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Introduction



Motivation

Overarching goal: Optimization of gas network
operation

l.e.: Optimal control of nonlinear PDE’s on large
domains/networks:

min J(y(u), u)

uell
with

e target functional J (operational cost, distance
to target state)

e control u (compressor stations, valves)
e state y (pressure, density, velocity)

e set of admissible controls KC



Optimal control of gas flow on networks

Let (£,V) a network with boundary nodes Vy, interior nodes Vo and compressor

nodes V.. Our goal is to solve

)
min J(y, u) = / —ya) + =|u|? 1
mig Jys)i= [ =)+ gl (1)
such that
Or(p(ye)) — Ox(@(Oxye)) =0 in{e} x(0,T), ec&
vep(Oxy) + () =g in{v}x(0,T) vEV, ec&(v)
e =y in{v}x(0,T), veEW, ee €&(v)
Dece(v) Ve (Oxye) =0 in{v}x(0,T), veW\V (2)
vep(Oxye) =1 (e(yer) — @(ye) + ue)
in{v} x (0, T), ve V., e, e € E&(v)

¥e(0, ) =Yeo onecé&

with nonlinearity ¢ : s — |s|7%5. Our project (CO7 of TRR154) concerns
gradient descent procedures for this kind of problem:

e Does the equation allow for an adjoint state?

e Can we decrease numerical cost of the GD by using domain
decomposition?



Optimal control of parabolic p-Laplacian equations

For a < 2 consider problems of the form

minJ(yu)—l/T/|y—y|2+é/T/ v (3a)
weu = 2Jo Ja ’ 2 Jo Joa

Oty — Ay =0 in(0,T)x%,
s.t. |Vy\a_2% +vy =~u on(0,T) x9Q, (3b)
y(x,0) =y inQ

for some fixed yo € L*(Q), v,A >0, ys € L*(Q) and a control
uwe UcLa1(0,T,L%(89)). The formal adjoint p can become singular:

—0:p =V - (¢ (Vy)Vp) =0

Open problem: Assuming only Vy # 0 a.e., is the solution operator of (3)
differentiable? [cf. Fernandez-Casas, 1995]

Theorem (LW, Zuazua, 2022)
Assuming 0 < C; < |Vy| < G < oo, the solution operator of (3) is Gateaux

differentiable and an adjoint state exists.



Domain Decomposition for
Gradient Descent



Motivation: Gradient Descent Procedures for Optimal Control

For simplicity, consider

. 1 > A 5
uenzzl?n) J(y,u) = EHY - deL2(Q) + 5““”9(9) (4)
—Ay =f+u inQ
with y

y =0 onJQ.

Optimality System: Optimal state y and its adjoint p satisfy

Ay =f—1p inQ7 —Ap =y—yq inQ 5)
1% =0 on N p =0 on 09.
Gradient Descent: Find y by iteratively computing
—Ay"W =f4+u inQ —Ap =y vy, inQ (©)
(™ =0 on 9N ’ p =0 on 9N
s =y (p(n) n )\u(")> 7

Main challenge: Repeated computation of forward and adjoint system is
numerically expensive! Particularly for very large domains.



Domain Decomposition Methods

Consider the Poisson problem N
Ay =f inQ N e
—Ay =f in ‘ )
8

y =0 ondQ (Y F\\//

\ /

\ /
on a domain Q C R Fix a decomposition Q = \\,,7/ ¢

61 Uﬁg with Q1N =0 and I Ziﬁl ﬂﬁz.

Picture taken from [LL04]

Then, the iterative procedure defined by

— Ay/ =flg, inQ
yh =0 onoQ\T 9)
Oyl +yf =—0uy" P4yt onT,j#i

converges towards y for n — oo [Lio90]. Note: parallelizable!



Domain Decomposition and Gradient Descent

How can DDM be used in the context of gradient descent?

1. Performing DDM in each iteration of GD (see [CY11]):

e Quter Iteration: Adjoint-based gradient descent

e Inner Iteration: Solve forward and adjoint system by DDM
2. Decomposing the optimal control problem:

e Outer Iteration: DDM for optimality systems (see [BD96], [LL04])

e Inner Iteration: Solve decomposed optimality systems by gradient descent

Idea: Can a "diagonal” approach be performed?



