Initial data identification for Hamilton-Jacobi equations

Carlos Esteve Yagüe ce423@cam.ac.uk

University of Cambridge

August 24, 2022

joint work with Enrique Zuazua (FAU, Germany)

Time-evolution equation:

$$\begin{cases} \partial_t u = A(u), \quad t > 0 \\ u(0) = u_0. \end{cases}$$

Assumption: well-posedness

- Existence
- Uniqueness
- Continuity w.r.t. u₀.

Problem: If we are given u(T) for some T > 0, can we deduce u_0 ?

Issues:

- Existence of at least a compatible initial condition.
- Uniqueness of inverse designs.
- What if the observation u(T) is noisy?

$$\begin{cases} \partial_t u + H(x, \nabla_x u) = 0, \quad (0, T) \times \mathbb{R}^N \\ u(0, \cdot) = u_0(\cdot) \in \operatorname{Lip}(\mathbb{R}^N) \end{cases}$$

$$H \in C^2(\mathbb{R}^{2N})$$
 $H_{\rho\rho}(x,\rho) \geq c I_N.$

Well-posedness in the sense of viscosity solutions

$$\begin{array}{rccc} S^+_T : & \operatorname{Lip}(\mathbb{R}^N) & \longrightarrow & \operatorname{Lip}(\mathbb{R}^N) \\ & u_0 & \longmapsto & u(T, \cdot) \end{array}$$

Given a function $u_T \in \text{Lip}(\mathbb{R}^N)$, construct u_0 such that $S^+_T u_0(x) \approx u_T(x) \qquad \forall x \in \mathbb{R}^N.$

$$\begin{cases} \partial_t u + H(x, \nabla_x u) = 0, \quad (0, T) \times \mathbb{R}^N \\ u(0, \cdot) = u_0(\cdot) \in \operatorname{Lip}(\mathbb{R}^N) \end{cases}$$

$$H\in C^2(\mathbb{R}^{2N}) \quad H_{
hop}(x,p)\geq c\,I_N.$$

Well-posedness in the sense of viscosity solutions

$$\begin{array}{rccc} \mathcal{S}_{\mathcal{T}}^+ : & \operatorname{Lip}(\mathbb{R}^N) & \longrightarrow & \operatorname{Lip}(\mathbb{R}^N) \\ & u_0 & \longmapsto & u(\mathcal{T}, \cdot) \end{array}$$

Given a function $u_{\mathcal{T}} \in \operatorname{Lip}(\mathbb{R}^N)$, construct u_0 such that

$$S^+_T u_0(x) pprox u_T(x) \qquad \forall x \in \mathbb{R}^N.$$

Admissible observations: Characterize the image of the operator S⁺_T:

$$\mathcal{R}_{\mathcal{T}} := \left\{ u_{\mathcal{T}} \in \operatorname{Lip}(\mathbb{R}^N) \quad \text{ s.t. } \exists u_0 \in \operatorname{Lip}(\mathbb{R}^N) \text{ satisfying } S^+_{\mathcal{T}} u_0 = u_{\mathcal{T}}
ight\}.$$

- 1. Backward-forward criterion.
- 2. Geometric criterion (semiconcavity condition).

$$\begin{cases} \partial_t u + H(x, \nabla_x u) = 0, \quad (0, T) \times \mathbb{R}^N \\ u(0, \cdot) = u_0(\cdot) \in \operatorname{Lip}(\mathbb{R}^N) \end{cases}$$

$$H\in C^2(\mathbb{R}^{2N}) \quad H_{
hop}(x,p)\geq c\,I_N.$$

Well-posedness in the sense of viscosity solutions

$$\begin{array}{rccc} S^+_T : & \operatorname{Lip}(\mathbb{R}^N) & \longrightarrow & \operatorname{Lip}(\mathbb{R}^N) \\ & u_0 & \longmapsto & u(T, \cdot) \end{array}$$

Given a function $u_T \in Lip(\mathbb{R}^N)$, construct u_0 such that

$$S_T^+ u_0(x) \approx u_T(x) \qquad \forall x \in \mathbb{R}^N.$$

Closest admissible function:

