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Method 1: 

- pull  and  25 times each

- Get the empirical mean 



- Pull the arm has the larger 

empirical mean for the rest 
50 times

a1 a2

̂μ1, ̂μ2

100 Euro , with unknown x ∼ N(μ,1) μIt costs 1 euro to play once

Q: What is the best strategy to get the maximum total rewards?

Tradeoff between “exploitation” and “exploration” 

Multi-armed Bandits

μ1 μ2

Case 1: 

- One does not need to pull 25 times to figure out  is better

- Waste too much time on the obviously worse arm

μ1 = 10, μ2 = − 10
a1

explore too much 
& exploit too little

Case 2: 

- It is possible that , and the rest 50 times is pulling the 

worse arm

- Spend too little time to differentiate the two arms

μ1 = 0.1, μ2 = − 0.1
̂μ1 < ̂μ2 explore too little & 

exploit too much



Some better algorithms

Tempered greedy: Pull  w.p. 


Pull  w.p. 


a1 π1 ∝ ec s1
p1

a2 π2 ∝ ec s2
q2

UCB:
Compare    &   


s1

q1
+ c

log(n)
q1

s2

q2
+ c

log(n)
q2

 cumulative reward of 

 number of pulls of 


si : ai
qi : ai



K arms: ,   Horizon n: the total number of pulls𝒜 = {a1, ⋯, aK}

round i —> pull  —> get reward  Ai ∈ 𝒜 Xi ∈ ℝ

policy :    πi Hi → Δ(𝒜)

History : 

   

Hi (A1, X1, ⋯, Ai−1, Xi−1)
(si

1, qi
1), ⋯(si

K, qi
K) Cumulative reward, number of pulls   

Environment :  ν ∈ ℰ e.q. ,  

, each reality <—> 

xk ∼ N(νk,1) ν = (ν1, ⋯, νK)
ℰ = ℝK ν ∈ ℰ

Goal: find  to


 


{πi}n
i=1

max 𝔼
n

∑
i=1

Xi

Multi-armed Bandits



Applications

- Advert Placement


- Recommendation Service


- Network Routing


- Dynamic Pricing


- Dynamic treatment




Bayesian v.s. Frequentist

Frequentist: min R(ν) = 𝔼
n

∑
i=1

(μ*(ν) − Xi)

 where  is the expectation of arm kμ*(ν) = max{μ1(ν), ⋯, μK(ν)}, μk

• It is not an optimization problem.  
• It is proved that a good policy can achieve  for R(ν) = O(log(n)) ∀ν ∈ ℰ

Bayesian:  max
π

C = 𝔼
n

∑
i=1

∫ℰ
μAi(ν)ρi(ν)dν

 is the posterior measure according to the bayesian ruleρi(ν)

• It is an optimization problem 

•The goal is to solve for the best policy that maximizes the expected 
cumulative reward

max 𝔼
n

∑
i=1

Xi = 𝔼
n

∑
i=1

μAi(ν)



History of Bayesian optimal bandits

- [Bradt et al.,1956] developed the framework of bayesian optimal bandits


- Bayesian optimal bandit dominates the research of bandit problem from 1950 - 1980


- The biggest difficulty of bayesian framework is the computational cost:

e.g. K arms: - exact solve the problem requires  computational time


- One breakthrough is the Gitten’s index [Gittins, 1979]:

Computational cost:  —> 

However, it can only be applied to infinite discounted cumulative reward:


- For frequentist setting: [Agrawal, 1995], [Katehakis and Robbins, 1995] developed UCB

- The computational cost is 

- Asymptotically achieve the optimal regret, but not necessarily optimal bayesian rewards

O(nK)

O(nK) O(Kn2)

O(Kn)

max C = 𝔼
∞

∑
i=1

∫ℰ
γiμAi(ν)ρi(ν)dν



This talk: Continuous Bayesian bandits

 max
π

C = 𝔼
n

∑
i=1

∫ℰ
μAi(ν)ρi(ν)dν

Goal: undiscounted bayesian optimal bandit problem

- As , it converges to a Hamilton-Jacobi-Bellman equation


- Propose a regularized version of bayesian optimal bandits


- Analytic solution exists for some commonly visited cases

- Computational cost: 


- In general, using numerical solution 

- the computational cost: 

- Using DNN to break the curse of dimensionality

n → ∞

O(nK) → O(Kn)

O(nK) → O(NK)

Depends on mesh



An illustrative example

 gives reward 1 w.p.  and 0 w.p. 

 gives deterministic reward 

a1 ν 1 − ν
a2 μ2

One-armed 
bandit problem

- Initially, before round 1:  assume 


- At round i: the posterior measure  depends on 

- : the cumulative reward from  up to round 

- : the number of pulls from  up to round 

-  


-  is chosen w.p. 


