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Introduction



Motivation

Overarching goal: Optimization of gas network

operation

I.e.: Optimal control of nonlinear PDE’s on large

domains/networks:

min
u∈K

J(y(u), u)

with

� target functional J (operational cost, distance

to target state)

� control u (compressor stations, valves)

� state y (pressure, density, velocity)

� set of admissible controls K
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Optimal control of gas flow on networks

Let (E ,V) a network with boundary nodes Vb, interior nodes V0 and compressor

nodes Vc . Our goal is to solve

min
u∈U

J(y , u) :=

∫
E×[0,T ]

(y − yd)
2 +

δ

2
∥u∥2U (1)

such that

∂t(φ(ye)) − ∂x (φ(∂xye)) = 0 in {e} × (0,T ), e ∈ E
νeφ(∂xy) + γvφ(y) = g in {v} × (0,T ) v ∈ Vb, e ∈ E(v)
ye = ye′ in {v} × (0,T ), v ∈ V0, e, e′ ∈ E(v)∑

e∈E(v) νeφ(∂xye) = 0 in {v} × (0,T ), v ∈ V0 \ Vc

νeφ(∂xye) = γv (φ(ye′ ) − φ(ye) + ue)

in {v} × (0,T ), v ∈ Vc , e, e′ ∈ E(v)
ye(0, ·) = ye,0 on e ∈ E

(2)

with nonlinearity φ : s 7→ |s|−
1
2 s. Our project (C07 of TRR154) concerns

gradient descent procedures for this kind of problem:

� Does the equation allow for an adjoint state?

� Can we decrease numerical cost of the GD by using domain

decomposition?
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Optimal control of parabolic p-Laplacian equations

For α < 2 consider problems of the form

min
u∈U

J(y , u) =
1

2

∫ T

0

∫
Ω

|y − yd |2 +
λ

2

∫ T

0

∫
∂Ω

u2 (3a)

s.t.


∂ty −∆αy = 0 in (0,T )× Ω,

|∇y |α−2 ∂y

∂ν
+ γy = γu on (0,T )× ∂Ω,

y(x , 0) = y0 in Ω

(3b)

for some fixed y0 ∈ L2(Ω), γ, λ > 0 , yd ∈ L2(Ω) and a control

u ∈ U ⊂ L
α

α−1 (0,T , L2(∂Ω)). The formal adjoint p can become singular:

−∂tp −∇ ·
(
φ′(∇y)∇p

)
= 0

Open problem: Assuming only ∇y ̸= 0 a.e., is the solution operator of (3)

differentiable? [cf. Fernandez-Casas, 1995]

Theorem (LW, Zuazua, 2022)
Assuming 0 < C1 ≤ |∇y | ≤ C2 <∞, the solution operator of (3) is Gâteaux

differentiable and an adjoint state exists.
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Domain Decomposition for

Gradient Descent



Motivation: Gradient Descent Procedures for Optimal Control

For simplicity, consider

min
u∈L2(Ω)

J(y , u) :=
1

2
∥y − yd∥2L2(Ω) +

λ

2
∥u∥2L2(Ω) (4)

with

−∆y = f + u in Ω

y = 0 on ∂Ω.

Optimality System: Optimal state ȳ and its adjoint p̄ satisfy−∆ȳ = f − 1
λ
p̄ in Ω

ȳ = 0 on ∂Ω
,

−∆p̄ = ȳ − yd in Ω

p̄ = 0 on ∂Ω.
(5)

Gradient Descent: Find ȳ by iteratively computing−∆y (n) = f + u(n) in Ω

y (n) = 0 on ∂Ω
,

−∆p(n) = y (n) − yd in Ω

p(n) = 0 on ∂Ω
(6)

u(n+1) = u(n) − η
(
p(n) + λu(n)

)
(7)

Main challenge: Repeated computation of forward and adjoint system is

numerically expensive! Particularly for very large domains.
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Domain Decomposition Methods

Consider the Poisson problem−∆y = f in Ω

y = 0 on ∂Ω
(8)

on a domain Ω ⊂ Rd . Fix a decomposition Ω =

Ω1 ∪ Ω2 with Ω1 ∩ Ω2 = ∅ and Γ := Ω1 ∩ Ω2.
Picture taken from [LL04]

Then, the iterative procedure defined by
−∆yn

i = f |Ωi in Ωi

yn
i = 0 on ∂Ωi \ Γ
∂νi y

n
i + yn

i = −∂νj y
n−1
j + yn−1

j on Γ, j ̸= i

(9)

converges towards y for n→∞ [Lio90]. Note: parallelizable!
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Domain Decomposition and Gradient Descent

How can DDM be used in the context of gradient descent?

