On the analysis of the Transport-Stokes system

Amina Mecherbet Université Paris Cité

In collaboration with Franck Sueur

IX Partial differential equations, optimal design and numerics Special session on sedimentation

25/08/2022 1/15

Outline

- Well posedness for $L^{p}(\mathbb{R}^{3}) \cap \mathcal{P}(\mathbb{R}^{3})$ initial densities, $p \geq 3$
- 3 Analyticity of the trajectories in the case p > 3
- 4 Exact controllability

Image: Image:

Figure: Representative photographs of blobs containing glass particles sedimenting through glycerine. Batchelor and Nitsche (1997)

A. Mecherbet (Université Paris Cité, IMJ-PRG) Centro de Sciencias de Benasque Pedro Pascual

Figure: Dispersed phase (thin spray) with small volume fraction

・ロン ・回 と ・ ヨン・

Transport-Stokes system

 $(t, x) \mapsto \rho(t, x)$ probability of particles at time $t \in \mathbb{R}^+$ and position $x \in \mathbb{R}^3$ $(t, x) \mapsto u(t, x)$ velocity at time $t \in \mathbb{R}^+$ and position $x \in \mathbb{R}^3$ $(t, x) \mapsto \rho(t, x)$ pressure at time $t \in \mathbb{R}^+$ and position $x \in \mathbb{R}^3$

$$\left\{ egin{array}{ll} \partial_t
ho + \operatorname{div}(u
ho) &= 0\,, & ext{on } \mathbb{R}^+ imes \mathbb{R}^3, \ -\Delta u +
abla p &= -
ho eta_3\,, & ext{on } \mathbb{R}^+ imes \mathbb{R}^3, \ \operatorname{div} u &= 0\,, & ext{on } \mathbb{R}^+ imes \mathbb{R}^3, \ \operatorname{lim}_{|x|
ightarrow \infty} |u| &= 0, & ext{on } \mathbb{R}^+, \
ho(0, \cdot) &=
ho_0\,, & ext{on } \mathbb{R}^3. \end{array}
ight.$$

(TS)

Transport-Stokes system

 $(t, x) \mapsto \rho(t, x)$ probability of particles at time $t \in \mathbb{R}^+$ and position $x \in \mathbb{R}^3$ $(t, x) \mapsto u(t, x)$ velocity at time $t \in \mathbb{R}^+$ and position $x \in \mathbb{R}^3$ $(t, x) \mapsto \rho(t, x)$ pressure at time $t \in \mathbb{R}^+$ and position $x \in \mathbb{R}^3$

$$\left\{ egin{array}{ll} \partial_t
ho + {\sf div}({\it u}
ho) &=& {\sf 0}\,, \qquad {\sf on} \ \mathbb{R}^+ imes \mathbb{R}^3, \ {\it u} &:=& -\mathcal{U} \star (
ho {\it e}_3), \ {\it
ho}({\sf 0}, \cdot) &=&
ho_{\sf 0}\,, \qquad {\sf on} \ \mathbb{R}^3. \end{array}
ight.$$

 $\ensuremath{\mathcal{U}}$ the Stokes fundamental solution

$$\mathcal{U}(x) = rac{1}{8\pi} \left(rac{l}{|x|} + rac{x \otimes x}{|x|^3}
ight)$$

- → R. Höfer. 2018.
 - Well posedness for regular initial data $\rho_0, \nabla \rho_0 \in X_{\beta}, \beta > 2$.

$$X_eta := \left\{ f \in L^\infty(\mathbb{R}^3), \sup_{x \in \mathbb{R}^3} (1+|x|^eta) |f(x)| < +\infty
ight\}$$

- → R. Höfer. 2018.
- → A. M. 2020.
 - Well posedness for $\mathcal{P}_1(\mathbb{R}^3) \cap L^\infty(\mathbb{R}^3)$ initial data
 - Persistence of patch solutions with propagation of C^{1,µ} regularity of the boundary
 - Invariance of the spherical patch (Hadamard-Rybczinski)
 - Derivation of a 1d free surface model for the evolution of the contour of axisymmetric drops and numerical simulations

- → R. Höfer. 2018.
- → A. M. 2020.
- \rightarrow R. Höfer and R. Schubert. 2020.
 - Well posedness for $\mathcal{P}(\mathbb{R}^3) \cap L^{\infty}(\mathbb{R}^3)$ initial data

- → R. Höfer. 2018.
- → A. M. 2020.
- → R. Höfer and R. Schubert. 2020.
- \rightarrow A. Leblond. 2021.
 - Well posedness for L^∞ initial data in bounded domains in \mathbb{R}^2 and \mathbb{R}^3 and in infinite strip $\mathbb{R} \times (0, 1)$