- 1. Backward-forward projection (semiconcave envelope)
- 2. L^2 -projection

$$\begin{cases} \partial_t u + H(x, \nabla_x u) = 0, \quad (0, T) \times \mathbb{R}^N \\ u(0, \cdot) = u_0(\cdot) \in \operatorname{Lip}(\mathbb{R}^N) \end{cases}$$

$$H \in C^2(\mathbb{R}^{2N}) \quad H_{pp}(x,p) \geq c I_N.$$

Well-posedness in the sense of viscosity solutions

$$\begin{array}{rccc} S^+_T : & \operatorname{Lip}(\mathbb{R}^N) & \longrightarrow & \operatorname{Lip}(\mathbb{R}^N) \\ & u_0 & \longmapsto & u(T, \cdot) \end{array}$$

Given a function $u_T \in Lip(\mathbb{R}^N)$, construct u_0 such that $S_T^+ u_0(x) \approx u_T(x) \qquad \forall x \in \mathbb{R}^N.$

Initial-condition reconstruction: Lack of backward uniqueness

Consider the one-dimensional Hamilton-Jacobi equation

$$\partial_t u + \frac{(\partial_x u)^2}{2} = 0.$$

Lack of backward uniqueness due to the loss of regularity.

The viscosity solutions with initial condition u_1 and u_2 coincide at time t = T.

After time T, both solutions are indistinguishable.

Characterization of the admissible set

- ₹ 🖬 🕨

ъ

For a time horizon T > 0 and a given target $u_T \in Lip(\mathbb{R}^N)$, let us define

$$I_T(u_T):=\left\{u_0\in \operatorname{Lip}(\mathbb{R}^N); ext{ such that } S^+_Tu_0=u_T
ight\}.$$

Goal: Give necessary and sufficient conditions for $I_T(u_T) \neq \emptyset$.

The **natural candidate** is obtained by reversing the time in the (HJ) equation, considering u_T as terminal condition.

We need a notion of solution for which the terminal value problem

$$\begin{cases} \partial_t u + H(x, \nabla_x u) = 0, \quad (0, T) \times \mathbb{R}^N \\ u(T, \cdot) = u_T(\cdot) \in \operatorname{Lip}(\mathbb{R}^N) \end{cases}$$

is well-posed.

For a time horizon T > 0 and a given target $u_T \in Lip(\mathbb{R}^N)$, let us define

$$I_T(u_T):=\left\{u_0\in \operatorname{Lip}(\mathbb{R}^N); ext{ such that } S^+_Tu_0=u_T
ight\}.$$

Goal: Give necessary and sufficient conditions for $I_T(u_T) \neq \emptyset$.

The **natural candidate** is obtained by reversing the time in the (HJ) equation, considering u_T as terminal condition.

We need a notion of solution for which the terminal value problem

$$\begin{cases} \partial_t u + H(x, \nabla_x u) = 0, \quad (0, T) \times \mathbb{R}^N \\ u(T, \cdot) = u_T(\cdot) \in \operatorname{Lip}(\mathbb{R}^N) \end{cases}$$

is well-posed.

Viscosity solutions (Crandall-Lions, 1980's)

For any $u_0 \in \text{Lip}(\mathbb{R}^N)$, the viscosity solution u(t, x) is the pointwise limit as $\varepsilon \to 0^+$ of $u_{\varepsilon}(t, x)$, the solution to the semilinear parabolic problem

$$\begin{cases} \partial_t u_{\varepsilon} - \varepsilon \Delta u_{\varepsilon} + H(x, \nabla_x u_{\varepsilon}) = 0, & (t, x) \in (0, T) \times \mathbb{R}^N \\ u_{\varepsilon}(0, x) = u_0(x), & x \in \mathbb{R}^N. \end{cases}$$
(VHJ)

Backward viscosity solutions

For any $u_T \in \text{Lip}(\mathbb{R}^N)$, the backward viscosity solution v(t, x) is the pointwise limit as $\varepsilon \to 0^+$ of $v_{\varepsilon}(t, x)$, the solution to the semilinear parabolic problem

$$\partial_t v_{\varepsilon} + \varepsilon \Delta v_{\varepsilon} + H(x, \nabla_x v_{\varepsilon}) = 0, \quad (t, x) \in (0, T) \times \mathbb{R}^N v_{\varepsilon}(T, x) = u_T(x), \qquad x \in \mathbb{R}^N.$$
 (BVHJ)

Remark:

- The backward viscosity solution is not a viscosity solution.
- Same definition as viscosity solution with the inequalities reversed.

