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Multi-armed Bandits

100 Euro It costs 1 euro to play once  x ~ N(u,1), with unknown u

Q: What is the best strategy to get the maximum total rewards?

Method 1: Case 1:py = 10, pp = — 10 explore too much

- pull a; and a, 25 times each - One does not need to pull 25 times to figure out a, is better & exploit too little
- Get the empirical mean - Waste too much time on the obviously worse arm

H1> H2 Case2:u; = 0.1, u,=-0.1
- Pull th_e arm has the larger - It is possible that /21 < /22, and the rest 50 times is pulling the explore too little &
empirical mean for the rest Worse arm 0 exploit too much

50 times - Spend too little time to differentiate the two arms



Some better algorithms

51
. Cor
Tempered greedy: Pull a; w.p. 1y x e 7 s; : cumulative reward of a;

5 q; - number of pulls of g,

Pull a, w.p. 7, & e %

S log(n) S log(n)
Compare F4/C & F4/C
q1 q1 4> 4>




Multi-armed Bandits

Karms: & = {ay, -+, ax}, Horizon n: the total number of pulls

round i —> pullzf\i € of —>getreward X' € R

policy 7: H' — A(HA) Envionmentv € &: €9 X ~ N, 1), v = (v, -+, vg)
i & = R%, eachreality<—>1v € &

History H: (A, X!, ---, A= x*=1

(Si, Qf), "'(S[l{a qllg) - Cumulative reward, number of pulls

Goal: find {:nzi};;l to

max & Z X!
i=1
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Bayesian v.s. Frequentist

min Rw) = E Y (w*@) - X) - maxE ) X' =E Y u)
i=1 i=1 =

|

u*(v) = max{yu,(v), -+, ux(v)}, where y, is the expectation of arm k

It is not an optimization problem.
It is proved that a good policy can achieve R(v) = O(log(n)) for Vv € &

max C = [ Z J 1, (V)p'(v)dy
&

d i=1 T

pi(y) IS the posterior measure according to the bayesian rule

* It Is an optimization problem
* The goal is to solve for the best policy that maximizes the expected
cumulative reward



History of Bayesian optimal bandits

[Bradt et al.,1956] developed the framework of bayesian optimal bandits
Bayesian optimal bandit dominates the research of bandit problem from 1950 - 1980

The biggest difficulty of bayesian framework is the computational cost:
e.g. K arms: - exact solve the problem requires O(n*) computational time

One breakthrough is the Gitten’s index [Gittins, 1979]:

Computational cost: O(n®) —> O(Kn?)

However, it can only be applied to infinite discounted cumulative reward:
o0

max C = [ Z J }/i//tAi(I/)pi(V)dl/
=1 © &
For frequentist setting: [Agrawal, 1995], [Katehakis and Robbins, 1995] developed UCB

- The computational cost is O(Kn)
- Asymptotically achieve the optimal regret, but not necessarily optimal bayesian rewards




This talk: Continuous Bayesian bandits

Goal: undiscounted bayesian optimal bandit problem

max C = [E Z J 1, (V)p'(v)dy
&

d i=1

As n — o0, It converges to a Hamilton-Jdacobi-Bellman equation

Propose a regularized version of bayesian optimal bandits

Analytic solution exists for some commonly visited cases

- Computational cost: O(n™) — O(Kn)
Depends on mesh

In general, using numerical solution /

- the computational cost: O(n*) — O(N*)
- Using DNN to break the curse of dimensionality



An illustrative example

a, gives reward 1 w.p.vand Ow.p. | — v -~ w(v)=v
SERCnfeelznl  |a, gives deterministic reward u,

- Initially, before round 1: assume v ~ Beta(a, /)

- At round Ii: the posterior measure pi(l/) depends on
- s': the cumulative reward from a; up to round i — 1

- qi: the number of pulls from a; up toround 1 — 1
- p'(v) = p(v|s', q") ~ Beta(a + s', f + q' — 5°)