- → R. Höfer. 2018.
- → A. M. 2020.
- \rightarrow R. Höfer and R. Schubert. 2020.
- → A. Leblond. 2021.
- → H. Grayer II. 2022
 - Well posedness for L^{∞} compactly supported initial data in \mathbb{R}^2
 - Persistence of spherical patch with propagation of $C^{k+\mu}$, k = 0, 1, 2 regularity of the boundary
 - Numerical investigation of the evolution of patchs

Outline

2 Well posedness for $L^{p}(\mathbb{R}^{3}) \cap \mathcal{P}(\mathbb{R}^{3})$ initial densities, $p \geq 3$

3 Analyticity of the trajectories in the case p > 3

4 Exact controllability

Well posedness for $L^p(\mathbb{R}^3) \cap \mathcal{P}(\mathbb{R}^3)$ initial densities, $p \geq 3$

Well posedness for $L^p(\mathbb{R}^3) \cap \mathcal{P}(\mathbb{R}^3)$ initial densities with $p \ge 3$

Theorem

Let $p \ge 3$ and $\rho_0 \in E_p := \mathcal{P}(\mathbb{R}^3) \cap L^p(\mathbb{R}^3)$. There is a unique solution $\rho \in C([0, +\infty), E_p)$ of the (TS) equation and the associated velocity and pressure $(u, q) \in$

$$\begin{array}{ll} C([0,+\infty), W^{2,p}(\mathbb{R}^3) \times W^{1,p}(\mathbb{R}^3)) & \text{if } p > 3 \\ C([0,+\infty), \dot{W}^{2,3}(\mathbb{R}^3) \cap \dot{W}^{1,3}(\mathbb{R}^3) \cap \bigcap_{q \in (3,+\infty]} L^q(\mathbb{R}^3) \times W^{1,3}(\mathbb{R}^3)) & \text{if } p = 3 \end{array}$$

Moreover,

$$u \in egin{cases} C([0,+\infty), C^{1,\mu}(\mathbb{R}^3)), & ext{if } p>3, \ C([0,+\infty), \operatorname{LLip}(\mathbb{R}^3)), & ext{if } p=3. \end{cases}$$

Finally, for all $s \in [0, +\infty)$, there exists a unique

$$X(\cdot, oldsymbol{s}, \cdot) \in egin{cases} C([0, +\infty), \, C^{1, \mu}(\mathbb{R}^3)), & ext{if } oldsymbol{p} > 3, \ C([0, +\infty), \, C^{0, r_l}(\mathbb{R}^3)), & ext{if } oldsymbol{p} = 3, \end{cases}$$

$$\mu = 1 - 3/\rho, \quad r_t = e^{-Ct}, \quad C = C \|\rho_0\|_{L^1(\mathbb{R}^3) \cap L^3(\mathbb{R}^3)}$$
$$\rho(t, \cdot) = X(t, 0, \cdot) \# \rho_0$$

Theorem (Stability estimate)

Let $p \ge 3$. For any R > 0, there is C > 0 such that for any couple of initial densities (ρ_1^0, ρ_2^0) in E_p with $\max_{i=1,2}(\|\rho_i^0\|_{L^1(\mathbb{R}^3)}, \|\rho_i^0\|_{L^p(\mathbb{R}^3)}) \le R$, if (u_1, ρ_1) and (u_2, ρ_2) satisfy the transport-Stokes equation (TS) for any $t \ge 0$, then

$$\begin{split} & W_1(\rho_1(t),\rho_2(t)) \leq W_1(\rho_1^0,\rho_2^0) e^{Ct}, \quad \text{if } p > 3, \\ & W_1(\rho_1(t),\rho_2(t)) \leq W_1(\rho_1^0,\rho_2^0)^{e^{-Ct}}, \quad \text{if } p = 3. \end{split}$$

Stability estimates for Liouville equations

- \rightarrow R. Dobrushin (1979). Case of particles with a Lipschitz interacting kernel
- → G. Loeper (2006). Case of the Vlasov-Poisson system
- → M. Hauray (2009). Case of first order interacting system with kernel K : ℝ^d → ℝ^d satisfying |∂^αK(x)| ≤ C |x|^{|α|+s}, s < d 1</p>

Outline

- Well posedness for $L^p(\mathbb{R}^3) \cap \mathcal{P}(\mathbb{R}^3)$ initial densities, $p \ge 3$
- 3 Analyticity of the trajectories in the case p > 3
 - 4 Exact controllability

Known results on analyticity of trajectories for incompressible fluid models

Case of incompressible Euler in 2D/3D in bounded/unbounded domains

- → J-Y. Chemin 1991- 1992.
- \rightarrow P. Gamblin 1994.
- → P. Serfaty 1995.
- → T. Kato 2000.
- → F. Sueur 2011.
- \rightarrow O. Glass, F. Sueur and Takéo Takahashi. 2012.
- \rightarrow O. Glass and F. Sueur. 2012.