イロト イポト イラト イラ

Viscosity solutions (Crandall-Lions, 1980's)

For any $u_0 \in \text{Lip}(\mathbb{R}^N)$, the viscosity solution u(t, x) is the pointwise limit as $\varepsilon \to 0^+$ of $u_{\varepsilon}(t, x)$, the solution to the semilinear parabolic problem

$$\begin{cases} \partial_t u_{\varepsilon} - \varepsilon \Delta u_{\varepsilon} + H(x, \nabla_x u_{\varepsilon}) = 0, & (t, x) \in (0, T) \times \mathbb{R}^N \\ u_{\varepsilon}(0, x) = u_0(x), & x \in \mathbb{R}^N. \end{cases}$$
(VHJ)

Backward viscosity solutions

For any $u_T \in \text{Lip}(\mathbb{R}^N)$, the backward viscosity solution v(t, x) is the pointwise limit as $\varepsilon \to 0^+$ of $v_{\varepsilon}(t, x)$, the solution to the semilinear parabolic problem

$$\begin{array}{ll} \partial_t v_{\varepsilon} + \varepsilon \Delta v_{\varepsilon} + H(x, \nabla_x v_{\varepsilon}) = 0, & (t, x) \in (0, T) \times \mathbb{R}^N \\ v_{\varepsilon}(T, x) = u_T(x), & x \in \mathbb{R}^N. \end{array}$$
(BVHJ)

Remark:

- The backward viscosity solution is not a viscosity solution.
- Same definition as viscosity solution with the inequalities reversed.

・ 同 ト ・ ヨ ト ・ ヨ ト

We can then define the (forward) viscosity operator as

$$egin{array}{rcl} S^+_T : & {
m Lip}(\mathbb{R}^N) & \longrightarrow & {
m Lip}(\mathbb{R}^N) \ & u_0 & \longmapsto & S^+_T u_0 := u(T,\cdot) \end{array}$$

where $u(T, \cdot)$ is the unique viscosity solution to (HJ) at time t = T with initial condition;

and we also define the backward viscosity operator as

$$egin{array}{rcl} S^-_T:& {
m Lip}(\mathbb{R}^N)&\longrightarrow& {
m Lip}(\mathbb{R}^N)\ & u_T&\longmapsto& S^-_Tu_T:=v(0,\cdot) \end{array}$$

where $v(0, \cdot)$ is the unique backward viscosity solution to (HJ) at time t = 0 with terminal condition u_{τ} .

伺 ト イ ヨ ト イ ヨ ト

Forward and backward viscosity solutions

Property

- For any φ ∈ Lip(ℝ^N) and any T > 0, the function S⁺_Tφ(x) is semiconcave.
- 2. For any $\varphi \in \text{Lip}(\mathbb{R}^N)$ and any T > 0, the function $S_T^- \varphi(x)$ is **semiconvex**.

Definition

Let $f \in Lip(\mathbb{R}^N)$:

- We say that f is **semiconcave** if $\exists C > 0$ such that $D^2 f \leq C I_N$ in \mathbb{R}^N .
- We say that f is **semiconvex** if $\exists C > 0$ such that $D^2 f \ge -C I_N$ in \mathbb{R}^N .

Let $u_T \in \text{Lip}(\mathbb{R}^N)$ and T > 0. Then $I_T(u_T) \neq \emptyset$ if and only if $S_T^+(S_T^-u_T) = u_T$.

- It is clear that, in order to be reachable, the target u_T needs to be semiconcave.
- Being semiconcave is however **not sufficient** for being reachable.
- The optimal semiconcavity condition for reachability depends on the Hamiltonian *H* and the time-horizon *T*.

Semiconcavity condition

Let H(x, p) satisfy $H \in C^2(\mathbb{R}^{2N})$, and $H_{DD}(x,p) \ge c I_N, \quad \forall (x,p) \in \mathbb{R}^{2N}.$ Then, for any $u_T \in Lip(\mathbb{R}^N)$, we have $I_T(u_T) \neq \emptyset$ implies $D^2 u_T(x) \leq \frac{1}{cT} I_N$ in the viscosity sense, or equivalently, the function $x \mapsto u_T(x) - \frac{\|x\|^2}{2cT}$ is concave. Theorem

• If N = 1, then $I_T(u_T) \neq \emptyset$ if and only if

$$\partial_{xx} u_T(x) - rac{1}{T H_{
hop}(\partial_x u_T(x))} \leq 0, \qquad ext{in } \mathbb{R}.$$

• If $N \ge 1$, and $H(p) = \frac{\langle Ap, p \rangle}{2}$ for some matrix A > 0, then $I_T(u_T) \neq \emptyset$ if and only if

$$D^2 u_T(x) - rac{A^{-1}}{T} \leq 0, \qquad ext{in } \mathbb{R}^N.$$

Projections on the admissible set

When the given target is not reachable, we can consider the problem of "approximating" it by means of a reachable target.