- ay Is chosen w.p. ' = n(s’, ql)

n

Goal: max E 2 ([ul(y)pi(v)du> T+ (1 — ')

d i=1




Discrete bayesian algorithm

- Let w'(s, g) be the optimal expected cumulative reward starting from round i with (s, g*) = (s, g)

- If a, is chosen at round i: Wi(S, q) = wi“(s, q) + i,
- If a; is chosen at round i:

wi(s, q) = p(s,q) + p(s,Qw (s + L,g + 1) + (1 = p(s, @))w' (s, + 1),

a—+s
~ where p(s, g) = is the expected reward obtained at round |
a+pf+q
- after pulling a;,

- P(s™ ="+ 1]s) = p(s', q"),
- P(s™ =55 =1-p(s',q").

wi(s, q) = max {w™t'(s,q) + po,  p(s,q) + pls,w (s + Lg+ 1)+ (1 = p(s, Qw™(s,q + 1)}

With w"*1(s, g) = 0, one can solve for w'(s, g) backwards



Derivation to HJB equation

wi(s,q) = max {w(s,q) + pp, p(s,q) +pls,Pw™t (s + Lg+ D+ 1 = pls, ™' (s,g+ D} w'l(s,q) =0

1 1 . 1 .
Let§ =—s,g=—q | V'($,q9) =—w'(s,9)
n n n
1 RPN DS B e g+
vl(sa Q) = ImMax ) + VH_I(Sa Q)a_p(sa Q) +p(S9 Q)V +1(S + —{q + _) + (1 _p(Sa Q))V +1(Saq + _) »  Where ]5(5, Q) — _ln rre .
n n n n n n~a+p)+q

By setting 0, = 0, = 0, = —,
n

Vi+1(§9 Q) T Vi(S\a @)
Oy

0

VRS +6,+68)—vT(E.g+8) v$,q+6)— v, 9) }
S q

- max {m, 3,9 + 3, §) | .

Asn — oo léraéq’5s_>0

0,V(t, s, q) + max { ta, P(s, q) + p(s, q)o,V(¢, s, q) + 0, V(z, s, q)} =0, V(l,5,q9) =0, where p(s,q) = lim p(s,q).

n—oo

v

d,V(t,s,q) + max {ﬁ(s, q) + p(s, q)oV(t,5,q) + 0, V(t,s,q) — Mz} n+u,=0, V(l,s,q) =0,
ne(0,1]



General Results for K-armed bayesian bandits

History at round i: st = (S,i)szl, qi = (Q'/i)kK=1

Posterior measure at round I: pi(y) = p(V] Si, qi) Policy at round i: i ]Z'(Si, qi), where Z nk(s, q) =1
k

Let fix(s. q) = | m@W)p'Ws, @)dv, &i(s,q) = |x*P{p'(v|s,q)dxdv, EF(s, q)=prP,§pi(v\s, q) dx dv

. i-1 1 1
Assume [ = , J=—¢g, §=—38§

n n J(n)

Theorem [Z-YIing-lzzo, 22]

: n _ ~ A N~ A A : _ ~ A PP :
It lim —— g, (f(n)s, np) = i, (S, p), lim 6. (f(n)s,np) = 6,(5,p), Iim

n
p S N p—
=0 f(l’l) H— 00 f(n)2 11— 00 f(n)l? Ek (f(n)s, i’lp) 0

then V(2, §, ) V(i_1 - 4
en 9S9 — b b
1 n f(n) n

) = —w!(s, g) satisfies the following HJB equation:
q

 fln)

A L. A o e A
O+ max {f,0,V+0,V+ 50,%@ng+ Atm, =0 with V(1,5,§) = 0, for Vs, 4

T



Continuous HJB and control problem

A L A . A A
0,V + max {o,V+o,V+ 50,%63}(V+ i ym, =0, with V(1,5,g) =0, for Vs, g

Zk ﬂkzl

JT

V(t,§,3) = max

T

1
maxe | 346 Dn. ) d
0" %

1
- J .G, () m G, 4 lde

S.1. dﬁk(t) — /’lik(ga (/i)ﬂk(ga (/i)dt T 8]((@9 (/i)\/ﬂk(ga (/i)dBt

dq,(t) = m(s, q)dt
with §(0) =0, q(0)=0.



