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Controllability of the Srödinger equation

We consider the system with a potential a(t, x)
i∂tψ = −∂2xxψ + a(t, x)ψ, x ∈ Ω = (0, 1), t ≥ 0,
ψ(t, 0) = ψ(t, 1) = 0, t ≥ 0,
ψ(0) = ψ0 ∈ L2(Ω,C).

The L2−norm is conserved, i.e.

∥ψ(t)∥L2 = ∥ψ0∥L2 , t > 0.

We are interested in the following controllability result: Given ψf

with ∥ψf ∥L2 = ∥ψ0∥L2 , find T > 0 and a(t, x) such that

ψ(T , x) = ψf (x).
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Our result (dimension d = 1 and Ω = (0, 1))

Theorem (CC-A. Duca, preprint)

Assume that

ψ0 =

N0∑
j=1

cjφj(x), ψf =

Nf∑
j=1

djφj(x).

For any ε > 0 there exist T > 0 (large) and a(t, x) such that the
solution of the above system can be written as

ψ(T ) =
∞∑
k=1

cj(T )φj ,

where
K∑

k=1

||ck(T )| − |dk ||2 +
∞∑

k=K+1

|ck(T )|2 < ε
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Example

Assume that we want to permute the ’energy’ of the first three
modes:

ψ0 = φ1 +
3
2φ2 + 2φ3

ψf = 3
2φ1 + 2φ2 + φ3

The control will produce a solution for which

ψ(x ,T ) ∼ c1(T )φ1 + c2(T )φ2 + c3(T )φ3,

where |c1(T )| ∼ 3/2, |c2(T )| ∼ 2 and |c3(T )| ∼ 1.
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The control a(t, x)

The control is explicit and given by

a(t, x) = η(t)
K∑

k=1

δak (t)(x)

The controls are {ak(t)}Kk=1
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Related works

Most of the works consider electric fields a(t, x) = v(t)µ(x) where
v(t) is the intensity of the field (control) and µ(x) the dipolar
moment (smooth)

Global approximate controllability: Mirrahimi and
Beauchard’ 09, Boscain and Adami’ 05, Boscain, Chittaro,
Gauthier, Mason, Rossi and Sigalotti’ 12, Boussaid, Caponigro
and Chambrion’ 22, ...

Local exact controllability: Ball, Marsden and Slemrod’ 85
(Negative result), Beauchard and Laurent 11’, Puel’ 16...

Nonlinear models, systems, networks, etc...

The peculiarity of our result is in the explicit form of the control. It
produces an adibatic regime almost any time.
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Existence of solutions in presence of a moving Dirac
potential


i∂tψ = −∂2xxψ + η(t)δx=a(t)ψ, x ∈ (0, 1), t ∈ (0,T ),
ψ(t, 0) = ψ(t, 1) = 0, t ∈ (0,T ),
ψ(0) = ψ0 ∈ L2((0, 1),C).

Theorem

Let a ∈ C 3([0,T ], (0, 1)) and η ∈ C 2([0,T ],R+). For any
ψ0 ∈ H1

0 , the above system admits a unique solution in
C 0([0,T ];H1

0 ) ∩ C 1([0,T ];H−1).
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Idea of the proof

Step 1. Write the system as,
i∂tψ = −∂2xxψ, x ∈ (0, a(t)) ∪ (a(t), 1), t > 0,
ψ(t, 0) = ψ(t, 1) = 0,
ψ(t, a(t)−) = ψ(t, a(t)+),
∂xψ(t, a(t)

+)− ∂xψ(t, a(t)
−) = η(t)ψ(t, a(t)),

ψ(0) = ψ0 ∈ L2((0, 1),C).