Definition

For any $u_T \in Lip(\mathbb{R}^N)$, the function

$$u_T^* := S_T^+(S_T^-u_T)$$

satisfies $I_T(u_T^*) \neq \emptyset$.

We call u_T^* the backward-forward projection of u_T onto the set of reachable targets.

Let N = 1 and let H be a $C^2(\mathbb{R})$ uniformly convex Hamiltonian. Then, for any $u_T \in \text{Lip}(\mathbb{R})$, the function $u_T^* = S_T^+(S_T^-u_T)$ is the viscosity solution to the obstacle problem

$$\min\left\{v-u_T, \ -\partial_{xx}v+\frac{[H''(\partial_x v)]^{-1}}{T}\right\}=0.$$

For any given target $u_T \in \text{Lip}(\mathbb{R}^N)$, the function $u_T^* = S_T^+(S_T^-u_T)$ is the smallest reachable target bounded from below by u_T .

Geometric properties of u_T^* (semiconcave envelopes)

Theorem

Let

$$H(p) = rac{\langle Ap, p \rangle}{2}$$
 for some matrix $A > 0$.

Then, for any $u_{\tau} \in \text{Lip}(\mathbb{R}^N)$, the function $u_{\tau}^* = S_{\tau}^+(S_{\tau}^- u_{\tau})$ is the viscosity solution to the obstacle problem

$$\min\left\{\boldsymbol{v}-\boldsymbol{u}_{T},\ -\lambda_{N}\left[\boldsymbol{D}^{2}\boldsymbol{v}-\frac{\boldsymbol{A}^{-1}}{T}\right]\right\}=0. \tag{1}$$

- Here, $D^2 v$ denotes the Hessian matrix of v; and for a symmetric matrix X, $\lambda_N[X]$ denotes its greatest eigenvalue.
- Observe that for *T* large, equation (1) is an approximation of the equation for the concave envelope of *u*_T

$$\min\left\{\boldsymbol{v}-\boldsymbol{u}_{T},\ -\lambda_{N}\left[\boldsymbol{D}^{2}\boldsymbol{v}\right]\right\}=\boldsymbol{0}.$$

For any u_T ∈ Lip(ℝ^N), we call u_T^{*} the A⁻¹/T −semiconcave envelope of u_T in ℝ^N.

(4月)、(3)、(3)、(3)、(4)

Geometric properties of u_T^* (semiconcave envelopes)

Theorem

Let

$$H(p) = \frac{\langle Ap, p \rangle}{2}$$
 for some matrix $A > 0$.

Then, for any $u_{\tau} \in \text{Lip}(\mathbb{R}^N)$, the function $u_{\tau}^* = S_{\tau}^+(S_{\tau}^- u_{\tau})$ is the viscosity solution to the obstacle problem

$$\min\left\{\boldsymbol{v}-\boldsymbol{u}_{T},\ -\lambda_{N}\left[\boldsymbol{D}^{2}\boldsymbol{v}-\frac{\boldsymbol{A}^{-1}}{T}\right]\right\}=0. \tag{1}$$

The L^2 -projection

Given $u_T \in Lip(\mathbb{R}^N)$ and T > 0,

$$\underset{\varphi_{\mathcal{T}}\in\mathcal{R}_{\mathcal{T}}}{\text{minimize }} \mathcal{F}_{\mathcal{T}}(\varphi_{\mathcal{T}}) := \|\varphi_{\mathcal{T}} - u_{\mathcal{T}}(\cdot)\|_{L^{2}(\mathbb{R}^{N})}^{2},$$

where

$$\mathcal{R}_{\mathcal{T}} := \{ \varphi \in \operatorname{Lip}(\mathbb{R}^N) ; \quad \exists u_0 \in \operatorname{Lip}(\mathbb{R}^N) \text{ s.t. } S^+_{\mathcal{T}} u_0 = \varphi_{\mathcal{T}} \}.$$

Issue: In many cases, the set $\mathcal{R}_{\mathcal{T}}$ is non-convex, and its characterization does not allow to implement standard optimization algorithms.

