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Classification

We have a large data set of pictures

How can we separate the dog pictures from the other types of
pictures?

Domènec Ruiz-Balet (IC ) Control and DL Aug’25 2 / 38



Learning a function through samples

Let A ⊂ Rd be the subset of dog pictures.

Classification
Can we recover the function 1A given a finite amount of samples of 1A ?

{(xi , yi = 1A(xi))}Ni=1 ⊂ Rd × {0,1}

Approach
The approach would be to find an approximation of 1A in a "large" family of
functions
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The family we will consider are Neural Networks
Deep Residual networks (ResNets)1 were implemented to ease
the training of deep neural networks.

xk+1 = xk + W kσ(Akxk + bk )

This formulation reminds an Euler discretization of an ODE23.

x ′ = W (t)σ(A(t)x + b(t))

1
K He, X Zhang, S Ren, J Sun 2016: Deep residual learning for image recognition

2
E. Weinan 2017. A proposal on machine learning via dynamical systems.

3
R. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud 2018. Neural ordinary differential equations
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A Neural ODE has the form of:

x ′ = W (t)σ(A(t)x + b(t))

where
Consider σ : R→ R being the ReLU

σ(x) = max(x ,0)
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Control problem

Let f : Rd × Rdu → Rd be a Lipschitz function.
Controllability problem: Let x0, xT ∈ Rd , ∃u ∈ L∞((0,T );Rdu ) s.t.{

x ′ = f (x ,u)

x(0) = x0, x(T ) = xT

is satisfied?
Simultaneous controllability problem: Does u ∈ L∞((0,T );Rdu )
exist such that{

x ′ = f (x ,u)

x(0) = x0,1, x(T ) = xT ,1

{
x ′ = f (x ,u)

x(0) = x0,2, x(T ) = xT ,2

are satisfied?
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Consider N samples {(xi , yi)}Ni=1 ⊂ Rd × {1, ...,M} where xi is the data
associated with a class yi ∈ {1, ...,M}.

Find a control strategy that brings simultaneously all points to their
prefixed locations
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x ′ = W (t)σ(A(t)x + b(t))
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Classification

Let d ≥ 2 and M ≥ 2. Consider {xi , yi}N
i=1 ⊂ Rd × {1, ...,M}. Assume xi 6= xj if i 6= j .

Then, for every T > 0, ∃A,W ∈ L∞
(
(0,T );Rd×d) and b ∈ L∞

(
(0,T ),Rd) such that

φT (xi ; A,W , b) ∈ Smi ,

Smi being the subset corresponding to the label yi .

Theorem RB-Zuazua (Simultaneous Control/Interpolation)
For d ≥ 2 the system is approximately simultaneously controllable.
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Simultaneous Control

Step 1: Apply the same arguments than in the classification
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Simultaneous Control

Step 2: build, in an iterative manner piecewise controls that steer one
by one each point to their target.
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Universal approximation

Universal Approximation

Let d ≥ 2 and T > 0. Let Ω ⊂ Rd be a bounded set, and σ be the
ReLU. Then, for any f ∈ L2(Ω;Rd ) and ε > 0 there exist
A,W ∈ L∞((0,T );Rd ) and b ∈ L∞((0,T );Rd ) such that the flow
generated by the Neural ODE, φT (·; A,W ,b), satisfies:

‖φT (·; A,W ,b)− f (·)‖L2(Ω) < ε.
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In the NODE formulation, the result
translates into the following each input
x ∈ Rd has a target f (x) ∈ Rd . The actual
value of f (x). Ideally, we would like to find
controls A,W and b such that for every
x ∈ Ω we have that


ẋ = W (t)σ(A(t)x(t) + b(t))

x(0) = x
φT (x ; A,W ,b) = f (x).

f =
M∑

m=1

αmχΩm ,

The proof is based on approximating the
target function by a simple function and
then trying to reduce the problem to a
simultaneous control one.
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1.Cover the boundary of
the characteristic sets with
small hypercubes and
generate a mesh with them.
2.Remove a small strip
around the mesh
3.The white areas in the
figure above belong to Ωh
and the function will not be
very well approximated
there.
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”Badly mixed data“

The number of hyperrectangles depend on how many hypercubes
one needs.
If the interface between the characteristic sets is very irregular,
one will need more hypercubes and therefore the control cost will
be higher
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”Badly mixed data“

Let D be the box-counting dimension of Γ4. Let NΓ(h) be the number
of hypercubes of side h needed to cover the boundary Γ, the
box-counting dimension is defined as

D := lim
h→0

log NΓ(h)

log
(1

h

) .

The bounds on the control cost are able to capture such complexity.

‖W‖L∞ . ε−2(D+1)d , ‖b‖L∞ . ε−2dD as ε→ 0

The number of switches of A,W ,b will be of the order of ε−2dD.

4
K. Falconer 06: Fractal geometry: mathematical foundations and applications.

Domènec Ruiz-Balet (IC ) Control and DL Aug’25 17 / 38



Curse of dimensionality
Constructive procedure: Meshing the boundary produces a high
number of components and hence a high control cost

The number of switches of A,W ,b will be, at most, of the order of ε−2dD.