- Goal: 

ν ∼ Beta(α, β)

ρi(ν)
si a1 i − 1
qi a1 i − 1
ρi(ν) = ρ(ν |si, qi) ∼ Beta(α + si, β + qi − si)

a1 πi = π(si, qi)

max
π

𝔼 [
n

∑
i=1

(∫ μ1(ν)ρi(ν)dν) πi + μ2(1 − πi)]

μ1(ν) = ν



Discrete bayesian algorithm

- Let  be the optimal expected cumulative reward starting from round i with 


- If  is chosen at round i:  

- If  is chosen at round i:





- where  is the expected reward obtained at round i


- after pulling , 

- 

- 

-

wi(s, q) (si, qi) = (s, q)

a2 wi(s, q) = wi+1(s, q) + μ2
a1

wi(s, q) = p(s, q) + p(s, q)wi+1(s + 1,q + 1) + (1 − p(s, q))wi+1(s, q + 1),

p(s, q) =
α + s

α + β + q
a1

qi+1 = qi + 1
ℙ(si+1 = si + 1 |si) = p(si, qi),
ℙ(si+1 = si |si) = 1 − p(si, qi) .

wi(s, q) = max {wi+1(s, q) + μ2, p(s, q) + p(s, q)wi+1(s + 1,q + 1) + (1 − p(s, q))wi+1(s, q + 1)}
With , one can solve for  backwardswn+1(s, q) = 0 wi(s, q)

  

  



wi(s, q) = max {wi+1(s, q) + μ2, p(s, q) + p(s, q)wi+1(s + 1,q + 1) + (1 − p(s, q))wi+1(s, q + 1)} wn+1(s, q) = 0

Derivation to HJB equation

Let ̂s =
1
n

s, ̂q =
1
n

q vi( ̂s, ̂q) =
1
n

wi(s, q)

vi( ̂s, ̂q) = max { 1
n

μ2 + vi+1( ̂s, ̂q),
1
n

p̃( ̂s, ̂q) + p̃( ̂s, ̂q)vi+1( ̂s +
1
n

, ̂q +
1
n

) + (1 − p̃( ̂s, ̂q))vi+1( ̂s, ̂q +
1
n

)}, p̃(s, q) =
n−1α + s

n−1(α + β) + q
.where

By setting , δt = δq = δs =
1
n

vi+1( ̂s, ̂q) − vi( ̂s, ̂q)
δt

+ max {μ2, p̃( ̂s, ̂q) + p̃( ̂s, ̂q)
vi+1( ̂s + δs, ̂q + δq) − vi+1( ̂s, ̂q + δq)

δs
+

vi+1( ̂s, ̂q + δq) − vi+1( ̂s, ̂q)
δq } = 0.

∂tV(t, s, q) + max {μ2, ̂p(s, q) + ̂p(s, q)∂sV(t, s, q) + ∂qV(t, s, q)} = 0, V(1,s, q) = 0, ̂p(s, q) = lim
n→∞

p̃(s, q) .where

As n → ∞  δt, δq, δs → 0

∂tV(t, s, q) + max
π∈[0,1] { ̂p(s, q) + ̂p(s, q)∂sV(t, s, q) + ∂qV(t, s, q) − μ2} π + μ2 = 0, V(1,s, q) = 0,



General Results for K-armed bayesian bandits

History at round i: si = (si
k)

K
k=1, qi = (qi

k)
K
k=1

Let ,    ,     μ̄k(s, q) = ∫ μk(ν)ρi(ν |s, q)dν σ̄2
k(s, q) = ∫ x2Pν

k ρi(ν |s, q) dx dν Ep
k (s, q) = ∫ xpPν

k ρi(ν |s, q) dx dν

Assume ̂t =
i − 1

n
, ̂q =

1
n

q, ̂s =
1

f(n)
s

Posterior measure at round i: ρi(ν) = ρ(ν |si, qi) Policy at round i:  where πi = π(si, qi), ∑
k

πk(s, q) = 1

If , , lim
n→∞

n
f(n)

μ̄k( f(n) ̂s, n ̂p) = ̂μk( ̂s, ̂p) lim
n→∞

n
f(n)2

σ̄2
k( f(n) ̂s, n ̂p) = ̂σ2

k( ̂s, ̂p) lim
n→∞

n
f(n)p

Ep
k ( f(n) ̂s, n ̂p) = 0

then  satisfies the following HJB equation:V(t, ̂s, ̂q) = V(
i − 1

n
,

s
f(n)

,
q
n

) =
1

f(n)
wi(s, q)

with , for V(1, ̂s, ̂q) = 0 ∀s, q∂tV + max
∑k πk=1

{ ̂μk∂sk
V + ∂qk

V +
1
2

̂σ2
k∂

2
sk
V + ̂μk}πk = 0

Theorem [Z-Ying-Izzo, 22]



Continuous HJB and control problem

, with , for ∂tV + max
∑k πk=1

{ ̂μk∂sk
V + ∂qk

V +
1
2

̂σ2
k∂

2
sk
V + ̂μk}πk = 0 V(1, ̂s, ̂q) = 0 ∀s, q




s.t. 