Optimal control problem

Given $u_T \in \operatorname{Lip}(\mathbb{R}^N)$ and T > 0,

minimize
$$\mathcal{J}_T(u_0) := \|S_T^+ u_0 - u_T(\cdot)\|_{L^2(\mathbb{R}^N)}^2$$
.

Issue: We need to compute derivatives of $\mathcal{J}_{\mathcal{T}}(\cdot)$.

(日)

The L²-projection

Given $u_T \in Lip(\mathbb{R}^N)$ and T > 0,

$$\underset{\varphi_{\mathcal{T}}\in\mathcal{R}_{\mathcal{T}}}{\text{minimize }} \mathcal{F}_{\mathcal{T}}(\varphi_{\mathcal{T}}) := \|\varphi_{\mathcal{T}} - u_{\mathcal{T}}(\cdot)\|_{L^{2}(\mathbb{R}^{N})}^{2},$$

where

$$\mathcal{R}_{\mathcal{T}} := \{ \varphi \in \mathsf{Lip}(\mathbb{R}^N) ; \quad \exists u_0 \in \mathsf{Lip}(\mathbb{R}^N) \text{ s.t. } S^+_{\mathcal{T}} u_0 = \varphi_{\mathcal{T}} \}.$$

Issue: In many cases, the set \mathcal{R}_{T} is non-convex, and its characterization does not allow to implement standard optimization algorithms.

Optimal control problem

Given $u_T \in \operatorname{Lip}(\mathbb{R}^N)$ and T > 0,

$$\underset{u_0 \in \operatorname{Lip}(\mathbb{R}^N)}{\operatorname{minimize}} \mathcal{J}_{T}(u_0) := \|S_{T}^+ u_0 - u_{T}(\cdot)\|_{L^2(\mathbb{R}^N)}^2.$$

Issue: We need to compute derivatives of $\mathcal{J}_{\mathcal{T}}(\cdot)$.

$$\underset{u_0\in \operatorname{Lip}(\mathbb{R}^N)}{\operatorname{minimize}} \mathcal{J}_T(u_0) := \|S_T^+ u_0 - u_T(\cdot)\|_{L^2(\mathbb{R}^N)}^2.$$

The gradient of \mathcal{J}_T :

For any $u_0 \in \text{Lip}(\mathbb{R}^N)$ the gradient of \mathcal{J}_T at u_0 is the following linear functional:

$$w \in \operatorname{Lip}(\mathbb{R}^N) \longmapsto \partial_w \mathcal{J}_T(u_0) = 2 \int_{\mathbb{R}^N} \left(S^+_T u_0(x) - u_T(x) \right) \partial_w S^+_T u_0(x) dx,$$

where $\partial_w S^+_T u_0(x)$ is the directional Gâteaux derivative of the operator S^+_T with respect to u_0 :

$$\partial_{\mathbf{w}} S_{T}^{+} u_{0}(\cdot) = \lim_{\delta \to 0^{+}} \frac{S_{T}^{+} (u_{0} + \delta \mathbf{w}) - S_{T}^{+} u_{0}}{\delta}.$$
 (2)

Theorem

For any $u_0, w \in Lip(\mathbb{R}^N)$, the limit in (2) exists in $L^1_{loc}(\mathbb{R}^N)$, and is linear with respect to w.

Let N = 1 or $N \ge 1$ and $H(x, p) = ||p||^2 + f(x)$. For any $u_0, w \in \text{Lip}(\mathbb{R}^N)$, the gradient of the functional \mathcal{J}_T at $u_0 \in \text{Lip}(\mathbb{R}^N)$ can also be given as

$$w \in \operatorname{Lip}(\mathbb{R}^N) \longmapsto \partial_w \mathcal{J}_T(u_0) = 2 \int_{\mathbb{R}^N} w(x) \pi(0, x) dx,$$

where $\pi(0, \cdot)$ is the solution at time 0 of the backward conservative transport equation

$$\begin{cases} \partial_t \pi + \operatorname{div}(a(t, x)\pi) = 0 \quad (0, T) \times \mathbb{R}^N \\ \pi(T) = S_T^+ u_0 - u_T \qquad \mathbb{R}^N, \end{cases}$$
(3)

where $a(t, x) = H_{\rho}(x, \nabla u(t, x))$.