Proposed Procedure

Iteratively for n =1,2,... do:

1. Compute the state equation in all ©; in parallel:

— Ay/ = flo, + u"lq, inQ;
v =0 ondQi\Tly (10)
Oyl +yl =—=0uy/ 4yt onT,j#i

2. Compute the adjoint equation in all €; in parallel:
—Ap! =y —ydle;, in Qi
p! =0 ondQ\T (11)
Oupf +pf =—0upl P+ pt onTyj#i

3. Update the controls in €; based on p;.

Questions:

e Can convergence be ensured?

e Can a numerical advantage be achieved?



Results




Numerical Experiments

Convergence of (S)GD using DD
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Figure 1: |V| =422, |£| = 1143, Number
of Subgraphs M = 20



Theorem (Hante, LW, Veldman, Zuazua, 2022)

We can chose the stepsize 1) > 0 sufficiently small such that for the optimal

control problem (4) on networks and 1D domains the proposed procedure
converges towards the optimal control .

Idea of the proof: For small stepsizes, the change in the control in each step is
small enough to not disturb the convergence of the domain decomposition
method.



Framework of the proof

H.U Hilbert spaces, X', Y Banach spaces,A € L(X,)), B € L(U,D),
C € L(X,H). Consider the optimal control problem

g _ 1 2 1 2
min J(y, u) = 3[ICy — zall3 + 3 llullu

(12)

s.t. Ay =Bu+f,
for some given zy € H and f € ). Note that Ay = f can be solved by the

iteration

Myni1 = Ny, + f (13)
for A= M — N and p(M~*N) < 1. Consider the following descent procedure:
For n=10,1,2,... compute

Myn+1 = N}/n + Bun + f7
Mpri1 = Np, + C*(Cynt1 — z4), (14)

Un+1 = Uy — (B pni1 + n).
Proposition

If (M7 N) < 1 and p(M~N) < 1, there exists 1o > 0 such that for all
stepsizes 0 < n < no the algorithm (14) converges for all initial guesses. 10



How to understand DDM in this framework?

Let Ay = f denote the poisson equation on 2. We can then decompose

Al [ om] _ {I\/h o] [o —m
N> Mo 0o M —N> 0
=M =N
where M;y; = N;y; + f corresponds to
—Ay; =flg, in
% =0 ondQ;\T
oyi+yi = —aujyj +y onl,j#i

where we decomposed Q2 = 2 U 2. This can be made precise!

11



Sketch of proof of the proposition

Proof.

The algorithm (14) can be written in matrix form as

M 0 0 Yk+1 N 0 B Yk f
—C*C M 0 Pk+1| — 0 K/ 0 Pk| = —C*Zd
0 nB* Iy Uk+1 0 0 lu—nl Uk 0

Ma(n) Na(n)

Establishing the convergence comes down to showing that
p(M51(n)Na(n)) < 1. Using p(M™IN) < 1 and p(M~1N) < 1, this can be
done for n > 0 small enough.

12



Outlook




Outlook

Future goals:

e Extend our convergence results, particularly to instationary problems
e Investigate possible advantages of choosing subdomains stochastically

e Analyze the influence of the decomposition method on the convergence
properties, particularly on networks

Spectral Clustering into k clusters based on the Graph Laplacian

k=2 k=3 k=t
12000 12000 12000

¥ \p 4
8000 % 8000 % 8000
6000 Y . 5000

10000

" 000 -
4000 3 . 4000 4000 ..
2000 " 2000 2000

o o o

o am o o a0 o o =0 o
k=5 k=5 k=7

1200 1200 12000
10000 10000

8000 % 8000 ‘v 8000
6000 Y ' 6000 ' y

. . a0 .
a0 e a0 .. 400 ..
2000 : 2000 ) 200 T
o o o
0w e 0w e 0w e

13



Thank you for your attention!
Are there any Questions?
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