1. Performing DDM in each iteration of GD (see [CY11]):

� Outer Iteration: Adjoint-based gradient descent

� Inner Iteration: Solve forward and adjoint system by DDM

2. Decomposing the optimal control problem:

� Outer Iteration: DDM for optimality systems (see [BD96], [LL04])

� Inner Iteration: Solve decomposed optimality systems by gradient descent

Idea: Can a ”diagonal” approach be performed?
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Proposed Procedure

Iteratively for n = 1, 2, . . . do:

1. Compute the state equation in all Ωi in parallel:
−∆yn

i = f |Ωi + un|Ωi in Ωi

yn
i = 0 on ∂Ωi \ Γij

∂νy
n
i + yn

i = −∂νj y
n−1
j + yn−1

j on Γ, j ̸= i

(10)

2. Compute the adjoint equation in all Ωi in parallel:
−∆pn

i = yn
i − yd |Ωi in Ωi

pn
i = 0 on ∂Ωi \ Γ

∂νp
n
i + pn

i = −∂νj p
n−1
j + pn−1

j on Γij , j ̸= i

(11)

3. Update the controls in Ωi based on pn
i .

Questions:

� Can convergence be ensured?

� Can a numerical advantage be achieved?
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Results



Numerical Experiments

0 1 2 3 4 5 6 7 8 9 10

Iteration; Iteration/(# Subgraphs)

10
4

Convergence of (S)GD using DD

Standard GD

 GD with DD

SGD with DD

Figure 1: |V| = 422, |E| = 1143, Number

of Subgraphs M = 20

Descent Procedure Time [s]

Standard GD 97

GD with DD 68

SGD with DD 72
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Convergence Analysis

Theorem (Hante, LW, Veldman, Zuazua, 2022)
We can chose the stepsize η > 0 sufficiently small such that for the optimal

control problem (4) on networks and 1D domains the proposed procedure

converges towards the optimal control ū.

Idea of the proof: For small stepsizes, the change in the control in each step is

small enough to not disturb the convergence of the domain decomposition

method.
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Framework of the proof

H,U Hilbert spaces, X , Y Banach spaces,A ∈ L(X ,Y), B ∈ L(U ,Y),
C ∈ L(X ,H). Consider the optimal control problem

min
u∈U

J(y , u) = 1
2
∥Cy − zd∥2H + 1

2
∥u∥2U

s.t. Ay = Bu + f ,
(12)

for some given zd ∈ H and f ∈ Y. Note that Ay = f can be solved by the

iteration

Myn+1 = Nyn + f (13)

for A = M − N and ρ(M−1N) < 1. Consider the following descent procedure:

For n = 0, 1, 2, . . . compute
Myn+1 = Nyn + Bun + f ,

M̃pn+1 = Ñpn + C∗(Cyn+1 − zd),

un+1 ← un − η(B∗pn+1 + un).

(14)

Proposition

If ρ(M−1N) < 1 and ρ(M̃−1Ñ) < 1, there exists η0 > 0 such that for all

stepsizes 0 < η < η0 the algorithm (14) converges for all initial guesses. 10



How to understand DDM in this framework?

Let Ay = f denote the poisson equation on Ω. We can then decompose

A =

[
M1 N1

N2 M2

]
=

[
M1 0

0 M2

]
︸ ︷︷ ︸

=:M

−

[
0 −N1

−N2 0

]
︸ ︷︷ ︸

=:N

where Miyi = Niyj + f corresponds to
−∆yi = f |Ωi in Ωi

yi = 0 on ∂Ωi \ Γ
∂νi yi + yi = −∂νj yj + yj on Γ, j ̸= i

where we decomposed Ω = Ω1 ∪ Ω2. This can be made precise!
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Sketch of proof of the proposition

Proof.
The algorithm (14) can be written in matrix form as M 0 0

−C∗C M̃ 0

0 ηB∗ IU


︸ ︷︷ ︸

M2(η)

yk+1

pk+1

uk+1

−
N 0 B

0 Ñ 0

0 0 IU − ηIU


︸ ︷︷ ︸

N2(η)

ykpk
uk

 =

 f

−C∗zd

0

 .

Establishing the convergence comes down to showing that

ρ(M−1
2 (η)N2(η)) < 1. Using ρ(M−1N) < 1 and ρ(M̃−1Ñ) < 1, this can be

done for η > 0 small enough.
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Outlook



Outlook

Future goals:

� Extend our convergence results, particularly to instationary problems

� Investigate possible advantages of choosing subdomains stochastically

� Analyze the influence of the decomposition method on the convergence

properties, particularly on networks
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Thank you for your attention!

Are there any Questions?
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