ONE CANNOT AVOID THE DEPENDENCE ON THE DIMENSION

For Bd , the number of switches of A,W ,b will be of the order of ε−
d−1

2 .

min
pN∈PN

|Bd4pN | ∼
c(d)

N2/(d−1)

K. Börözky Jr, Polytopal approximation
bounding the number of k-faces, Journal of
Approximation Theory, (2000)
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Transport

Note that the set of differential equations{
x ′ = W (t)σ(A(t)x + b(t))

x(0) = z ∈ Rd

correspond to the projected characteristics of the transport equation:{
∂tρ+ divx

[
(W (t)σ(A(t)x + b(t))) ρ

]
= 0

ρ(0) = ρ0

Domènec Ruiz-Balet (IC ) Control and DL Aug’25 19 / 38



Definition
Let µ, ν ∈ Pc(Rd ) be probability measures. The Wasserstein-1
distanceW1(µ, ν) is defined by as:

W1(µ, ν) = sup
Lip(g)≤1

{∫
Rd

gdµ−
∫
Rd

gdν
}

where Lip(g) ≤ 1 stands for the class of Lipschitz functions with
Lipschitz constant less or equal than 1.

56.

5
C. Villani 2008: Optimal transport: old and new

6
L.V. Kantorovich 1942, On the transfer of masses.
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The Lp-norm does not ”see“
the Euclidean distance
between the supports

‖v1 − v2‖Lp = 1

‖v1 − ṽ2‖Lp = 1

However, the Wasserstein
distance does,

W1(δx1 , δx2) = |x1 − x2|
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Consider target measures ρ∗ in the form

ρ∗ =
M∑

m=1

βmδαm ,

M∑
m=1

βm =

∫
Rd
ρ0dx

where δαm is the Dirac delta located at αm ∈ Rd and βm > 0.

Theorem (RB-Zuazua 2021 Control transport)

Let T > 0, d ≥ 2. Then, for every ε > 0, ∃W ,A ∈ L∞((0,T );Rd×d ) and
b ∈ L∞((0,T );Rd ) s.t.

W1(ρ(T ), ρ∗) < ε.
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Simultaneous Control of NTEs

Remark
The scalar transport equation does not allow distinguishing among
labels. One should take a vectorial structure in order to have a
transport formulation for classification.

Let us consider M classes, and M compactly supported probability
densities ρm for m = 1, ...,M.
Assume that for every x there exists, at most, a unique label y .
This implies that the supports of the probability measures ρm are
disjoint:

supp(ρm) ∩ supp(ρm′) = ∅, if m 6= m′.
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The system reads:
∂tρm + divx [(W (t)σ(A(t)x + b(t))ρm)] = 0, m ∈ {1, ...,M}
ρm(0) = ρ0

m ∈ Cc(Rd ), m ∈ {1, ...,M}
supp(ρ0

m) ∩ supp(ρ0
m′) = ∅ if m 6= m′.

Assume that the target functions satisfy:

supp(ρ∗m) ∩ supp(ρ∗m′) = ∅ if m 6= m′,
∫
ρ∗m =

∫
ρ0

mdx = 1 m ∈ {1, ...,M}.

Theorem RB-Zuazua 2021: Simultaneous control transport

Let T > 0. Then, for any ε > 0, ∃W ,A ∈ L∞((0,T ),Rd×d ) and
∃b ∈ L∞((0,T ),Rd ) such the solution satisfies:

W1(ρm(T ), ρ∗m) < ε m ∈ {1, ...,M}
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Other type of dynamics: Momentum ResNet

x ′′ + x ′ = Wσ(Ax + b)

Neural ODE

Momentum ResNet
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Zorionak!

D Ruiz-Balet, E Zuazua, Neural ODE control for classification,
approximation and transport,arXiv preprint arXiv:2104.05278 (Accepted
in SIAM Review)

D Ruiz-Balet, E Affili, E Zuazua, Interpolation and approximation via
momentum ResNets and neural ODEs, Systems & Control Letters 162,
2022

Enrique Zuazua

Elisa Affili
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1 Freeze. The fact that the vector field can be zero in half-space,
implies that any vector field generated by a hyperplane leaves half
being critical points for the dynamics.

2 Allocate. One can allocate the hyperplane at any place in Rd .
3 Setting an appropiate w one can generate

I an expansion.
I a compression.
I a translation.

This allows us to consider fundamental vector fields that will be key for
controlling the dynamics.
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Classification Problem

First of all, before applying the main argument, we will have to
prepeare our data set. We need that to find controls such that can
justify without loss of generality the following assumption

x (1)
j 6= x (1)

i if i 6= j
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δ
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δ δ
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δ δ
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The restriction of d ≥ 2 comes from the limitation already pointed
out before. However, the transport equation

∂tρ+ divx [V (x , t)ρ] = 0

with V as a control, can be approximately controlled in the
one-dimensional case.
It would be enough to design appropriate locations of attractors
and repulsors depending on the mass distribution of ρ0.
This would allow concentrating the mass in a finite number of
points.
Later, one needs to design a dynamical system that brings each
mass approximately on the approximation of the target. Neural
Transport Equations can achieve this in dimension d ≥ 2 just with
the controls A,W and b.
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