25/08/2022 11/15

Known results on analyticity of trajectories for incompressible fluid models

Case of incompressible Euler in 2D/3D in bounded/unbounded domains

- → J-Y. Chemin 1991- 1992.
- \rightarrow P. Gamblin 1994.
- → P. Serfaty 1995.
- → T. Kato 2000.
- → F. Sueur 2011.
- → O. Glass, F. Sueur and Takéo Takahashi. 2012.
- \rightarrow O. Glass and F. Sueur. 2012.

Idea: $\partial_t^{n+1} X(t, x) = D_t^n u(t, X(t, x))$, with $D_t := \partial_t + (u \cdot \nabla)$ the material derivative

Known results on analyticity of trajectories for incompressible fluid models

Lagrangian formulation

 \rightarrow P. Constantin, V. Vicol and J. Wu. 2015

the 2D surface quasi-geostrophic equation the 2D incompressible porous medium equation the 2D and the 3D incompressible Euler equations the 2D Boussinesq equation

Self-contained Lagrangian formulation for the TS equation

Since $\rho(t, \cdot) = X(t, \cdot) \# \rho_0$ we have for all $x \in \mathbb{R}^3$, $t \ge 0$

$$\dot{X}(t,x) = \int_{\mathbb{R}^3} \mathcal{U}_3(X(t,x) - X(t,y))
ho_0(y) dy,$$

where

$$\mathcal{U}_3(x) := \mathcal{U}(x) \boldsymbol{e}_3$$

satisfies for all multi-index $\alpha \in \mathbb{N}_0^3$ and $x \neq 0$

$$|\partial^lpha \mathcal{U}_3(x)| \leq rac{\mathcal{C}^{|lpha|} |lpha|!}{|x|^{1+|lpha|}}$$

for some universal constant C > 0.

Analyticity of the trajectories in the case p > 3

Theorem

Let p > 3, ρ_0 in E_p and (u, ρ) in $C([0, +\infty), W^{2,p} \times E_p)$ the unique corresponding solution of the transport-Stokes equation (TS). Let $\mu := 1 - 3/p$. Let X the flow associated with u, then X is analytic from $[0, +\infty)$ to $C^{1,\mu}(\mathbb{R}^3)$.

Proposition

There exists T > 0 depending only on $\|\rho_0\|_{L^1 \cap L^p}$ and C_0 depending only on $(\|\rho_0\|_{L^1 \cap L^p}, T, \mu)$ such that for $t \in [0, T]$ and $n \ge 1$,

 $\|\partial_t^n X(t,\cdot)\|_{1,\mu} \leq n! C_0^n.$

Outline

- Well posedness for $L^p(\mathbb{R}^3) \cap \mathcal{P}(\mathbb{R}^3)$ initial densities, $p \ge 3$
- 3 Analyticity of the trajectories in the case p > 3

Exact controllability

Exact controllability

Theorem

Let T > 0. Let ρ_0 and ρ_f in L^p_c with p > 3 and ω an open non empty set of \mathbb{R}^3 . Then there exists $(u, \rho) : [0, T] \times \mathbb{R}^3 \to \mathbb{R}^3 \times \mathbb{R}$ such that

$$(u, p) \in \mathcal{C}([0, +\infty), \mathcal{W}^{2, p}(\mathbb{R}^3 \setminus \omega) imes \mathcal{L}_p)$$

and

$$\begin{cases} -\Delta u + \nabla \boldsymbol{p} = -\rho \boldsymbol{e}_{3}, \\ \operatorname{div} \boldsymbol{u} = \boldsymbol{0}, \quad \boldsymbol{on} \left[\boldsymbol{0}, T \right] \times \mathbb{R}^{3} \setminus \boldsymbol{\omega} \\ \partial_{t} \rho + \operatorname{div}(\rho \boldsymbol{u}) = \boldsymbol{0}, \\ \rho(\boldsymbol{0}, \cdot) = \rho_{0}, \ \rho(\boldsymbol{T}, \cdot) = \rho_{f}, \quad \boldsymbol{on} \ \mathbb{R}^{3} \end{cases}$$

Idea of proof

Proposition

Let T > 0, ω and ρ_0 as above. There exists $u_{aux} : (0, T) \times \mathbb{R}^3 \mapsto \mathbb{R}^3$ satisfying $u_{aux} \in C^{\infty}_c((0, T) \times \mathbb{R}^3 \setminus \omega; \mathbb{R}^3)$,

$$-\Delta u_{aux} + \nabla p_{aux} = \operatorname{div} u_{aux} = 0 \text{ on } \mathbb{R}^3 \setminus \omega,$$

and there exists $\bigcup_{i=1}^{L} B(x_i, r_i)$ a covering of supp ρ_0 such that the flow map associated to u_{aux} sends the parts $B(x_i, r_i)$ to the control zone and back to $B(x_i, r_i)$ on several time intervals $]t_i, t_{i+1/2}[$, $1 \le i \le L$.

Ongoing works/ Open questions

- Lagrangian controllability
- Gevrey regularity in the critical case *p* = 3?
- characterization of the spherical patch as the unique invariant patch?