C. Castro+ and A. Duca∗ +Univ. Politécnica de Madrid, Spain. ∗University of Naples, Italy.On the control of the Srödinger equation with moving Dirac potentials



Step 2. Introduce a change of variables that fix the Dirac

(t, x) −→ (t, y) = (t, h(t, x))
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Step 3. After the change of variables the system can be written
for ϕ = h♯ψ as

i∂tϕ(t) = h♯H(t)h♯ϕ(t), in (0, 1) with

H(t) := −
[(
∂x + iMh

)
◦
(
∂x + iMh

)
+M2

h

]
,

Mh(t, x) = −1

2
(h∗∂th)(t, x).

where,

h♯(t) : ψ ∈ L2((0, 1),C) 7−→
√

|∂xh(t, ·)| (ψ◦h)(t) ∈ L2((0, 1),C).

h♯(t) = (h♯(t))−1 : ϕ 7→ (ϕ/
√

|∂xh(t, ·)|) ◦ h−1 ∈ L2((0, 1),C).

This is basically a Schrödinger equation with smooth coefficients
and an interior fixed Dirac. Existence is known for such systems
[Kisynsky, 64].
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Control strategy (proof of the main result)

The proof is based on an idea from Turaev’ 19, and further
developed by Duca, Joly and Turaev’ 20 with L1−potentials.
Main ingredients:

1 Adiabatic regime. For slow variation of η(t) and ak(t) the
energy associated to each mode is almost preserved. (Nenciu,
80)

2 The dynamics for large η is similar to the split domain
(0, a(t)) ∪ (a(t), 1) with homogeneous Dirichlet conditions.
This requires a convergence result for the eigenvalues and
eigenfuntions.

3 Continuity result. Assuming smoothness of η(t) and ak(t) the
solution maintains its spatial energy distribution in a
sufficiently small time interval.
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Lemma Take any function
f ∈ C 1([t1, t2],H

2((0, 1),C) ∩ H1
0 ((0, 1),C)) such that f (t, x)

vanishes in a(t) for every t ∈ [t1, t2]. Then, for all t ∈ [t1, t2],

∥ψ(t)− f (t)∥2L2 ≤ ∥ψ(t1)− f (t1)∥2L2 + C (t2 − t1),

with C independent of the choice of functions η and a
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Example

Assume that we want to permute the energy of the first two
modes. Take

ψ0 = 2φ1 + φ2, ψf = 1φ1 + 2φ2

First subinterval (0, t1) Take a(t, x) = η(t)δa1(x) with
a1 = 1/2 + ε and η(t) growing slowly from zero to a large value
ηM (adiabatic regime)

η(t) and a(t) |ψ(t1, x)|2

C. Castro+ and A. Duca∗ +Univ. Politécnica de Madrid, Spain. ∗University of Naples, Italy.On the control of the Srödinger equation with moving Dirac potentials



Second subinterval (t1, t2) Take a(t, x) = ηMδa1(t)(x) with a1(t)
that moves fast from a1 + ε to a1 − ε (continuity result)

η(t) and a(t) |ψ(t1, x)|2
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Third subinterval (t2,T ) Take a(t, x) = η(t)δa1(x) with
a1 = 1/2− ε and η(t) descending slowly from the large value ηM
to zero (adiabatic regime)

η(t) and a(t) |ψ(t1, x)|2

Then ψ(x ,T ) = c1(T )φ1 + c2(T )φ2 + O(ε) with |c1(T )| = 1 and
|c2(T )| = 2
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Remark: The permutation of energy in the modes is performed
in step 2. This is obtained with a rapid nonadiabatic movement of
the Dirac support a(t). Sufficiently slow movements will produce
an adiabatic regime with no permutation of energy. Intermediate
situations are also possible

ψ0(x) = 2ϕ1(x , 0) ψ0(x) = 2ϕ1(x , 0) + ϕ2(x , 0)
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Numerical approximation: Spectral method

Take X = L2(0, 1), a = (a1, ..., aK ) and consider the associated
eigenpairs of Aη,a

(λk(t), ϕk(x , t)), k ≥ 1.

Consider also the eigenpairs of the Dirichlet Laplacian

(µk(t),wk(x , t)), k ≥ 1.