Remark:

• The proof utilizes the well-posedness of the backward transport equation (3), which relies on the following one-sided-Lipschitz estimate

$$\langle a(t, y) - a(t, x), y - x \rangle \leq \alpha(t) |y - x|^2$$

which only holds if N = 1 or if $N \ge 1$ and H is quadratic in p.

Let N = 1 or $N \ge 1$ and $H(x, p) = ||p||^2 + f(x)$. For any $u_0, w \in \text{Lip}(\mathbb{R}^N)$, the gradient of the functional $\mathcal{J}_{\mathcal{T}}$ at $u_0 \in \text{Lip}(\mathbb{R}^N)$ can also be given as

$$w \in \operatorname{Lip}(\mathbb{R}^N) \longmapsto \partial_w \mathcal{J}_T(u_0) = 2 \int_{\mathbb{R}^N} w(x) \pi(0, x) dx,$$

where $\pi(0, \cdot)$ is the solution at time 0 of the backward conservative transport equation

$$\begin{cases} \partial_t \pi + \operatorname{div}(a(t, x)\pi) = 0 \quad (0, T) \times \mathbb{R}^N \\ \pi(T) = S_T^+ u_0 - u_T \qquad \mathbb{R}^N, \end{cases}$$
(3)

where $a(t, x) = H_{\rho}(x, \nabla u(t, x))$.

Remark:

Due to the low regularity of the transport coefficient a(t, x), the solution π(t, x) to (3) at time t = 0 is a Radon measure, which might be discontinuous with respect to the Lebesgue measure.

Let N = 1 or $N \ge 1$ and $H(x, p) = ||p||^2 + f(x)$. For any $u_0, w \in \text{Lip}(\mathbb{R}^N)$, the gradient of the functional $\mathcal{J}_{\mathcal{T}}$ at $u_0 \in \text{Lip}(\mathbb{R}^N)$ can also be given as

$$w \in \operatorname{Lip}(\mathbb{R}^N) \longmapsto \partial_w \mathcal{J}_T(u_0) = 2 \int_{\mathbb{R}^N} w(x) \pi(0, x) dx,$$

where $\pi(0, \cdot)$ is the solution at time 0 of the backward conservative transport equation

$$\begin{cases} \partial_t \pi + \operatorname{div}(a(t, x)\pi) = 0 \quad (0, T) \times \mathbb{R}^N \\ \pi(T) = S_T^+ u_0 - u_T \qquad \mathbb{R}^N, \end{cases}$$
(3)

where $a(t, x) = H_{\rho}(x, \nabla u(t, x))$.

Remark:

• Gradient Descent Algorithm:

$$u_{i+1}(\cdot) = u_i - \delta_i \tilde{w}(\cdot),$$

where $\tilde{w}(\cdot)$ is a Lipschitz approximation of $\pi(0, \cdot)$.

L²-projection onto the admissible set

Carlos Esteve Yagüe

Initial data reconstruction

< ∃ > <

∢ ≣⇒

Initial data reconstruction

Let $u_T \in \text{Lip}(\mathbb{R}^N)$, and let u_T^* be a projection of u_T onto \mathcal{R}_T .

Goal:

Construct all the initial conditions $u_0 \in \text{Lip}(\mathbb{R}^N)$ satisfying $S_T^+ u_0 = u_T^*$.

Let us recall the definition of the set

$$I_{\mathcal{T}}(u_{\mathcal{T}}^*):=\left\{u_0\in \operatorname{Lip}(\mathbb{R}^N); ext{ such that } S_{\mathcal{T}}^+u_0=u_{\mathcal{T}}^*
ight\}$$

of inverse designs for u_{T} .