0,V

Regularized HJB equation

1
max E| 3 46.9m(.0) i logm) d
0 %

JT

dgi (1) = m(S, Q)
with  §(0)=0, §=0

|
Alog ( Z exp [;Hk (askv, d, V. a?kV>] ) = 0, with V(1,5,4) = 0, for Vs, g
k
1
7, X CXP [IHIC <6SkV, aqu, a?kV>]

X I, )
Where H, (p, g, h) = (s,q)p + g+ 56;%(& Qh + (s, q)



Two special cases

SSMCEIRENEICES | g, gives reward y w.p. v, and —y w.p. 1 — 1, (v is known)
& =[0,11*
Prior of v, ~ Beta(a, /)

o1 — a;, + A
Fory = O(n™"), it 3f(n) < O(n"*77), st. lim =P & lim — i Pi
1n— 00 f(n) n—0o0 n
o ¢4 &k A 012
> //tk S, q — A ) Gk — }/
{ —+ ﬁk f(n)
The reward of g, follow N(I/k, 02) with known o
& =Rk
Prior of v, ~ N(ay, 57)
) 2 n—2
Q O A
For o = O(n™P), if f(n) < O(n'*77),st. lim LS. & lim —— = f,
n— o0 f(n) n— Q0 n
) o4 &k A n 12
g //tk(sa Q) — A Gk

— 0.
q+ﬁk f(n)



Analytic solution for the unregularized HJB

Theorem [Z-Ying-lzzo, 22]

s+ a
when fi(s, g) = Ak, then the optimal policy for the unregularized HJB is

q + i

1, k = argmax S,

0

, O.W.
For finite horizon one-armed bandits problem:
) S n)(& — B
fn) n 7 q;
. S; clog(n)
Compare with UCB:|— + > U
q; \ q;




Analytic solution for the regularized HJB

Theorem [Z-YIing-lzzo, 22]

s+ a
when f1,(s, q) = Ak, then the optimal policy for the regularized HJB is

q + Py

(s, q) o eMOn)

For finite horizon one-armed bandits problem:

A) q R n Si +f(n)&
When — | >, =1 & |rxexp -
2
J(n) n J(n) g, +np
s, + a

Compare with tempered greedy algo:|x x exp | ¢ P
q; T




Numerical Experiments

a; gives reward { 1T W.p. 1y;

-1 W.P. I — 4"

K=3, 1/1 — 1/2, I/2=I/3 = U [0,1] K=10, 1/1 — 1/2, I/2= ce =I/10=1/€ [0,1]

expectation of the regret expectation Dof the regret

N 100+
—Thomson Sampling —Thomson Sampling
—UCB —UCB

40 - numerical HJB 90 - numerical HJB

| |
0.9 1



Numerical Experiments

a, gives reward ~ N(v,,1)

K=3,I/1=O,I/2=I/3=I/E [—1,1] K=1O,I/1=O,I/2= ce =I/IO=I/€ [—1,1]

40 expectation of the regret 90 expectation of the regret
—Thomson Sampling numerical HJB
numerical HJB
35+ —UCB

|
0.8 1



Open Problems ?

When the exact solution is hard to calculate, how to compute the numerical solution
efficiently for large K. (DNN?)

Convergence rate to the HJB equation:

— _Wi(sa Q) — V(t, S\a g)
n

- Discrete: h(n,s,q) > u, — = 1; Continuous: g(§,9) > u, > n =1

h(n, s, q) — ( ° ﬁ)
- BT E Ty

S+a | |
If u(s, q) = , is the HJB equation well-defined?

q

Will the HJB equation converge to some “mean-field limit” as K — oo

Does there exist a PDE for UCB algorithm as n — o0?



