖v (0) − v̂ (0)‖2
L2(Ω) + |ε2 − ε̂2|

)
where C depends on ‖∂t û‖L∞((0,t)×Ω)

The estimate is uniform in ε̂ and allows us to show that for ε ↘ 0 solutions to the barotropic
Euler equations converge to solutions of

∂t ρ̂ + ∂x (ρ̂v̂ ) = 0

∂x P′(ρ̂) = −|v̂ |v̂
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Network topology

(V , E ) directed and connected finite graph with vertices v ∈ V and edges e ∈ E , which are
identified with intervals (0, `e).

E (v ) denotes the set of edges incident to the vertex v , andv|E (v )| its cardinality.
We decompose V = V0 ∪ V∂ into sets of interior and boundary vertices, characterized by
V0 = {v ∈ V : |E (v )| > 1} and V∂ = {v ∈ V : |E (v )| = 1}.

We associate to any vertex v ∈ V and edge e ∈ E (v ) a number

ne(v ) =

{
1 if e = (·, v ),

−1 if e = (v , ·).

The vertex v thus corresponds to the end point `e or the start point 0 of the interval (0, `e)
representing the edge e.
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Equations and Coupling conditions

Superscript e denotes functions restricted to the edge e. As before, on every edge of the
network we consider

∂tρ
e + ∂x me = 0, e ∈ E

ε2∂t w
e + ∂x he + |we|we = 0, e ∈ E

with co-state variables defined by

he = ε2 |we|2

2
+ P′(ρe), e ∈ E , me = ρewe, e ∈ E .

We consider coupling conditions across pipe junctions that ensure conservation of mass and
energy (Reigstad 2014)∑

e∈E (v )

me(v )ne(v ) = 0, v ∈ V0,

he(v ) = hf (v ), e, f ∈ E (v ), v ∈ V0,

the second condition means continuity of the total specific enthalpy h.
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Weak form

The coupling conditions are natural in the sense that they do not show up explicitly when we
multiply the equations by suitable test functions, integrate over the edges, use
integration-by-parts, and then sum over all edges:∑

e∈E

(∂tρ
e, qe)e + (∂x me, qe)e = 0 ∀(qe)e∈E

∑
e∈E

(ε2∂t w
e, r e)e − (he, ∂x r e)e + (

|we|
ρe

me, r e)e = −
∑

v∈V∂

∑
e∈E (v )

he(v )r e(v )ne(v ) ∀(r e)e∈E ,
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Mixed Finite Element Scheme

Th ’triangulation’ of our interval Ω.
At each time we seek ρn

h ∈ Qh := P0(Th) and mn
h ∈ Rh := P1(Th) ∩ H1(Ω) such that

(d̄tρ
n
h, qh)Ω + (∂x mn

h , qh)Ω = 0 ∀qh ∈ Qh

ε2(d̄t v
n, rh)Ω − (hn, ∂x rh)Ω + hn

∂ rh|∂Ω + (|vn|vn, rh)Ω = 0 ∀rh ∈ Rh

where d̄t denotes the backward difference quotient, e.g.

d̄tρ
n
h :=

ρn
h − ρn−1

h

tn+1 − tn
,

and we abbreviate

vn :=
mn

h

ρn
h

, hn :=
ε2

2
(mn

h)2

(ρn
h)

+ P′(ρn
h)

We have carried out integration by parts in the second equation which allows us to include
Dirichlet boundary conditions for enthalpy h∂ in a natural way.
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Energy stability

The scheme reads

(d̄tρ
n
h, qh)Ω + (∂x mn

h , qh)Ω = 0 ∀qh ∈ Qh

ε2(d̄t v
n, rh)Ω − (hn, ∂x rh)Ω + h∂ rh|∂Ω + (|vn|vn, rh)Ω = 0 ∀rh ∈ Rh

Use rh = mn
h and qh = πhhn as test functions and use convexity of H , i.e.

d̄tH (ρn
h, vn) ≤

(
δH

δρ
(ρn

h, vn), d̄tρ
n
h

)
Ω

+
(
δH

δv
(ρn

h, vn), d̄t v
n
)

Ω

to obtain

d̄tH (ρn
h, vn) ≤ − 1

ε2

∫
∂Ω

hn
∂mn

hν − 1
ε2

∫
Ω

ρn
h|vn|3.

where ν is outward unit normal vector.
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Robust a priori error estimate

Lemma (Egger, JG, Philippi, Kunkel 2021)
As long as the exact solution (ρ, v ) is sufficiently regular, subsonic and away from vacuum,
there exists a constant C > 0 independent of ε such that

‖ρ(tn) − ρn
h‖2

L2(Ω) + ε2‖v (tn) − vn‖2
L2(Ω) +

n∑
k=0

∆t‖v (tk ) − v k‖3
L3(Ω) ≤ C((∆t)2 + (∆x)2)

Idea of the proof:
Split the error into discrete error and appropriation error

ρ(tn) − ρn
h = ρ(tn) − πhρ(tn) + πhρ(tn) − ρn

h, m(tn) − mn
h = m(tn) − πhm(tn) + πhm(tn) − mn

h

The approximation errors ρ(tn) − πhρ(tn) and m(tn) − πhm(tn) can be bounded using
Bramble-Hilbert lemma.
The discrete errors πhρ(tn) − ρn

h and πhm(tn) − mn
h can be bounded using a discrete version

of relative energy.
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Summary, Outlook, Open Questions

Summary:

I Stability framework for certain 2 × 2 systems of PDEs in port-Hamiltonian form

I application to barotropic Euler equations on networks

I Conditional convergence to friction dominated flow limit, with convergence rate

I Structure preserving discretisation of problems in this form and robust error estimate.

Outlook/Questions:

I Other problems with similar structure?

I Can this analysis be extended to cover more general problems in port-Hamiltonian
form?

I Well-posedness theory for barotropic Euler with non-linear friction (on networks)?

I What happens if only weak entropy solutions are available?
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