Characterization of $I_T(u_T^*) := \{u_0 \in \operatorname{Lip}(\mathbb{R}^N) \text{ s.t. } S_T^+ u_0 = u_T^*\}.$

Step 1: Set the initial condition given by the backward viscosity solution

 $\tilde{u}_0(x) := S_T^- u_T^*(x) \in I_T(u_T^*).$

• First of all, we can prove that, for any $u_0 \in Lip(\mathbb{R}^N)$, it holds that

$$S_T^- \circ S_T^+ u_0(x) \leq u_0(x) \qquad \forall x \in \mathbb{R}^N.$$

• Then, we can deduce that, if $u_0 \in I_T(u_T)$, i.e.

$$S_T^+ u_0(x) = u_T^*(x) \qquad \forall x \in \mathbb{R}^N,$$

then

$$u_0(x) \geq S_T^- \circ S_T^+ u_0(x) = S_T^- u_T^*(x) = \widetilde{u}_0(x) \qquad orall x \in \mathbb{R}^N.$$

This proves that \tilde{u}_0 is the smallest initial condition in $I_T(u_T^*)$.

Characterization of $I_T(u_T^*) := \{u_0 \in \operatorname{Lip}(\mathbb{R}^N) \text{ s.t. } S_T^+ u_0 = u_T^*\}.$

Step 2: Let us define the following subset¹ of \mathbb{R}^{N} :

$$X_{\mathcal{T}}(u^*_{\mathcal{T}}):=\left\{z-\mathcal{T}\,\mathcal{H}_{\!
ho}(
abla u^*_{\mathcal{T}}(z));\;\forall z\in\mathbb{R}^N ext{ such that }u^*_{\mathcal{T}}(\cdot) ext{ is differentiable at }z
ight\}.$$

Using the optimality condition for the associated problem in calculus of variations we can prove that

$$S^+_T u_0(x) \leq u^*_T(x) \; orall x \in \mathbb{R}^N$$
 if and only if $u_0(x) \leq \widetilde{u}_0(x) \; orall x \in X_T(u^*_T).$

Combining this with Step 1, it we obtain that all the initial conditions $u_0 \in I_T(u_T^*)$ coincide with \tilde{u}_0 in the set $X_T(u_T^*)$.

¹(Here we use that *H* is *x*-independent. For *x*-dependent Hamiltonians the expression for $X_T(u_T^*)$ is very lengthy.)

Let $u_T \in \operatorname{Lip}(\mathbb{R}^N)$ be such that $I_T(u_T) \neq \emptyset$ and set the function $\tilde{u}_0 := S_T^- u_T$. Then, for any $u_0 \in \operatorname{Lip}(\mathbb{R}^N)$, the two following statements are equivalent: (i) $u_0 \in I_T(u_T)$; (ii) $u_0(x) \geq \tilde{u}_0(x), \forall x \in \mathbb{R}^N$ and $u_0(x) = \tilde{u}_0(x), \forall x \in X_T(u_T)$, where $X_T(u_T)$ is the subset of \mathbb{R}^N given by $X_T(u_T) := \left\{ z - T H_\rho(\nabla u_T(z)); \forall z \in \mathbb{R}^N \text{ such that } u_T(\cdot) \text{ is differentiable at } z \right\}$

We can write $I_T(u_T)$ in the following way

$$I_{T}(u_{T}) = \left\{ \tilde{u}_{0} + \varphi \, ; \, \varphi \in \operatorname{Lip}(\mathbb{R}^{n}) \text{ such that } \varphi \geq 0 \text{ and } \operatorname{supp}(\varphi) \subset \mathbb{R}^{n} \setminus X_{T}(u_{T}) \right\}.$$

Observe that $I_T(u_T)$ is a convex cone with \tilde{u}_0 as vertex.

Remarks:

- If X_T(u_T) = ℝ^N, then I_T(u_T) = {ũ₀}. It is the case of solutions that are differentiable everywhere in [0, T] × ℝ^N.
- If X_T(u_T) is a proper subset of ℝ^N, there is no backward uniqueness. We cannot uniquely determine the initial datum.
- In any case, the initial datum is uniquely determined in $X_T(u_T)$, while in $\mathbb{R}^N \setminus X_T(u_T)$ we only have a lower bound. The information in $\mathbb{R}^N \setminus X_T(u_T)$ is partially lost at time *T*.

Thank you for your attention!!!

References:

- C. -Esteve-Yagüe and E. Zuazua. The inverse problem for Hamilton–Jacobi equations and semiconcave envelopes, SIAM J. Math. Anal., 52(6), 5627–5657.
- C. Esteve-Yagüe and Enrique Zuazua, *Differentiability with respect to the initial condition for Hamilton-Jacobi equations*, to appear in SIAM J. Math. Anal.