      


with       

max
π

𝔼∫
1

0
∑

k

̂μk( ̂s, q̂)πk( ̂s, q̂) dt

d ̂sk(t) = ̂μk( ̂s, q̂)πk( ̂s, q̂)dt + ̂σk( ̂s, q̂) πk( ̂s, q̂)dBt

d ̂qk(t) = πk( ̂s, ̂q)dt
̂s(0) = 0, q̂(0) = 0 .

V(t, ̂s, ̂q) = max
π

𝔼∫
1

t
[ ̂μk( ̂s(τ), ̂q(τ))πk( ̂s(τ), ̂q(τ))]dτ



Regularized HJB equation

 


s.t.       


            


with         

max
π

𝔼∫
1

0
∑

k

̂μk( ̂s, ̂q)πk( ̂s, ̂q) − λπk log(πk) dt

d ̂sk(t) = ̂μk( ̂s, ̂q)πk( ̂s, ̂q)dt + ̂σ( ̂s, ̂q) πk( ̂s, ̂q)dBt

d ̂qk(t) = πk( ̂s, ̂q)dt

̂s(0) = 0, ̂q = 0

Where Hk (p, g, h) = ̂μk(s, q)p + g +
1
2

̂σ2
k(s, q)h + ̂μk(s, q)

, with , for ∂tV + λ log (∑
k

exp [ 1
λ

Hk (∂sk
V, ∂qk

V, ∂2
sk
V)]) = 0 V(1, ̂s, ̂q) = 0 ∀s, q

πk ∝ exp [ 1
λ

Hk (∂sk
V, ∂qk

V, ∂2
sk
V)]



Two special cases

For , if , s.t. γ = O(n−p) ∃f(n) ≤ O(n1/2−p) lim
n→∞

γ(αk − βk)
f(n)

= α̂k, lim
n→∞

αk + βk

n
= ̂βk,

,    . ̂μk(s, q) =
s + α̂k

q + ̂βk
̂σk ≡

n1/2

f(n)
γ

For , if , s.t. σ = O(n−p) ∃f(n) ≤ O(n1/2−p) lim
n→∞

αkβ−2
k

f(n)
= α̂k, lim

n→∞

σ2β−2
k

n
= ̂βk,

,    .̂μk(s, q) =
s + α̂k

q + ̂βk
̂σk ≡

n1/2

f(n)
σ

Bernoulli rewards:  gives reward  w.p.  and  w.p. ,  (  is known)




Prior of 

ak γ νk −γ 1 − νk γ
ℰ = [0,1]K

νk ∼ Beta(αk, βk)

Normal rewards: The reward of  follow  with known 




Prior of 

ak N(νk, σ2) σ
ℰ = ℝK

νk ∼ N(αk, β2
k )



Analytic solution for the unregularized HJB

For finite horizon one-armed bandits problem: 

When ,  
μ ( s
f(n)

,
q
n ) > ̂μ2 π = 1 
⟺

si

qi
+

f(n)(α̂ − ̂β ̂μ2)
qi

> μ2

Compare with UCB: 
si

qi
+

c log(n)
qi

> μ2

when , then the optimal policy for the unregularized HJB iŝμ(s, q) =
s + α̂k

q + ̂βk


π*k (s, q) = {1, k = argmaxk {μ(sk, qk)}}
0, o . w .

Theorem [Z-Ying-Izzo, 22]



when , then the optimal policy for the regularized HJB iŝμk(s, q) =
s + α̂k

q + ̂βk
π*k (s, q) ∝ eμk(sk,qk)

For finite horizon one-armed bandits problem: 

When ,  
μ ( s
f(n)

,
q
n ) > ̂μ2 π = 1

Analytic solution for the regularized HJB


⟺ π ∝ exp ( n
f(n)

si + f(n)α̂
qi + n ̂β )

Compare with tempered greedy algo: π ∝ exp (c
si + a
qi + b )

Theorem [Z-Ying-Izzo, 22]



Numerical Experiments

 gives reward    1 w.p. ;ak νk{
-1 w.p. 1 − νk

K = 3, , ν1 = 1/2 ν2 = ν3 = ν ∈ [0,1] K = 10, , ν1 = 1/2 ν2 = ⋯ = ν10 = ν ∈ [0,1]



Numerical Experiments

 gives reward ak ∼ N(νk,1)

K = 3, , ν1 = 0 ν2 = ν3 = ν ∈ [−1,1] K = 10, , ν1 = 0 ν2 = ⋯ = ν10 = ν ∈ [−1,1]



Open Problems ?
- When the exact solution is hard to calculate, how to compute the numerical solution 

efficiently for large K. (DNN?)


- Convergence rate to the HJB equation:


-  


- Discrete:  ;     Continuous: 


- 


- If  is the HJB equation well-defined?


- Will the HJB equation converge to some “mean-field limit” as 


- Does there exist a PDE for UCB algorithm as ?

1
n

wi(s, q) → v(t, ̂s, ̂q)

h(n, s, q) > μ2 → π = 1 g( ̂s, ̂q) > μ2 → π = 1

h(n, s, q) → g ( s
f(n)

,
q
n )

μ(s, q) =
s + α

q
,

K → ∞

n → ∞