Define
XN = span{wk}Nk=1, PN : X → XN .

Discrete problem: Find ψN(t) ∈ XN such that,{
i∂tψN = PNAη,a(t)ψN , t > 0
ψN(0) = PNψ0.
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Theorem

Assume that a and η satisfy the hypotheses to guarantee the
existence of a solution ψ ∈ C ([0,T ];H1

0 ) with initial data ψ0 ∈ H1
0 .

Let ψN be the solution of the corresponding finite dimensional
approximation. Then, for t ∈ [0,T ],

∥ψ(t)− ψN(t)∥L2 ≤
(
1 + 2T

ηM
π

) √
ηM√
3
√
N
∥ψ(t)∥L∞((0,T );H1

0 )
,

where ηM = maxt∈[0,T ] η(t).

Remark The estimate depends on η and T that are large.
Therefore it requires N large.
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The numerical scheme is convergent but the estimates in the
theorem are somehow useless in the simulation of the control since

1 The adiabatic regime requires T >> 1

2 In step 2 we require η >> 1

In practice, this means that the parameters η,T and N must be
carefully chosen.
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Idea of the proof

We write the solution ψ as linear combination of eigenfunctions,

ψ(t, x) =
∞∑
k=1

ψ̂k(t)ϕk(t, x), ψ̂k(t) =

∫ 1

0
ψ(t, x)ϕk(t, x) dx .

We prove the following:
Step 1

∥ψ(t)− ψN(t)∥L2 ≤
(
1 + 2T

ηM
π

)
∥(I − PN)ψ∥L∞((0,T );H1

0 )
,

Step 2

∥(I − PN)ϕk(t, ·)∥H1
0
≤

√
2

π

√
η(t)√
N

√
λk − ν1, ∀k ∈ N∗.
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Matrix formulation

ψN(t, x) =
N∑

n=1

ψ̂n(t)
√
2 sin(nπx).

{
Ψ′ = (D + P(t))Ψ,
Ψ(0) = Ψ0.

where P(t) = −2iη(t)
∑J

j=1 sj ⊗ sj for sj = (sin(kπaj(t)))
N
k=1 and

Ψ =


ψ̂1

ψ̂2

...

ψ̂N

 , D = −iπ2


12 0 ... 0
0 22 ... 0
...
0 0 ... N2

 .
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Time discretization

we propose a midpoint implicit method in time:

Ψk+1 −Ψk

∆t
=

(
D + P

( tk+1 + tk
2

)) Ψk+1 +Ψk

2
, k = 0, ...,K−1,

that is second order accurate and convergent as long as ∥P ′′(t)∥
is bounded in t ∈ [0,T ]. Another advantage of this method,
especially for long time simulations, is that it conserves the
L2-norm since D and P are purely imaginary matrixes

∥ΨK∥2 = ∥Ψ0∥2.
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Experiments: Example considered at the beginning

Assume that we want to permute the ’energy’ of the first three
modes:

ψ0 = φ1 +
3
2φ2 + 2φ3

ψf = 3
2φ1 + 2φ2 + φ3

The control will produce a solution for which

ψ(x ,T ) = c1(T )φ1 + c2(T )φ2 + c3(T )φ3 + O(ε),

where |c1(T )| ∼ 3/2, |c2(T )| ∼ 2 and |c3(T )| ∼ 1.

C. Castro+ and A. Duca∗ +Univ. Politécnica de Madrid, Spain. ∗University of Naples, Italy.On the control of the Srödinger equation with moving Dirac potentials



Trajectories of the Diracs Solution after including the Diracs.
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Example 2: permutation of 4 modes

Trajectories of the Diracs energy jumps of the Fourier modes
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Comments

1 For simplicity we have focused on permutations of energy
states. However, the technique can be adapted to any
redistribution of the energy in a finite number of Fourier
coefficients.

2 Probably the paths of Diracs (controls) can be optimized.

3 The idea can be adapted to higher dimensions, at least in
simple situations.
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